The Linux Kernel: Configuring the Kernel Part 16

Total Page:16

File Type:pdf, Size:1020Kb

The Linux Kernel: Configuring the Kernel Part 16 The Linux Kernel: Configuring the Kernel Part 16 In this article, we will discuss the input/output ports. First, the "i8042 PC Keyboard controller" driver is needed for PS/2 mice and AT keyboards. Before USB, mice and keyboards used PS/2 ports which are circular ports. The AT keyboard is an 84­key IBM keyboard that uses the AT port. The AT port has five pins while the PS/2 port has six pins. Input devices that use the COM port (sometime called RS232 serial port) will need this diver (Serial port line discipline). The COM port is a serial port meaning that one bit at a time is transferred. The TravelMate notebooks need this special driver to use a mouse attached to the QuickPort (ct82c710 Aux port controller). Parallel port adapters for PS/2 mice, AT keyboards, and XT keyboards use this driver (Parallel port keyboard adapter). The "PS/2 driver library" is for PS/2 mice and AT keyboards. "Raw access to serio ports" can be enabled to allow device files to be used as character devices. Next, there is a driver for the "Altera UP PS/2 controller". The PS/2 multiplexer also needs a driver (TQC PS/2 multiplexer). The ARC FPGA platform needs special driver for PS/2 controllers (ARC PS/2 support). NOTE: I want to make it clear that the PS/2 controllers that are discussed in this article are not Sony's game controllers for their PlayStation. This article is discussing the 6­pin mouse/keyboard ports. The controller is the card that holds the PS/2 ports. The "Gameport support" driver offers support for the 15­pin gameport. Gameport was the 15­ pin port used by many input gaming devices until the invention of the USB port. The next driver is for gameports on ISA and PnP bus cards (Classic ISA and PnP gameport support). ISA stands for Industry Standard Architecture and was a parallel bus standard before PCI. PnP stands for Plug­and­Play and was a common standard before ISA. "PDPI Lightning 4 gamecard support" provides a driver for a proprietary gamecard with gameports. The SoundBlaster Audigy card is a proprietary gameport card (SB Live and Audigy gameport support). The ForteMedia FM801 PCI audio controller has a gameport on the card (ForteMedia FM801 gameport support). This driver only supports the gameport. Next, we can move on to "Character devices". Character devices transfer data character by character. First, TTY can be enabled or disabled (Enable TTY). Removing TTY will save a lot of space, but TTY is needed for terminals and such. Unless you know what you are doing, do not disabled TTY. NOTE TO MY FANS: If you know of a reason for disabling TTY, could you post the answer below and share with us. Mahalo! Next, support for "Virtual terminals" can be enabled/disabled. Again, a lot of space can be saved, but virtual terminals are very important. This next driver supports font mapping and Unicode translation (Enable character translations in console). This can be used to convert ASCII to Unicode. Virtual terminals can be used as system consoles with this driver (Support for console on virtual terminal). A system console manages the logins and kernel messages/warnings. Virtual terminals must channel through a console driver to interact with the physical terminal (Support for binding and unbinding console drivers). Before the virtual terminal can do so, the console driver must be loaded. When the virtual terminal is closed, the console terminal must be unloaded. The next driver provides support for Unix98 PTY (Unix98 PTY support). This is Unix98 pseudo terminal. FUN FACT: The Linux kernel allows a filesystem to be mount many times in many places at once. Next, "Support multiple instances of devpts" can be supported. The devpts filesystem is for pseudo­terminal slaves. Legacy support for PTY can also be enabled (Legacy (BSD) PTY support). The max amount of legacy PTYs in use can be set (Maximum number of legacy PTY in use). The next driver can be used to offer support to serial boards that the other drivers fail to support (Non­standard serial port support). Next, there are some drivers for specific boards and cards. The GSM MUX protocol is supported with this driver (GSM MUX line discipline support (EXPERIMENTAL)). The next driver enables the kmem device file (/dev/kmem virtual device support). kmem is usually used for kernel debugging. kmem can be used to read certain kernel variables and states. The Stallion cards have many serial ports on them (Stallion multiport serial support). This driver specifically supports this card. Next, we can move on to drivers for serial devices. As stated before, serial devices transfer one bit at a time. The first driver is for standard serial port support (8250/16550 and compatible serial support). Plug­and­Play also exists for serial ports with this driver (8250/16550 PNP device support). The following driver allows the serial ports to be used for connecting a terminal to be used as a console (Console on 8250/16550 and compatible serial port). Some UART controllers support Direct Memory Access (DMA support for 16550 compatible UART controllers). UART stands for Universal Asynchronous Receiver/Transmitter. UART controllers convert serial to parallel and vice versa. Next, this driver offers support for standard PCI serial devices (8250/16550 PCI device support). 16­bit PCMCIA serial devices are supported by this driver (8250/16550 PCMCIA device support). Remember, PCMCIA is a PC­card that is usually used in laptops. The maximum number of supported serial ports can be set (Maximum number of 8250/16550 serial ports) and then the maximum that are registered during boot­up (Number of 8250/16550 serial ports to register at runtime). For extended serial abilities like HUB6 support, enable this driver (Extended 8250/16550 serial driver options). A special driver is needed to support more than four legacy serial ports (Support more than 4 legacy serial ports). Serial interrupts can be shared when this driver is used (Support for sharing serial interrupts). Serial port IRQs can be autodetected using this driver (Autodetect IRQ on standard ports). RSA serial ports are also supported by the Linux kernel (Support RSA serial ports). RSA stands for Remote Supervisor Adapter. RSA is an IBM­specific hardware. Next, there are various vendor/device specific divers. This is a TTY driver that uses printk to output user messages (TTY driver to output user messages via printk). Printk (print kernel) is a special piece of software that usually prints the boot­up messages. Any string that is displayed by printk is usually put in the /var/log/messages file. The shell command "dmesg" displays all strings that were used by printk. Next, we can enable/disable support for parallel printers (Parallel printer support). The next driver allows a printer to be used as a console (Support for console on line printer). This means kernel messages will be literally printed at the printer. Normally when the word "print" was used in this article series, it meant putting data on the screen. This time, this literally means putting the data on paper. The following driver makes the device files at /dev/parport/ (Support for user­space parallel port device drivers). This allows some processes to access. Again, the Linux kernel has many features and drivers, so we will discuss more drivers in the next article. The Linux Kernel: Configuring the Kernel Part 17 This next article will cover various drivers. First, the "virtio console" is a virtual console that is used with hypervisors. The "IPMI top­level message handler" is a message manager for the IPMI system. IPMI stands for Intelligent Platform Management Interface. IPMI is an interface for managing the system via network without using a shell. "/dev/nvram support" permits the system to read and write memory in the real time clock's memory. Generally, this feature is used for saving data during a power loss. The next driver supports the Siemens R3964 packet protocol (Siemens R3964 line discipline). This is a device­to­device protocol. Now, we can move on to PCMCIA character devices. However, most of the drivers here are vendor/device specific. The RAW driver allows block devices to be bound to the device files /dev/raw/rawN (RAW driver (/dev/raw/rawN)). The advantage to this is efficient zero­copy. However, most software will still prefer to access the storage through /dev/sd** or /dev/hd**. Next, the maximum number of RAW devices can be supported is set. The following driver makes the device file /dev/hpet (HPET ­ High Precision Event Timer). NOTE: Many of you may be wondering why enabling these device file matter. Well, these device files serve as an interface between the software and hardware. The HPET timers can be mapped with this driver (Allow mmap of HPET). Mapping is the process of making a list of address in memory of devices and files. The files can then be found faster by getting the address from the memory and then commanding the hard­drive to get the data from the address. The "Hangcheck timer" is used to detect whether of not the system has locked­up. This timer watches for locked­up processes. As soon as a process freezes, a timer starts. After the timer goes off, if the process has not restarted or closed, then the timer will force the process to close. Linus Torvalds Quote: Portability is for people who cannot write new programs. The TPM security chip that uses Trusted Computing Group's specification will need this driver (TPM Hardware Support). Now, we can move on to I2C devices.
Recommended publications
  • Administration and Reference Guide
    Oracle® Database Appliance Administration and Reference Guide Release 12.2.1.4.0 for Linux x86-64 E97563-01 June 2018 Oracle Database Appliance Administration and Reference Guide, Release 12.2.1.4.0 for Linux x86-64 E97563-01 Copyright © 2014, 2018, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency- specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
    [Show full text]
  • Development of a Verified Flash File System ⋆
    Development of a Verified Flash File System ? Gerhard Schellhorn, Gidon Ernst, J¨orgPf¨ahler,Dominik Haneberg, and Wolfgang Reif Institute for Software & Systems Engineering University of Augsburg, Germany fschellhorn,ernst,joerg.pfaehler,haneberg,reifg @informatik.uni-augsburg.de Abstract. This paper gives an overview over the development of a for- mally verified file system for flash memory. We describe our approach that is based on Abstract State Machines and incremental modular re- finement. Some of the important intermediate levels and the features they introduce are given. We report on the verification challenges addressed so far, and point to open problems and future work. We furthermore draw preliminary conclusions on the methodology and the required tool support. 1 Introduction Flaws in the design and implementation of file systems already lead to serious problems in mission-critical systems. A prominent example is the Mars Explo- ration Rover Spirit [34] that got stuck in a reset cycle. In 2013, the Mars Rover Curiosity also had a bug in its file system implementation, that triggered an au- tomatic switch to safe mode. The first incident prompted a proposal to formally verify a file system for flash memory [24,18] as a pilot project for Hoare's Grand Challenge [22]. We are developing a verified flash file system (FFS). This paper reports on our progress and discusses some of the aspects of the project. We describe parts of the design, the formal models, and proofs, pointing out challenges and solutions. The main characteristic of flash memory that guides the design is that data cannot be overwritten in place, instead space can only be reused by erasing whole blocks.
    [Show full text]
  • Administració De Sistemes GNU Linux Mòdul4 Administració
    Administració local Josep Jorba Esteve PID_00238577 GNUFDL • PID_00238577 Administració local Es garanteix el permís per a copiar, distribuir i modificar aquest document segons els termes de la GNU Free Documentation License, Version 1.3 o qualsevol altra de posterior publicada per la Free Software Foundation, sense seccions invariants ni textos de la oberta anterior o posterior. Podeu consultar els termes de la llicència a http://www.gnu.org/licenses/fdl-1.3.html. GNUFDL • PID_00238577 Administració local Índex Introducció.................................................................................................. 5 1. Eines bàsiques per a l'administrador........................................... 7 1.1. Eines gràfiques i línies de comandes .......................................... 8 1.2. Documents d'estàndards ............................................................. 10 1.3. Documentació del sistema en línia ............................................ 13 1.4. Eines de gestió de paquets .......................................................... 15 1.4.1. Paquets TGZ ................................................................... 16 1.4.2. Fedora/Red Hat: paquets RPM ....................................... 19 1.4.3. Debian: paquets DEB ..................................................... 24 1.4.4. Nous formats d'empaquetat: Snap i Flatpak .................. 28 1.5. Eines genèriques d'administració ................................................ 36 1.6. Altres eines .................................................................................
    [Show full text]
  • Storage Administration Guide Storage Administration Guide SUSE Linux Enterprise Server 12 SP4
    SUSE Linux Enterprise Server 12 SP4 Storage Administration Guide Storage Administration Guide SUSE Linux Enterprise Server 12 SP4 Provides information about how to manage storage devices on a SUSE Linux Enterprise Server. Publication Date: September 24, 2021 SUSE LLC 1800 South Novell Place Provo, UT 84606 USA https://documentation.suse.com Copyright © 2006– 2021 SUSE LLC and contributors. All rights reserved. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”. For SUSE trademarks, see https://www.suse.com/company/legal/ . All other third-party trademarks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its aliates. Asterisks (*) denote third-party trademarks. All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SUSE LLC, its aliates, the authors nor the translators shall be held liable for possible errors or the consequences thereof. Contents About This Guide xii 1 Available Documentation xii 2 Giving Feedback xiv 3 Documentation Conventions xiv 4 Product Life Cycle and Support xvi Support Statement for SUSE Linux Enterprise Server xvii • Technology Previews xviii I FILE SYSTEMS AND MOUNTING 1 1 Overview
    [Show full text]
  • Study of File System Evolution
    Study of File System Evolution Swaminathan Sundararaman, Sriram Subramanian Department of Computer Science University of Wisconsin {swami, srirams} @cs.wisc.edu Abstract File systems have traditionally been a major area of file systems are typically developed and maintained by research and development. This is evident from the several programmer across the globe. At any point in existence of over 50 file systems of varying popularity time, for a file system, there are three to six active in the current version of the Linux kernel. They developers, ten to fifteen patch contributors but a single represent a complex subsystem of the kernel, with each maintainer. These people communicate through file system employing different strategies for tackling individual file system mailing lists [14, 16, 18] various issues. Although there are many file systems in submitting proposals for new features, enhancements, Linux, there has been no prior work (to the best of our reporting bugs, submitting and reviewing patches for knowledge) on understanding how file systems evolve. known bugs. The problems with the open source We believe that such information would be useful to the development approach is that all communication is file system community allowing developers to learn buried in the mailing list archives and aren’t easily from previous experiences. accessible to others. As a result when new file systems are developed they do not leverage past experience and This paper looks at six file systems (Ext2, Ext3, Ext4, could end up re-inventing the wheel. To make things JFS, ReiserFS, and XFS) from a historical perspective worse, people could typically end up doing the same (between kernel versions 1.0 to 2.6) to get an insight on mistakes as done in other file systems.
    [Show full text]
  • Vorlesung-Print.Pdf
    1 Betriebssysteme Prof. Dipl.-Ing. Klaus Knopper (C) 2019 <[email protected]> Live GNU/Linux System Schwarz: Transparent,KNOPPIX CD−Hintergrundfarbe (silber) bei Zweifarbdruck, sonst schwarz. Vorlesung an der DHBW Karlsruhe im Sommersemester 2019 Organisatorisches + Vorlesung mit Ubungen¨ Betriebssysteme WWI17B2 jeweils Montags (einzelne Termine) in A369 + http://knopper.net/bs/ (spater¨ moodle) Folie 1 Kursziel µ Grundsatzlichen¨ Aufbau von Betriebssystemen in Theorie und Praxis kennen und verstehen, µ grundlegende Konzepte von Multitasking, Multiuser-Betrieb und Hardware-Unterstutzung¨ / Resource-Sharing erklaren¨ konnen,¨ µ Sicherheitsfragen und Risiken des Ubiquitous und Mobile Computing auf Betriebssystemebene analysieren, µ mit heterogenen Betriebssystemumgebungen und Virtua- lisierung arbeiten, Kompatibilitatsprobleme¨ erkennen und losen.¨ Folie 2 0 Themen (Top-Down) + Ubersicht¨ Betriebssysteme und Anwendungen, Unterschiede in Aufbau und Einsatz, Lizenzen, Distributionen, + GNU/Linux als OSS-Lernsystem fur¨ die Vorlesung, Tracing und Analyse des Bootvorgangs, + User Interface(s), + Dateisystem: VFS, reale Implementierungen, + Multitasking: Scheduler, Interrupts, Speicherverwaltung (VM), Prozessverwaltung (Timesharing), + Multiuser: Benutzerverwaltung, Rechtesystem, + Hardware-Unterstutzung:¨ Kernel und Module vs. Treiber“ - Kon- ” zept, + Kompatibilitat,¨ API-Emulation, Virtualisierung, Softwareentwick- lung. + Sicherheits-Aspekte von Betriebssystemen, Schadsoftware“ und ” forensische Analyse bei Kompromittierung oder Datenverlust.
    [Show full text]
  • DASH: Database Shadowing for Mobile DBMS
    DASH: Database Shadowing for Mobile DBMS Youjip Won1 Sundoo Kim2 Juseong Yun2 Dam Quang Tuan2 Jiwon Seo2 1KAIST, Daejeon, Korea 2Hanyang University, Seoul, Korea [email protected] [email protected] ABSTRACT 1. INTRODUCTION In this work, we propose Database Shadowing, or DASH, Crash recovery is a vital part of DBMS design. Algorithms which is a new crash recovery technique for SQLite DBMS. for crash recovery range from naive full-file shadowing [15] DASH is a hybrid mixture of classical shadow paging and to the sophisticated ARIES protocol [38]. Most enterprise logging. DASH addresses four major issues in the current DBMS's, e.g., IBM DB2, Informix, Micrsoft SQL and Oracle SQLite journal modes: the performance and write amplifi- 8, use ARIES or its variants for efficient concurrency control. cation issues of the rollback mode and the storage space re- SQLite is one of the most widely used DBMS's. It is quirement and tail latency issues of the WAL mode. DASH deployed on nearly all computing platform such as smart- exploits two unique characteristics of SQLite: the database phones (e.g, Android, Tizen, Firefox, and iPhone [52]), dis- files are small and the transactions are entirely serialized. tributed filesystems (e.g., Ceph [58] and Gluster filesys- DASH consists of three key ingredients Aggregate Update, tem [1]), wearable devices (e.g., smart watch [4, 21]), and Atomic Exchange and Version Reset. Aggregate Update elim- automobiles [19, 55]. As a library-based embedded DBMS, inates the redundant write overhead and the requirement to SQLite deliberately adopts a basic transaction management maintain multiple snapshots both of which are inherent in and crash recovery scheme.
    [Show full text]
  • ECE 598 – Advanced Operating Systems Lecture 19
    ECE 598 { Advanced Operating Systems Lecture 19 Vince Weaver http://web.eece.maine.edu/~vweaver [email protected] 7 April 2016 Announcements • Homework #7 was due • Homework #8 will be posted 1 Why use FAT over ext2? • FAT simpler, easy to code • FAT supported on all major OSes • ext2 faster, more robust filename and permissions 2 btrfs • B-tree fs (similar to a binary tree, but with pages full of leaves) • overwrite filesystem (overwite on modify) vs CoW • Copy on write. When write to a file, old data not overwritten. Since old data not over-written, crash recovery better Eventually old data garbage collected • Data in extents 3 • Copy-on-write • Forest of trees: { sub-volumes { extent-allocation { checksum tree { chunk device { reloc • On-line defragmentation • On-line volume growth 4 • Built-in RAID • Transparent compression • Snapshots • Checksums on data and meta-data • De-duplication • Cloning { can make an exact snapshot of file, copy-on- write different than link, different inodles but same blocks 5 Embedded • Designed to be small, simple, read-only? • romfs { 32 byte header (magic, size, checksum,name) { Repeating files (pointer to next [0 if none]), info, size, checksum, file name, file data • cramfs 6 ZFS Advanced OS from Sun/Oracle. Similar in idea to btrfs indirect still, not extent based? 7 ReFS Resilient FS, Microsoft's answer to brtfs and zfs 8 Networked File Systems • Allow a centralized file server to export a filesystem to multiple clients. • Provide file level access, not just raw blocks (NBD) • Clustered filesystems also exist, where multiple servers work in conjunction.
    [Show full text]
  • Redbooks Paper Linux on IBM Zseries and S/390
    Redbooks Paper Simon Williams Linux on IBM zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN Preface This Redpaper provides information to help readers plan for and exploit Internet Protocol (IP) broadcast support that was made available to z/VM Guest LAN environments with the introduction of the z/VM 4.3 Operating System. Using IP broadcast support, Linux guests can for the first time use DHCP to lease an IP address dynamically from a DHCP server in a z/VM Guest LAN environment. This frees the administrator from the previous method of having to hardcode an IP address for every Linux guest in the system. This new feature enables easier deployment and administration of large-scale Linux environments. Objectives The objectives of this paper are to: Review the z/VM Guest LAN environment Explain IP broadcast Introduce the Dynamic Host Configuration Protocol (DHCP) Explain how DHCP works in a z/VM Guest LAN Describe how to implement DHCP in a z/VM Guest LAN environment © Copyright IBM Corp. 2003. All rights reserved. ibm.com/redbooks 1 z/VM Guest LAN Attention: While broadcast support for z/VM Guest LANs was announced with the base z/VM 4.3 operating system, the user must apply the PTF for APAR VM63172. This APAR resolves several issues which have been found to inhibit the use of DHCP by Linux-based applications running over the z/VM Guest LAN (in simulated QDIO mode). Introduction Prior to z/VM 4.2, virtual connectivity options for connecting one or more virtual machines (VM guests) was limited to virtual channel-to-channel adapters (CTCA) and the Inter-User Communications Vehicle (IUCV) facility.
    [Show full text]
  • MINCS - the Container in the Shell (Script)
    MINCS - The Container in the Shell (script) - Masami Hiramatsu <[email protected]> Tech Lead, Linaro Ltd. Open Source Summit Japan 2017 LEADING COLLABORATION IN THE ARM ECOSYSTEM Who am I... Masami Hiramatsu - Linux kernel kprobes maintainer - Working for Linaro as a Tech Lead LEADING COLLABORATION IN THE ARM ECOSYSTEM Demo # minc top # minc -r /opt/debian/x86_64 # minc -r /opt/debian/arm64 --arch arm64 LEADING COLLABORATION IN THE ARM ECOSYSTEM What Is MINCS? My Personal Fun Project to learn how linux containers work :-) LEADING COLLABORATION IN THE ARM ECOSYSTEM What Is MINCS? Mini Container Shell Scripts (pronounced ‘minks’) - Container engine implementation using POSIX shell scripts - It is small (~60KB, ~2KLOC) (~20KB in minimum) - It can run on busybox - No architecture dependency (* except for qemu/um mode) - No need for special binaries (* except for libcap, just for capsh --exec) - Main Features - Namespaces (Mount, PID, User, UTS, Net*) - Cgroups (CPU, Memory) - Capabilities - Overlay filesystem - Qemu cross-arch/system emulation - User-mode-linux - Image importing from dockerhub And all are done by CLI commands :-) LEADING COLLABORATION IN THE ARM ECOSYSTEM Why Shell Script? That is my favorite language :-) - Easy to understand for *nix administrators - Just a bunch of commands - Easy to modify - Good for prototyping - Easy to deploy - No architecture dependencies - Very small - Able to run on busybox (+ libcap is perfect) LEADING COLLABORATION IN THE ARM ECOSYSTEM MINCS Use-Cases For Learning - Understand how containers work For Development - Prepare isolated (cross-)build environment For Testing - Test new applications in isolated environment - Test new kernel features on qemu using local tools For products? - Maybe good for embedded devices which has small resources LEADING COLLABORATION IN THE ARM ECOSYSTEM What Is A Linux Container? There are many linux container engines - Docker, LXC, rkt, runc, ..
    [Show full text]
  • Ivoyeur: Inotify
    COLUMNS iVoyeur inotify DAVE JOSEPHSEN Dave Josephsen is the he last time I changed jobs, the magnitude of the change didn’t really author of Building a sink in until the morning of my first day, when I took a different com- Monitoring Infrastructure bination of freeways to work. The difference was accentuated by the with Nagios (Prentice Hall T PTR, 2007) and is Senior fact that the new commute began the same as the old one, but on this morn- Systems Engineer at DBG, Inc., where he ing, at a particular interchange, I would zig where before I zagged. maintains a gaggle of geographically dispersed It was an unexpectedly emotional and profound metaphor for the change. My old place was server farms. He won LISA ‘04’s Best Paper off to the side, and down below, while my future was straight ahead, and literally under award for his co-authored work on spam construction. mitigation, and he donates his spare time to the SourceMage GNU Linux Project. The fact that it was under construction was poetic but not surprising. Most of the roads I [email protected] travel in the Dallas/Fort Worth area are under construction and have been for as long as anyone can remember. And I don’t mean a lane closed here or there. Our roads drift and wan- der like leaves in the water—here today and tomorrow over there. The exits and entrances, neither a part of this road or that, seem unable to anticipate the movements of their brethren, and are constantly forced to react.
    [Show full text]
  • Andrew File System (AFS) Google File System February 5, 2004
    Advanced Topics in Computer Systems, CS262B Prof Eric A. Brewer Andrew File System (AFS) Google File System February 5, 2004 I. AFS Goal: large-scale campus wide file system (5000 nodes) o must be scalable, limit work of core servers o good performance o meet FS consistency requirements (?) o managable system admin (despite scale) 400 users in the “prototype” -- a great reality check (makes the conclusions meaningful) o most applications work w/o relinking or recompiling Clients: o user-level process, Venus, that handles local caching, + FS interposition to catch all requests o interaction with servers only on file open/close (implies whole-file caching) o always check cache copy on open() (in prototype) Vice (servers): o Server core is trusted; called “Vice” o servers have one process per active client o shared data among processes only via file system (!) o lock process serializes and manages all lock/unlock requests o read-only replication of namespace (centralized updates with slow propagation) o prototype supported about 20 active clients per server, goal was >50 Revised client cache: o keep data cache on disk, metadata cache in memory o still whole file caching, changes written back only on close o directory updates are write through, but cached locally for reads o instead of check on open(), assume valid unless you get an invalidation callback (server must invalidate all copies before committing an update) o allows name translation to be local (since you can now avoid round-trip for each step of the path) Revised servers: 1 o move
    [Show full text]