5 on the Umnak Plateau, Bering

Total Page:16

File Type:pdf, Size:1020Kb

5 on the Umnak Plateau, Bering Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2015 Marine Isotope Stage (MIS) 5 on the Umnak Plateau, Bering Sea (IODP Site U1339): diatom taxonomy, grain size and isotopic composition of marine sediments as proxies for primary productivity and sea ice extent Derrick Ray Vaughn Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Geology Commons Recommended Citation Vaughn, Derrick Ray, "Marine Isotope Stage (MIS) 5 on the Umnak Plateau, Bering Sea (IODP Site U1339): diatom taxonomy, grain size and isotopic composition of marine sediments as proxies for primary productivity and sea ice extent" (2015). Graduate Theses and Dissertations. 14705. https://lib.dr.iastate.edu/etd/14705 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Marine Isotope Stage (MIS) 5 on the Umnak Plateau, Bering Sea (IODP Site U1339): Diatom taxonomy, grain size and isotopic composition of marine sediments as proxies for primary productivity and sea ice extent by Derrick Ray Vaughn A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Geology Program of Study Committee: Beth E. Caissie, Major Professor Alan D. Wanamaker, Jr. William J. Gutowski, Jr. Iowa State University Ames, Iowa 2015 Copyright © Derrick Ray Vaughn, 2015. All rights reserved. ii TABLE OF CONTENTS Page LIST OF FIGURES ................................................................................................... iv LIST OF TABLES ..................................................................................................... v NOMENCLATURE .................................................................................................. vi ACKNOWLEDGMENTS ......................................................................................... viii ABSTRACT………………………………. .............................................................. ix CHAPTER 1 INTRODUCTION .......................................................................... 1 1.1. Basis for Research......................................................................................... 1 1.2. Productivity, Nitrate Utilization, and Sea Ice Proxies .................................. 2 1.3. Thesis Outline ............................................................................................... 4 CHAPTER 2 LITERATURE REVIEW ............................................................... 6 2.1. The Bering Sea .............................................................................................. 6 2.1.1. Bering Sea Circulation ......................................................................... 7 2.2.2. Atmospheric Patterns in the Bering Sea .............................................. 9 2.2. Sea Ice Formation and Transport .................................................................. 11 2.3. Primary Productivity ..................................................................................... 13 2.3.1. Nitrogen Limitation ............................................................................. 16 2.3.2. Iron Limitation ..................................................................................... 17 2.4.Paleoclimate Proxies ...................................................................................... 18 2.4.1. Nitrogen Isotopes ................................................................................. 18 2.4.2. Carbon Isotopes ................................................................................... 20 2.4.3. Grain Size............................................................................................. 21 2.4.4. Diatom-based Proxies .......................................................................... 23 2.5. Marine Isotope Stage 5 ................................................................................. 24 2.5.1. Marine Isotope Stage 5 in Beringia ..................................................... 25 2.5.2. Marine Isotope Stage 5 in the Bering Sea ............................................ 27 2.6. Application .................................................................................................... 30 CHAPTER 3 MARINE ISOTOPE STAGE (MIS) 5 ON THE UMNAK PLATEAU, BERING SEA (IODP SITE U1339): DIATOMS, GRAIN SIZE AND SEDIMENTARY NITROGEN ISOTOPES AS PROXIES FOR PRIMARY PRODUCTIVITY AND SEA ICE EXTENT ........................................ 32 3.1. Abstract ......................................................................................................... 32 iii 3.2. Introduction ................................................................................................... 33 3.3. Study Area .................................................................................................... 35 3.3.1. Bering Sea ............................................................................................ 35 3.3.2. Umnak Plateau ..................................................................................... 36 3.4. Background ................................................................................................... 36 3.5. Methods......................................................................................................... 38 3.5.1. Sediment Cores .................................................................................... 38 3.5.2. Age Model ........................................................................................... 39 3.5.3. Diatom Analysis................................................................................... 39 3.5.4. Isotopic Analysis .................................................................................. 41 3.5.5. Grain Size Analysis.............................................................................. 42 3.6. Results… ....................................................................................................... 42 3.6.1. Diatom Analysis................................................................................... 42 3.6.2. Geochemical Analysis ......................................................................... 44 3.6.2.1. Nitrogen Isotopes ..................................................................... 44 3.6.2.2. Carbon Isotopes ....................................................................... 45 3.6.2.3. Total Organic Carbon .............................................................. 45 3.6.2.4. C/N Values ............................................................................... 46 3.6.3. Grain Size Analysis.............................................................................. 46 3.7. Discussion ..................................................................................................... 47 3.7.1. MIS 6 and Deglaciation at the Umnak Plateau .................................... 47 3.7.2. MIS 5 at the Umnak Plateau ................................................................ 49 3.7.2.1. MIS 5e and MIS 5d .................................................................. 49 3.7.2.2. MIS 5c and MIS 5b .................................................................. 51 3.7.2.3. MIS 5a ...................................................................................... 53 3.7.3. MIS 4 at the Umnak Plateau ................................................................ 54 3.8. Conclusions and Future Work ...................................................................... 55 APPENDIX A INVESTIGATING VARIATIONS IN DIATOM IDENTIFICATION.................................................................................................... 61 A.1. Abstract ........................................................................................................ 61 A.2. Introduction .................................................................................................. 61 A.3. Methods ........................................................................................................ 62 A.4. Results ......................................................................................................... 63 A.5. Discussion and Summary ............................................................................. 66 APPENDIX B DOES CRUSHING SEDIMENT AFFECT IDENTIFICATION ... 67 B.1. Abstract ........................................................................................................ 67 B.2. Introduction .................................................................................................. 67 B.3. Methods ........................................................................................................ 67 B.4. Results ......................................................................................................... 69 B.5. Discussion and Summary ............................................................................. 75 REFERENCES .......................................................................................................... 76 iv LIST OF FIGURES Page Figure 1 Bering Sea Map.......................................................................................... 31 Figure 2 δ15 N, Chaetoceros RS percentages, Diatom Abundances
Recommended publications
  • Miles, A.K., M.A. Ricca, R.G. Anthony, and J.A. Estes. 2009
    Environmental Toxicology and Chemistry, Vol. 28, No. 8, pp. 1643–1654, 2009 ᭧ 2009 SETAC Printed in the USA 0730-7268/09 $12.00 ϩ .00 ORGANOCHLORINE CONTAMINANTS IN FISHES FROM COASTAL WATERS WEST OF AMUKTA PASS, ALEUTIAN ISLANDS, ALASKA, USA A. KEITH MILES,*† MARK A. RICCA,† ROBERT G. ANTHONY,‡ and JAMES A. ESTES§ †U.S. Geological Survey, Western Ecological Research Center, Davis Field Station, 1 Shields Avenue, University of California, Davis, California 95616 ‡U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, 104 Nash Hall, Oregon State University, Corvallis, Oregon 97331 §Department of Ecology and Evolutionary Biology, Center for Ocean Health, 100 Schaffer Road, University of California, Santa Cruz, California 95060, USA (Received 2 October 2008; Accepted 6 March 2009) Abstract—Organochlorines were examined in liver and stable isotopes in muscle of fishes from the western Aleutian Islands, Alaska, in relation to islands or locations affected by military occupation. Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and rock greenling (Hexagrammos lagocephalus) were collected from nearshore waters at contemporary (decommissioned) and historical (World War II) military locations, as well as at reference locations. Total (⌺) polychlorinated biphenyls (PCBs) dominated the suite of organochlorine groups (⌺DDTs, ⌺chlordane cyclodienes, ⌺other cyclodienes, and ⌺chlo- rinated benzenes and cyclohexanes) detected in fishes at all locations, followed by ⌺DDTs and ⌺chlordanes; dichlorodiphenyldi- chloroethylene (p,pЈDDE) composed 52 to 66% of ⌺DDTs by species. Organochlorine concentrations were higher or similar in cod compared to halibut and lowest in greenling; they were among the highest for fishes in Arctic or near Arctic waters. Organ- ochlorine group concentrations varied among species and locations, but ⌺PCB concentrations in all species were consistently higher at military locations than at reference locations.
    [Show full text]
  • Resource Utilization in Atka, Aleutian Islands, Alaska
    RESOURCEUTILIZATION IN ATKA, ALEUTIAN ISLANDS, ALASKA Douglas W. Veltre, Ph.D. and Mary J. Veltre, B.A. Technical Paper Number 88 Prepared for State of Alaska Department of Fish and Game Division of Subsistence Contract 83-0496 December 1983 ACKNOWLEDGMENTS To the people of Atka, who have shared so much with us over the years, go our sincere thanks for making this report possible. A number of individuals gave generously of their time and knowledge, and the Atx^am Corporation and the Atka Village Council, who assisted us in many ways, deserve particular appreciation. Mr. Moses Dirks, an Aleut language specialist from Atka, kindly helped us with Atkan Aleut terminology and place names, and these contributions are noted throughout this report. Finally, thanks go to Dr. Linda Ellanna, Deputy Director of the Division of Subsistence, for her support for this project, and to her and other individuals who offered valuable comments on an earlier draft of this report. ii TABLE OF CONTENTS ACKNOWLEDGMENTS . e . a . ii Chapter 1 INTRODUCTION . e . 1 Purpose ........................ Research objectives .................. Research methods Discussion of rese~r~h*m~t~odoio~y .................... Organization of the report .............. 2 THE NATURAL SETTING . 10 Introduction ........... 10 Location, geog;aih;,' &d*&oio&’ ........... 10 Climate ........................ 16 Flora ......................... 22 Terrestrial fauna ................... 22 Marine fauna ..................... 23 Birds ......................... 31 Conclusions ...................... 32 3 LITERATURE REVIEW AND HISTORY OF RESEARCH ON ATKA . e . 37 Introduction ..................... 37 Netsvetov .............. ......... 37 Jochelson and HrdliEka ................ 38 Bank ....................... 39 Bergslind . 40 Veltre and'Vll;r;! .................................... 41 Taniisif. ....................... 41 Bilingual materials .................. 41 Conclusions ...................... 42 iii 4 OVERVIEW OF ALEUT RESOURCE UTILIZATION . 43 Introduction ............
    [Show full text]
  • Dipole Patterns in Tropical Precipitation Were Pervasive Across Landmasses Throughout Marine Isotope Stage 5 ✉ Katrina Nilsson-Kerr 1,5 , Pallavi Anand 1, Philip B
    ARTICLE https://doi.org/10.1038/s43247-021-00133-7 OPEN Dipole patterns in tropical precipitation were pervasive across landmasses throughout Marine Isotope Stage 5 ✉ Katrina Nilsson-Kerr 1,5 , Pallavi Anand 1, Philip B. Holden1, Steven C. Clemens2 & Melanie J. Leng3,4 Most of Earth’s rain falls in the tropics, often in highly seasonal monsoon rains, which are thought to be coupled to the inter-hemispheric migrations of the Inter-Tropical Convergence Zone in response to the seasonal cycle of insolation. Yet characterization of tropical rainfall behaviour in the geologic past is poor. Here we combine new and existing hydroclimate records from six large-scale tropical regions with fully independent model-based rainfall 1234567890():,; reconstructions across the last interval of sustained warmth and ensuing climate cooling between 130 to 70 thousand years ago (Marine Isotope Stage 5). Our data-model approach reveals large-scale heterogeneous rainfall patterns in response to changes in climate. We note pervasive dipole-like tropical precipitation patterns, as well as different loci of pre- cipitation throughout Marine Isotope Stage 5 than recorded in the Holocene. These rainfall patterns cannot be solely attributed to meridional shifts in the Inter-Tropical Convergence Zone. 1 Faculty of STEM, School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK. 2 Department of Geological Sciences, Brown University, Providence, RI, USA. 3 National Environmental Isotope Facility, British Geological Survey, Nottingham,
    [Show full text]
  • Aleutian Islands
    Journal of Global Change Data & Discovery. 2018, 2(1): 109-114 © 2018 GCdataPR DOI:10.3974/geodp.2018.01.18 Global Change Research Data Publishing & Repository www.geodoi.ac.cn Global Change Data Encyclopedia Aleutian Islands Liu, C.1* Yang, A. Q.2 Hu, W. Y.1 Liu, R. G.1 Shi, R. X.1 1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing100101,China Keywords: Aleutian Islands; Fox Islands; Four Mountains Islands; Andreanof Islands; Rat Islands; Near Islands; Kommandor Islands; Unimak Island; USA; Russia; data encyclopedia The Aleutian Islands extends latitude from 51°12′35″N to 55°22′14″N and longitude about 32 degrees from 165°45′10″E to 162°21′10″W, it is a chain volcanic islands belonging to both the United States and Russia[1–3] (Figure 1, 2). The islands are formed in the northern part of the Pacific Ring of Fire. They form part of the Aleutian Arc in the Northern Pacific Ocean, extending about 1,900 km westward from the Alaska Peninsula to- ward the Kamchatka Peninsula in Russia, Figure 1 Dataset of Aleutian Islands in .kmz format and mark a dividing line between the Ber- ing Sea to the north and the Pacific Ocean to the south. The islands comprise 6 groups of islands (east to west): the Fox Islands[4–5], islands of Four Mountains[6–7], Andreanof Islands[8–9], Rat Islands[10–11], Near Is- lands[12–13] and Kommandor Islands[14–15].
    [Show full text]
  • The Easternmost Occurrence of Mammut Pacificus (Proboscidea: Mammutidae), Based on a Partial Skull from Eastern Montana, USA
    The easternmost occurrence of Mammut pacificus (Proboscidea: Mammutidae), based on a partial skull from eastern Montana, USA Andrew T. McDonald1, Amy L. Atwater2, Alton C. Dooley Jr1 and Charlotte J.H. Hohman2,3 1 Western Science Center, Hemet, CA, United States of America 2 Museum of the Rockies, Montana State University, Bozeman, MT, United States of America 3 Department of Earth Sciences, Montana State University, Bozeman, MT, United States of America ABSTRACT Mammut pacificus is a recently described species of mastodon from the Pleistocene of California and Idaho. We report the easternmost occurrence of this taxon based upon the palate with right and left M3 of an adult male from the Irvingtonian of eastern Montana. The undamaged right M3 exhibits the extreme narrowness that characterizes M. pacificus rather than M. americanum. The Montana specimen dates to an interglacial interval between pre-Illinoian and Illinoian glaciation, perhaps indicating that M. pacificus was extirpated in the region due to habitat shifts associated with glacial encroachment. Subjects Biogeography, Evolutionary Studies, Paleontology, Zoology Keywords Mammut pacificus, Mammutidae, Montana, Irvingtonian, Pleistocene INTRODUCTION Submitted 7 May 2020 The recent recognition of the Pacific mastodon (Mammut pacificus (Dooley Jr et al., 2019)) Accepted 3 September 2020 as a new species distinct from and contemporaneous with the American mastodon Published 16 November 2020 (M. americanum) revealed an unrealized complexity in North American mammutid Corresponding author evolution during the Pleistocene. Dooley Jr et al. (2019) distinguished M. pacificus from Andrew T. McDonald, [email protected] M. americanum by a suite of dental and skeletal features: (1) upper third molars (M3) Academic editor and lower third molars (m3) much narrower relative to length in M.
    [Show full text]
  • Middle Paleolithic Occupation on a Marine Isotope Stage 5 Lakeshore in the Nefud Desert, Saudi Arabia
    Quaternary Science Reviews 30 (2011) 1555e1559 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Rapid Communication Middle Paleolithic occupation on a Marine Isotope Stage 5 lakeshore in the Nefud Desert, Saudi Arabia Michael D. Petraglia a,*, Abdullah M. Alsharekh b, Rémy Crassard c, Nick A. Drake d, Huw Groucutt a, Adrian G. Parker e, Richard G. Roberts f a School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 2HU, UK b Department of Archaeology, College of Tourism & Archaeology, King Saud University, Riyadh, Saudi Arabia c CNRS, UMR5133, Maison de l’Orient et de la Méditerranée, Lyon, France d Department of Geography, King’s College, London, UK e Department of Anthropology and Geography, Oxford Brookes University, Oxford, UK f Centre for Archaeological Science, School of Earth & Environmental Sciences, University of Wollongong, Wollongong, Australia article info abstract Article history: Major hydrological variations associated with glacial and interglacial climates in North Africa and the Received 18 December 2010 Levant have been related to Middle Paleolithic occupations and dispersals, but suitable archaeological Received in revised form sites to explore such relationships are rare on the Arabian Peninsula. Here we report the discovery of 29 March 2011 Middle Paleolithic assemblages in the Nefud Desert of northern Arabia associated with stratified deposits Accepted 8 April 2011 dated to 75,000 years ago. The site is located in close proximity to a substantial relict lake and indicates Available online 12 May 2011 that Middle Paleolithic hominins penetrated deeply into the Arabian Peninsula to inhabit landscapes vegetated by grasses and some trees.
    [Show full text]
  • Volume and Freshwater Transports from the North Pacific to the Bering
    Russia Volume and Freshwater Transports from Bering Strait the North Pacific to the Bering Sea Alaska Carol Ladd and Phyllis Stabeno Pacific Marine Environmental Lab, NOAA [email protected] Bering Slope Current The southeastern Bering Sea circulation is dominated by the eastward Aleutian North Slope Current (ANSC) north of the Aleutians and the northwestward Bering Slope Current (BSC) flowing along the eastern Bering Sea shelf break. Cross-shelf exchange from the BSC supplies freshwater to the eastern Bering Sea shelf and ultimately to Bering Strait and the Arctic. Because the Aleutian passes (primarily Amukta Pass) supply the ANSC and the BSC, it is important to quantify the transport of mass and freshwater AlaskaCoastal Cur. through the passes and to examine variability in these transports. Unimak Pass Unimak Four moorings, spanning the width of Amukta Pass, have been deployed since 2001. Data from these moorings allow quantitative ANSC Alaskan Stream depth 0 Samalga Pass 53°N assessment of the transports through this important pass. In addition, transports through some of the other passes can also be Amukta Pass 25 50 evaluated, although with more limited datasets and higher uncertainty. Variability in transports through the passes is related to Amchitka Pass 75 the direction of the zonal winds, with westward winds resulting in higher northward transport. Freshwater transport through 100 200 Amukta Pass alone is large enough to account for the cross-shelf supply of freshwater needed to supply the estimated transport Amukta Pass 300 2 1 400 through Bering Strait into the Arctic. Recent data show a decrease in mass transport and a freshening of bottom water in Amukta 4 3 Amukta Isl 500 Pass in 2008.
    [Show full text]
  • Middle Paleolithic Occupation on a Marine
    Middle Paleolithic occupation on a Marine Isotope Stage 5 lakeshore in the Nefud Desert, Saudi Arabia Michael Petraglia, Abdullah Alsharekh, Rémy Crassard, Nick Drake, Huw Groucutt, Adrian Parker, Richard Roberts To cite this version: Michael Petraglia, Abdullah Alsharekh, Rémy Crassard, Nick Drake, Huw Groucutt, et al.. Middle Paleolithic occupation on a Marine Isotope Stage 5 lakeshore in the Nefud Desert, Saudi Arabia. Qua- ternary Science Reviews, Elsevier, 2011, 30 (13-14), pp.1555 - 1559. 10.1016/j.quascirev.2011.04.006. hal-01828529 HAL Id: hal-01828529 https://hal.archives-ouvertes.fr/hal-01828529 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Quaternary Science Reviews 30 (2011) 1555e1559 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Rapid Communication Middle Paleolithic occupation on a Marine Isotope Stage 5 lakeshore in the Nefud Desert, Saudi Arabia Michael D. Petraglia a,*, Abdullah M. Alsharekh b, Rémy Crassard c, Nick A. Drake d, Huw
    [Show full text]
  • Naval Postgraduate School Thesis
    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS ALASKAN STREAM CIRCULATION AND EXCHANGES THROUGH THE ALEUTIAN ISLAND PASSES: 1979-2003 MODEL RESULTS by Ricardo Roman March 2006 Thesis Advisor: Wieslaw Maslowski Second Reader: Stephen Okkonen Approved for public release; distribution unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704- 0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED March 2006 Master’s Thesis 4. TITLE AND SUBTITLE: Alaskan Stream Circulation and 5. FUNDING NUMBERS Exchanges through the Aleutian Island Passes: 1979-2003 Model Results 6. AUTHOR Ricardo Roman 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING N/A AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
    [Show full text]
  • 150,000-Year Palaeoclimate Record from Northern Ethiopia Supports
    OPEN 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern Received: 17 October 2017 Accepted: 2 January 2018 humans from Africa Published: xx xx xxxx Henry F. Lamb 1, C. Richard Bates2, Charlotte L. Bryant3, Sarah J. Davies1, Dei G. Huws4, Michael H. Marshall1,5 & Helen M. Roberts 1 Climatic change is widely acknowledged to have played a role in the dispersal of modern humans out of Africa, but the timing is contentious. Genetic evidence links dispersal to climatic change ~60,000 years ago, despite increasing evidence for earlier modern human presence in Asia. We report a deep seismic and near-continuous core record of the last 150,000 years from Lake Tana, Ethiopia, close to early modern human fossil sites and to postulated dispersal routes. The record shows varied climate towards the end of the penultimate glacial, followed by an abrupt change to relatively stable moist climate during the last interglacial. These conditions could have favoured selection for behavioural versatility, population growth and range expansion, supporting models of early, multiple dispersals of modern humans from Africa. Understanding the role of climatic change in the emergence of Homo sapiens (anatomically modern humans, AMH) in eastern Africa and their subsequent expansion into Asia requires continuous, well-dated terrestrial records for the relevant time range, currently lacking from the region. Palaeontological1–3 and genetic4,5 data indicate that AMH emerged around 200–300,000 years ago (ka), but there is much debate about the timing of their dispersal out of Africa6,7. Early dispersals during Marine Isotope Stage 5 (MIS 5; 130–90 ka) may be inferred from 90–120 kyr fossils in the Levant8,9, 80–120 kyr human teeth from Fuyan Cave, China10, 73–63 kyr teeth from Sumatra11, a 63 kyr cranium from Tam Pa Ling, Laos12, from neurocranial shape diversity13, and from stone artefacts at Jebel Faya, U.A.E., dated to 95–127 ka14.
    [Show full text]
  • 150,000-Year Palaeoclimate Record
    www.nature.com/scientificreports OPEN 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern Received: 17 October 2017 Accepted: 2 January 2018 humans from Africa Published: xx xx xxxx Henry F. Lamb 1, C. Richard Bates2, Charlotte L. Bryant3, Sarah J. Davies1, Dei G. Huws4, Michael H. Marshall1,5 & Helen M. Roberts 1 Climatic change is widely acknowledged to have played a role in the dispersal of modern humans out of Africa, but the timing is contentious. Genetic evidence links dispersal to climatic change ~60,000 years ago, despite increasing evidence for earlier modern human presence in Asia. We report a deep seismic and near-continuous core record of the last 150,000 years from Lake Tana, Ethiopia, close to early modern human fossil sites and to postulated dispersal routes. The record shows varied climate towards the end of the penultimate glacial, followed by an abrupt change to relatively stable moist climate during the last interglacial. These conditions could have favoured selection for behavioural versatility, population growth and range expansion, supporting models of early, multiple dispersals of modern humans from Africa. Understanding the role of climatic change in the emergence of Homo sapiens (anatomically modern humans, AMH) in eastern Africa and their subsequent expansion into Asia requires continuous, well-dated terrestrial records for the relevant time range, currently lacking from the region. Palaeontological1–3 and genetic4,5 data indicate that AMH emerged around 200–300,000 years ago (ka), but there is much debate about the timing of their dispersal out of Africa6,7. Early dispersals during Marine Isotope Stage 5 (MIS 5; 130–90 ka) may be inferred from 90–120 kyr fossils in the Levant8,9, 80–120 kyr human teeth from Fuyan Cave, China10, 73–63 kyr teeth from Sumatra11, a 63 kyr cranium from Tam Pa Ling, Laos12, from neurocranial shape diversity13, and from stone artefacts at Jebel Faya, U.A.E., dated to 95–127 ka14.
    [Show full text]
  • Historically Active Volcanoes of Alaska Reference Deck Activity Icons a Note on Assigning Volcanoes to Cards References
    HISTORICALLY ACTIVE VOLCANOES OF ALASKA REFERENCE DECK Cameron, C.E., Hendricks, K.A., and Nye, C.J. IC 59 v.2 is an unusual publication; it is in the format of playing cards! Each full-color card provides the location and photo of a historically active volcano and up to four icons describing its historical activity. The icons represent characteristics of the volcano, such as a documented eruption, fumaroles, deformation, or earthquake swarms; a legend card is provided. The IC 59 playing card deck was originally released in 2009 when AVO staff noticed the amusing coincidence of exactly 52 historically active volcanoes in Alaska. Since 2009, we’ve observed previously undocumented persistent, hot fumaroles at Tana and Herbert volcanoes. Luckily, with a little help from the jokers, we can still fit all of the historically active volcanoes in Alaska on a single card deck. We hope our users have fun while learning about Alaska’s active volcanoes. To purchase: http://doi.org/10.14509/29738 The 54* volcanoes displayed on these playing cards meet at least one of the criteria since 1700 CE (Cameron and Schaefer, 2016). These are illustrated by the icons below. *Gilbert’s fumaroles have not been observed in recent years and Gilbert may be removed from future versions of this list. In 2014 and 2015, fieldwork at Tana and Herbert revealed the presence of high-temperature fumaroles (C. Neal and K. Nicolaysen, personal commu- nication, 2016). Although we do not have decades of observation at Tana or Herbert, they have been added to the historically active list.
    [Show full text]