Data Structure Alignment -Wikipedia, the Free Encyclopedia Page 1 of 9

Total Page:16

File Type:pdf, Size:1020Kb

Data Structure Alignment -Wikipedia, the Free Encyclopedia Page 1 of 9 Data structure alignment -Wikipedia, the free encyclopedia Page 1 of 9 Data structure alignment From Wikipedia, the free encyclopedia Data structure alignment is the way data is arranged and accessed in computer memory. It consists of two separate but related issues: data alignment and data structure padding. When a modern computer reads from or writes to a memory address, it will do this in word sized chunks (e.g. 4 byte chunks on a 32-bit system). Data alignment means putting the data at a memory offset equal to some multiple of the word size, which increases the system's performance due to the way the CPU handles memory. To align the data, it may be necessary to insert some meaningless bytes between the end of the last data structure and the start of the next, which is data structure padding. For example, when the computer's word size is 4 bytes (a byte means 8 bits on most machines, but could be different on some systems), the data to be read should be at a memory offset which is some multiple of 4. When this is not the case, e.g. the data starts at the 14th byte instead of the 16th byte, then the computer has to read two 4 byte chunks and do some calculation before the requested data has been read, or it may generate an alignment fault. Even though the previous data structure ends at the 13th byte, the next data structure should start at the 16th byte. Two padding bytes are inserted between the two data structures to align the next data structure to the 16th byte. Although data structure alignment is a fundamental issue for all modern computers, many computer languages and computer language implementations handle data alignment automatically. Ada,[1][2] certain C and C++ implementations, D,[3] and assembly language allow at least partial control of data structure padding, which may be useful in certain special circumstances. Contents ◾ 1 Definitions ◾ 2 Problems ◾ 3 Architectures ◾ 3.1 RISC ◾ 3.2 x86 ◾ 3.3 Compatibility ◾ 4 Data structure padding ◾ 4.1 Computing padding ◾ 5 Typical alignment of C structs on x86 ◾ 5.1 Default packing and #pragma pack ◾ 6 Allocating memory aligned to cache lines ◾ 7 Hardware significance of alignment requirements ◾ 8 See also ◾ 9 References ◾ 10 Further reading ◾ 11 External links Definitions http://en.wikipedia.org/wiki/Data_structure_alignment 02-03-2014 Data structure alignment -Wikipedia, the free encyclopedia Page 2 of 9 A memory address a, is said to be n-byte aligned when a is a multiple of n bytes (where n is a power of 2). In this context a byte is the smallest unit of memory access, i.e. each memory address specifies a different byte. An n-byte aligned address would have log2(n) least-significant zeros when expressed in binary. The alternate wording b-bit aligned designates a b/8 byte aligned address (ex. 64-bit aligned is 8 bytes aligned). A memory access is said to be aligned when the datum being accessed is n bytes long and the datum address is n-byte aligned. When a memory access is not aligned, it is said to be misaligned. Note that by definition byte memory accesses are always aligned. A memory pointer that refers to primitive data that is n bytes long is said to be aligned if it is only allowed to contain addresses that are n-byte aligned, otherwise it is said to be unaligned. A memory pointer that refers to a data aggregate (a data structure or array) is aligned if (and only if) each primitive datum in the aggregate is aligned. Note that the definitions above assume that each primitive datum is a power of two bytes long. When this is not the case (as with 80-bit floating-point on x86) the context influences the conditions where the datum is considered aligned or not. Data structures can be stored in memory on the stack with a static size known as bounded or on the heap with a dynamic size known as unbounded. Problems A computer accesses memory by a single memory word at a time. As long as the memory word size is at least as large as the largest primitive data type supported by the computer, aligned accesses will always access a single memory word. This may not be true for misaligned data accesses. If the highest and lowest bytes in a datum are not within the same memory word the computer must split the datum access into multiple memory accesses. This requires a lot of complex circuitry to generate the memory accesses and coordinate them. To handle the case where the memory words are in different memory pages the processor must either verify that both pages are present before executing the instruction or be able to handle a TLB miss or a page fault on any memory access during the instruction execution. When a single memory word is accessed the operation is atomic, i.e. the whole memory word is read or written at once and other devices must wait until the read or write operation completes before they can access it. This may not be true for unaligned accesses to multiple memory words, e.g. the first word might be read by one device, both words written by another device and then the second word read by the first device so that the value read is neither the original value nor the updated value. Although such failures are rare, they can be very difficult to identify. Architectures RISC http://en.wikipedia.org/wiki/Data_structure_alignment 02-03-2014 Data structure alignment -Wikipedia, the free encyclopedia Page 3 of 9 Most RISC processors will generate an alignment fault when a load or store instruction accesses a misaligned address. This allows the operating system to emulate the misaligned access using other instructions. For example, the alignment fault handler might use byte loads or stores (which are always aligned) to emulate a larger load or store instruction. Some architectures like MIPS have special unaligned load and store instructions. One unaligned load instruction gets the bytes from the memory word with the lowest byte address and another gets the bytes from the memory word with the highest byte address. Similarly, store-high and store-low instructions store the appropriate bytes in the higher and lower memory words respectively. The Alpha architecture has a two-step approach to unaligned loads and stores. The first step is to load the upper and lower memory words into separate registers. The second step is to extract or modify the memory words using special low/high instructions similar to the MIPS instructions. An unaligned store is completed by storing the modified memory words back to memory. The reason for this complexity is that the original Alpha architecture could only read or write 32-bit or 64-bit values. This proved to be a severe limitation that often led to code bloat and poor performance. To address this limitation, an extension called the Byte Word Extensions (BWX) was added to the original architecture. It consisted of instructions for byte and word loads and stores. Because these instructions are larger and slower than the normal memory load and store instructions they should only be used when necessary. Some C and C++ compilers have an “unaligned” attribute that can be applied to pointers that need the unaligned instructions. x86 While the x86 architecture originally did not require aligned memory access and still works without it, SSE2 instructions on x86 CPUs do require the data to be 128-bit (16-byte) aligned and there can be substantial performance advantages from using aligned data on these architectures. However, there are also instructions for unaligned access such as MOVDQU. Compatibility The advantage to supporting unaligned access is that it is easier to write compilers that do not need to align memory, at the expense of the cost of slower access. One way to increase performance in RISC processors which are designed to maximize raw performance is to require data to be loaded or stored on a word boundary. So though memory is commonly addressed by 8-bit bytes, loading a 32- bit integer or 64-bit floating point number would be required to start at every 64 bits on a 64-bit machine. The processor could flag a fault if it were asked to load a number which was not on such a boundary, but this would result in a slower call to a routine which would need to figure out which word or words contained the data and extract the equivalent value. Data structure padding Although the compiler (or interpreter) normally allocates individual data items on aligned boundaries, data structures often have members with different alignment requirements. To maintain proper alignment the translator normally inserts additional unnamed data members so that each member is properly aligned. In addition the data structure as a whole may be padded with a final unnamed member. This allows each member of an array of structures to be properly aligned. http://en.wikipedia.org/wiki/Data_structure_alignment 02-03-2014 Data structure alignment -Wikipedia, the free encyclopedia Page 4 of 9 Padding is only inserted when a structure member is followed by a member with a larger alignment requirement or at the end of the structure. By changing the ordering of members in a structure, it is possible to change the amount of padding required to maintain alignment. For example, if members are sorted by descending alignment requirements a minimal amount of padding is required. The minimal amount of padding required is always less than the largest alignment in the structure.
Recommended publications
  • A Type Inference on Executables
    A Type Inference on Executables Juan Caballero, IMDEA Software Institute Zhiqiang Lin, University of Texas at Dallas In many applications source code and debugging symbols of a target program are not available, and what we can only access is the program executable. A fundamental challenge with executables is that during compilation critical information such as variables and types is lost. Given that typed variables provide fundamental semantics of a program, for the last 16 years a large amount of research has been carried out on binary code type inference, a challenging task that aims to infer typed variables from executables (also referred to as binary code). In this article we systematize the area of binary code type inference according to its most important dimensions: the applications that motivate its importance, the approaches used, the types that those approaches infer, the implementation of those approaches, and how the inference results are evaluated. We also discuss limitations, point to underdeveloped problems and open challenges, and propose further applications. Categories and Subject Descriptors: D.3.3 [Language Constructs and Features]: Data types and struc- tures; D.4.6 [Operating Systems]: Security and Protection General Terms: Languages, Security Additional Key Words and Phrases: type inference, program executables, binary code analysis ACM Reference Format: Juan Caballero and Zhiqiang Lin, 2015. Type Inference on Executables. ACM Comput. Surv. V, N, Article A (January YYYY), 35 pages. DOI:http://dx.doi.org/10.1145/0000000.0000000 1. INTRODUCTION Being the final deliverable of software, executables (or binary code, as we use both terms interchangeably) are everywhere. They contain the final code that runs on a system and truly represent the program behavior.
    [Show full text]
  • Targeting Embedded Powerpc
    Freescale Semiconductor, Inc. EPPC.book Page 1 Monday, March 28, 2005 9:22 AM CodeWarrior™ Development Studio PowerPC™ ISA Communications Processors Edition Targeting Manual Revised: 28 March 2005 For More Information: www.freescale.com Freescale Semiconductor, Inc. EPPC.book Page 2 Monday, March 28, 2005 9:22 AM Metrowerks, the Metrowerks logo, and CodeWarrior are trademarks or registered trademarks of Metrowerks Corpora- tion in the United States and/or other countries. All other trade names and trademarks are the property of their respective owners. Copyright © 2005 by Metrowerks, a Freescale Semiconductor company. All rights reserved. No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me- chanical, without prior written permission from Metrowerks. Use of this document and related materials are governed by the license agreement that accompanied the product to which this manual pertains. This document may be printed for non-commercial personal use only in accordance with the aforementioned license agreement. If you do not have a copy of the license agreement, contact your Metrowerks representative or call 1-800-377- 5416 (if outside the U.S., call +1-512-996-5300). Metrowerks reserves the right to make changes to any product described or referred to in this document without further notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod- ucts for any particular purpose, nor does Metrowerks assume any liability arising
    [Show full text]
  • Interprocedural Analysis of Low-Level Code
    TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Institut fur¨ Informatik Lehrstuhl Informatik II Interprocedural Analysis of Low-Level Code Andrea Flexeder Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Informatik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. H. M. Gerndt Prufer¨ der Dissertation: 1. Univ.-Prof. Dr. H. Seidl 2. Dr. A. King, University of Kent at Canterbury / UK Die Dissertation wurde am 14.12.2010 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Informatik am 9.6.2011 angenommen. ii Contents 1 Analysis of Low-Level Code 1 1.1 Source versus Binary . 1 1.2 Application Areas . 6 1.3 Executable and Linkable Format (ELF) .................. 12 1.4 Application Binary Interface (ABI)..................... 18 1.5 Assumptions . 24 1.6 Contributions . 24 2 Control Flow Reconstruction 27 2.1 The Concrete Semantics . 31 2.2 Interprocedural Control Flow Reconstruction . 33 2.3 Practical Issues . 39 2.4 Implementation . 43 2.5 Programming Model . 44 3 Classification of Memory Locations 49 3.1 Semantics . 51 3.2 Interprocedural Variable Differences . 58 3.3 Application to Assembly Analysis . 73 4 Reasoning about Array Index Expressions 81 4.1 Linear Two-Variable Equalities . 81 4.2 Application to Assembly Analysis . 88 4.3 Register Coalescing and Locking . 89 5 Tools 91 5.1 Combination of Abstract Domains . 91 5.2 VoTUM . 96 6 Side-Effect Analysis 101 6.1 Semantics . 105 6.2 Analysis of Side-Effects . 108 6.3 Enhancements . 115 6.4 Experimental Results . 118 iii iv CONTENTS 7 Exploiting Alignment for WCET and Data Structures 123 7.1 Alignment Analysis .
    [Show full text]
  • Mac OS X ABI Function Call Guide
    Mac OS X ABI Function Call Guide 2005-12-06 PowerPC and and the PowerPC logo are Apple Computer, Inc. trademarks of International Business © 2005 Apple Computer, Inc. Machines Corporation, used under license All rights reserved. therefrom. Simultaneously published in the United No part of this publication may be States and Canada. reproduced, stored in a retrieval system, or Even though Apple has reviewed this document, transmitted, in any form or by any means, APPLE MAKES NO WARRANTY OR mechanical, electronic, photocopying, REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS recording, or otherwise, without prior DOCUMENT, ITS QUALITY, ACCURACY, written permission of Apple Computer, Inc., MERCHANTABILITY, OR FITNESS FOR A with the following exceptions: Any person PARTICULAR PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED “AS IS,” AND is hereby authorized to store documentation YOU, THE READER, ARE ASSUMING THE on a single computer for personal use only ENTIRE RISK AS TO ITS QUALITY AND ACCURACY. and to print copies of documentation for IN NO EVENT WILL APPLE BE LIABLE FOR personal use provided that the DIRECT, INDIRECT, SPECIAL, INCIDENTAL, documentation contains Apple’s copyright OR CONSEQUENTIAL DAMAGES notice. RESULTING FROM ANY DEFECT OR INACCURACY IN THIS DOCUMENT, even if The Apple logo is a trademark of Apple advised of the possibility of such damages. Computer, Inc. THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN Use of the “keyboard” Apple logo LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, (Option-Shift-K) for commercial purposes or employee is authorized to make any without the prior written consent of Apple modification, extension, or addition to this may constitute trademark infringement and warranty.
    [Show full text]
  • Alignment in C Seminar “Effiziente Programmierung in C”
    Introduction Data Structure Alignment Heap Alignment Stack Alignment Summary Alignment in C Seminar “Effiziente Programmierung in C" Sven-Hendrik Haase Universit¨atHamburg, Fakult¨atf¨urInformatik 2014-01-09 Sven-Hendrik Haase Seminar \Effiziente Programmierung in C" 1/ 32 Introduction Data Structure Alignment Heap Alignment Stack Alignment Summary Outline Introduction Guiding Questions of This Presentation Memory Addressing Alignment 101 Consquences of Misalignment Different Types of Alignment Data Structure Alignment Structs and Stuff Padding in the Real World Performance Implications SSE Heap Alignment Introduction Example Use Cases Stack Alignment Introduction The Problem Use Cases Summary TL;DR Resources Sven-Hendrik Haase Seminar \Effiziente Programmierung in C" 2/ 32 • What is data alignment? • What is heap alignment? • What is stack alignment? • How does it work in C? • Do we need to care abouy any of these? Introduction Data Structure Alignment Heap Alignment Stack Alignment Summary Introduction Guiding Questions of This Presentation • Which types of alignment exist in C? Sven-Hendrik Haase Seminar \Effiziente Programmierung in C" 3/ 32 • What is heap alignment? • What is stack alignment? • How does it work in C? • Do we need to care abouy any of these? Introduction Data Structure Alignment Heap Alignment Stack Alignment Summary Introduction Guiding Questions of This Presentation • Which types of alignment exist in C? • What is data alignment? Sven-Hendrik Haase Seminar \Effiziente Programmierung in C" 3/ 32 • What is stack alignment? •
    [Show full text]
  • Compiler Construction
    Compiler construction PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 10 Dec 2011 02:23:02 UTC Contents Articles Introduction 1 Compiler construction 1 Compiler 2 Interpreter 10 History of compiler writing 14 Lexical analysis 22 Lexical analysis 22 Regular expression 26 Regular expression examples 37 Finite-state machine 41 Preprocessor 51 Syntactic analysis 54 Parsing 54 Lookahead 58 Symbol table 61 Abstract syntax 63 Abstract syntax tree 64 Context-free grammar 65 Terminal and nonterminal symbols 77 Left recursion 79 Backus–Naur Form 83 Extended Backus–Naur Form 86 TBNF 91 Top-down parsing 91 Recursive descent parser 93 Tail recursive parser 98 Parsing expression grammar 100 LL parser 106 LR parser 114 Parsing table 123 Simple LR parser 125 Canonical LR parser 127 GLR parser 129 LALR parser 130 Recursive ascent parser 133 Parser combinator 140 Bottom-up parsing 143 Chomsky normal form 148 CYK algorithm 150 Simple precedence grammar 153 Simple precedence parser 154 Operator-precedence grammar 156 Operator-precedence parser 159 Shunting-yard algorithm 163 Chart parser 173 Earley parser 174 The lexer hack 178 Scannerless parsing 180 Semantic analysis 182 Attribute grammar 182 L-attributed grammar 184 LR-attributed grammar 185 S-attributed grammar 185 ECLR-attributed grammar 186 Intermediate language 186 Control flow graph 188 Basic block 190 Call graph 192 Data-flow analysis 195 Use-define chain 201 Live variable analysis 204 Reaching definition 206 Three address
    [Show full text]
  • An Introduction to Reverse Engineering for Beginners
    An Introduction To Reverse Engineering for Beginners Dennis Yurichev <[email protected]> cbnd ○c 2013, Dennis Yurichev. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Text version (November 23, 2013). There is probably a newer version of this text, and also Russian language version also accessible at http://yurichev.com/RE-book.html You may also subscribe to my twitter, to get information about updates of this text, etc: @yurichev, or to subscribe to mailing list. CONTENTS CONTENTS Contents Preface vi 0.1 Mini-FAQ1 ................................................. vi 0.2 About the author............................................. vi 0.3 Thanks.................................................. vi 0.4 Donate.................................................. vii 1 Compiler’s patterns 1 1.1 Hello, world!...............................................1 1.1.1 x86................................................1 1.1.2 ARM................................................4 1.2 Stack...................................................8 1.2.1 What is the stack used for?...................................9 1.3 printf() with several arguments.................................... 13 1.3.1 x86................................................ 13 1.3.2 ARM: 3 printf() arguments.................................. 14 1.3.3 ARM: 8 printf() arguments.................................. 15 1.3.4 By the way...........................................
    [Show full text]
  • Unstructured Computations on Emerging Architectures
    Unstructured Computations on Emerging Architectures Dissertation by Mohammed A. Al Farhan In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia May 2019 2 EXAMINATION COMMITTEE PAGE The dissertation of M. A. Al Farhan is approved by the examination committee Dissertation Committee: David E. Keyes, Chair Professor, King Abdullah University of Science and Technology Edmond Chow Associate Professor, Georgia Institute of Technology Mikhail Moshkov Professor, King Abdullah University of Science and Technology Markus Hadwiger Associate Professor, King Abdullah University of Science and Technology Hakan Bagci Associate Professor, King Abdullah University of Science and Technology 3 ©May 2019 Mohammed A. Al Farhan All Rights Reserved 4 ABSTRACT Unstructured Computations on Emerging Architectures Mohammed A. Al Farhan his dissertation describes detailed performance engineering and optimization Tof an unstructured computational aerodynamics software system with irregu- lar memory accesses on various multi- and many-core emerging high performance computing scalable architectures, which are expected to be the building blocks of energy-austere exascale systems, and on which algorithmic- and architecture-oriented optimizations are essential for achieving worthy performance. We investigate several state-of-the-practice shared-memory optimization techniques applied to key kernels for the important problem class of unstructured meshes. We illustrate
    [Show full text]
  • AUTHOR PUB TYPE Needs of Potential Users, System
    DOCUMENT RESUME ED 355 773 FL 021 026 AUTHOR Mao, Tang TITLE Courseware Authoring and Delivering System for Chinese Language Instruction. Final Report. INSTITUTION Comptek Co., Springfield, NJ. SPONE AGENCY Department of Education, Washington, DC. PUB DATE 5 Feb 85 CONTRACT 300-84-0180 NOTE 41p. PUB TYPE Reports Descriptive (141) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Authoring Aids (Programing); Chinese; *Computer Assisted Instruction; Computer Software Development; *Courseware; *Programing; Research Projects; Second Language Instruction; *Second Languages; *Uncommonly Taught Languages IDENTIFIERS *Unix Operating System ABSTRACT A study investigated technical methods for simplifying and improving the creation of software for teaching uncommonly taught languages such as Chinese. Research consisted of assessment of existing authoring systems, domestic and overseas, available hardware, peripherals, and software packages that could be integrated into this projectThen some features of an authoring system, were applied to a personal computer using available hardware and software. Among the findings were that interactive computer-assisted instruction (CAI) applications have large storage requirements; choice of hardware and peripherals require trade-offs in cost, speed, and adequacy; a courseware author is needed; the program can be designed to incorporate a third language; data compatibility is the primary difficulty in transferring information from one computer type to another; and the Unix system is inadequate for this application. It is concluded that an interactive CAI system for multiple languages with graphics, text, and voice capability at reasonable cost can be developed if special care is given to the needs of potential users, system development, and integration of hardware and software. The final product of the research is a detailed design for a multi-language, multimedia courseware authoring and delivery system.
    [Show full text]
  • Program Optimization
    Program optimization Alexey A. Romanenko [email protected] What this course about? In this course you will learn: ● Types of program optimization ● Approaches for program optimization ● Profiling tools Optimization Optimization consists of analyzing and tuning software code to make it perform faster and more efficiently on Intel processor architecture. www.intel.com/products/glossary/body.htm On ANY architecture! Types of optimization ● Performance ● Memory ● Scalability ● Communications ● etc. ● We address mainly to performance optimization Statements ● Donald Knuth – Premature optimization is the root of all evil ● If your code already works, optimizing it is a sure way to introduce new, and possibly subtle, bugs ● Optimization tends to make code harder to understand and maintain ● Some of the optimization techniques increase speed by reducing the extensibility of the code ● A lot of time can be spent optimizing, with little gain in performance, and can result in obfuscated code ● If you're overly obsessed with optimizing code, people will call you a nerd behind your back Statements ● Faster program, more memory required. ● Making more faster program required more time for optimization. ● Optimizing code for one platform may actually make it worse on another platform BUT!!!!! ● Michael Abrash (Quake, Unreal Tournament, Space Strike, Half-life, etc.): – Performance must always be measured – Any optimization, user can feel, should be done. Does compilers make an optimization? ● They does. But – Compiler do not have database for algorithms
    [Show full text]
  • A Guide to Vectorization with Intel® C++ Compilers
    A Guide to Vectorization with Intel® C++ Compilers Contents 1. Introduction .............................................................................................................................................. 4 2. What is Vectorization in the Intel Compiler? ............................................................................... 4 2.1 When does the compiler try to vectorize? ............................................................................... 6 2.2 How do I know whether a loop was vectorized? .................................................................. 6 2.3 What difference does it make?...................................................................................................... 7 3. What sort of loops can be vectorized? ............................................................................................ 7 4. Obstacles to vectorization ................................................................................................................ 10 4.1 Non-contiguous Memory Accesses ............................................................................................ 10 4.2 Data Dependencies ........................................................................................................................... 11 5. Guidelines for writing vectorizable code ................................................................................... 13 5.1 General Guidelines ....................................................................................................................
    [Show full text]
  • Gdura, Youssef Omran (2012) a New Parallelisation Technique for Heterogeneous Cpus
    Gdura, Youssef Omran (2012) A new parallelisation technique for heterogeneous CPUs. PhD thesis http://theses.gla.ac.uk/3406/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] . A New Parallelisation Technique for Heterogeneous CPUs by Youssef Omran Gdura A Thesis presented for the degree of Doctor of Philosophy to the School of Computing Science, College of Science and Engineering, University of Glasgow May 2012 . Copyright © Youssef Omran Gdura, 2012. Abstract Parallelization has moved in recent years into the mainstream compilers, and the demand for parallelizing tools that can do a better job of automatic parallelization is higher than ever. During the last decade considerable attention has been focused on developing pro- gramming tools that support both explicit and implicit parallelism to keep up with the power of the new multiple core technology. Yet the success to develop automatic paral- lelising compilers has been limited mainly due to the complexity of the analytic process required to exploit available parallelism and manage other parallelisation measures such as data partitioning, alignment and synchronization.
    [Show full text]