Notes on XML and Xquery in Relational Databases Owen Kaser

Total Page:16

File Type:pdf, Size:1020Kb

Notes on XML and Xquery in Relational Databases Owen Kaser xquery.txt Fri Apr 05 18:27:33 2019 1 Notes on XML and XQuery in Relational Databases Owen Kaser March 22, 2016. Updated April 5, 2019 some code frags are untested! As usual, the idea is to give you a taste of some things, without exploring all details, but letting you do some simple things. There are likely a fair number of errors in this, though I have tested many code fragments. Corrections appreciated. xquery.txt Fri Apr 05 18:27:33 2019 2 Prerequisites ------------- Your textbook gives a quick introduction to XML and XQuery. Plus it mentions that XML can be stored and manipulated in relational databases. Make sure you understand what it says. We’ll look at this with a few more details. xquery.txt Fri Apr 05 18:27:33 2019 3 Mini Review ----------- XML documents and fragments contain nested elements (delimited by tags). Elements can have attributes. <classroster> <student snum="12345"> <sname> Owen Kaser </sname> <gpa> 1.1 </gpa> <friends> <friend> <student snum="6789"/> </friend> <friend> <student snum="1111"> <gpa> 2.2 </gpa> </student></friend> </friends></student> <student snum="33333"> <sname> Newo Resak </sname> <age> 25 </age></student> </classroster> xquery.txt Fri Apr 05 18:27:33 2019 4 XML Review ---------- In previous example, we have elements: classroster, student, sname, gpa, friends, friend. tags: eg <classroster>, </classroster> and <student/> attributes: snum text: eg Newo Resak. There is a "family tree" type relationship between elements: the classroster element is the parent of two student elements. We speak of parents, children, siblings, ancestors, descendants, etc. Topmost element is called the "root". We are not told whether there is an applicable schema: we don’t know whether snum must always be an integer, whether the text for age could be "really old" instead of "25", etc. xquery.txt Fri Apr 05 18:27:33 2019 5 XPath [http://www.w3schools.com/xsl/xpath_intro.asp] --------------------------------------------------- The W3C defines an XPath language that you can use to locate elements within a bunch of XML. It is important in other XML technologies, including XQuery. XPath lets you write expressions that return a "node" or a set of nodes. "Nodes" include elements, attributes, text and 4 other kinds. Example paths in example XML doc /classroster/student[1]//gpa start at root, which must a classroster node of its student element children, take first. any gpa elements that are descendants are returned. In this case, just two: <gpa> 2.2 </gpa> and <gpa> 1.1 </gpa> xquery.txt Fri Apr 05 18:27:33 2019 6 More XPath examples ------------------- //gpa this gives the set of all gpa elements anywhere. (In this example, there are two) ------------------------- //@snum gives the set of all snum attributes anywhere -------------------------- //student//friend//@snum only those snum attributes somewhere inside a friend element, somewhere inside a student element xquery.txt Fri Apr 05 18:27:33 2019 7 Wildcards ---------- * matches any element node @* matches any attribute node node() matches any node text() matches any text node ** possible broken note: example queries seem to put node() and text() in [] for some reason eg //friends//@* will return same thing as //friends//@snum in our example, because we don’t have any other attributes xquery.txt Fri Apr 05 18:27:33 2019 8 Axes ----- //, / and @ seem to be shorthands axis names: child (seems like default, with /) attribute (seems like @ prefix) descendant (seems like //) ancestor preceding (everything before here) following Eg: descendant::friends/descendant::*/attribute::snum same as //friends//@snum If current node is the first student, then following::* is be the second student (all that is left) xquery.txt Fri Apr 05 18:27:33 2019 9 Predicates ---------- Sometimes, you want to provide tests. Use [] eg. /classroster/student[@snum>10]/gpa (Both relevant snums (12345 and 33333) pass the test) //student[gpa > 1.0] xquery.txt Fri Apr 05 18:27:33 2019 10 Merging node sets ------------------ The | operator can form a union eg //gpa | //friends xquery.txt Fri Apr 05 18:27:33 2019 11 XPath functions(http://www.w3.org/TR/xpath-functions/) ----------------------------------------------------- There are MANY useful functions, including doc(URL) - read an XML node from a file or URL eg doc("myfile.xml") count(item list), avg(number list) - count, average also max, min, sum filter, fold-left, fold-right, for-each: for "functional programming", beyond our scope has-children() - boolean head(list of items) - gives first item tail(list of items) - all but head insert-before(list of items) number() - item as a double subsequence(list, startpos, length) string-length, upper-case op:to(low,high) or use the "to" operator 1 to 5 generates sequence 1,2,3,4,5 op:is-same-node or use the "is" operator zillions of date/time functions xquery.txt Fri Apr 05 18:27:33 2019 12 XQuery ------ XQuery is supposed to be "the SQL of XML". Another W3C technology. Uses XPath heavily. All XPath functions listed earlier can be used. A single XPath expression can be an XQuery FLWOR expressions: For-Let-Where-OrderBy-Return optional sections, in that order (well, Return is mandatory, and either For or Let) Variables with $ prefix. case sensitive Strings with ’ or " (: This is a comment :) xquery.txt Fri Apr 05 18:27:33 2019 13 Comparisons: ------------ = vs eq : Suppose XPR is an XPath expression XPR eq 5 requires that the XPath set have exactly one value in it. Is it equal to 5? XPR = 5 can handle XPath sets with several values; if any of them are 5, you’re good Also, eq would require xsd:integer for XPR but without a schema to say otherwise, XPR might have incompatible type untypedAtomic. But = can handle this. Similary for > and gt, <= and le, etc. xquery.txt Fri Apr 05 18:27:33 2019 14 XQuery: for ------------ for VAR in EXPRESSION where EXPRESSION is an XPath expression or a function giving a sequence eg: for $foo in doc("myfile.xml")//friend eg: for $foo in (3 to 10) xquery.txt Fri Apr 05 18:27:33 2019 15 XQuery: nested for ------------------- for $foo in (1 to 5), $bar in (2 to 6) essentially, the $bar loop is nested. xquery.txt Fri Apr 05 18:27:33 2019 16 XQuery: let ----------- Let allows an assignment, goes with := operator let $midpoint := ($start + $finish) div 2 xquery.txt Fri Apr 05 18:27:33 2019 17 XQuery: where -------------- The where clause provides additional filtering, beyond what you may have done with predicates in the XPath statement. If you have "nested fors", this can be extra useful. for $x in (1 to 5), $y in (1 to 5) let $mid = ($x + $y) div 2 where $x gt $y return <owen> { $mid } </owen> xquery.txt Fri Apr 05 18:27:33 2019 18 XQuery: order by ---------------- Order by does what you expect... order by $x/gpa xquery.txt Fri Apr 05 18:27:33 2019 19 XQuery: return --------------- Each ordered result then produces an XML fragment. You can use an XPath expression eg return $x/gpa Or you can generate some XML elements with varying stuff based on your variables. Note the use of {} eg return <foo><bar>{$x}</bar></foo> There is an if-then-else expression, plus all those lovely XPath functions xquery.txt Fri Apr 05 18:27:33 2019 20 Defining your own functions -------------------------- You can even define your own functions, though that’s getting too fancy for us. For instance declare function foo ( $param1 as node()?, $param2 as xs:anyAtomicType) as xs:anyAtomicType* { if ($param1) then fn:data($param1) else $param2 } xquery.txt Fri Apr 05 18:27:33 2019 21 XQuery and XML in Oracle 12c ----------------------------- see docs.oracle.com/database/121/ADXDB/xdb_xquery.htm The SQL standard has a part called SQL/XML that standardizes the use of XML in SQL databases. Oracle SQL uses a data type XMLTYPE whereas SQL/XML says it should have been called XML. You can have columns of xmltype in your tables. Optionally, tell Oracle how to store the XML columns and do things to help indexing the XML. eg create table t( x xmltype); xquery.txt Fri Apr 05 18:27:33 2019 22 Getting some XML into a table ------------------------------ There are a variety of ways to get XML. One is to use xmltype as a constructor, to convert a string into XML. insert into t values (xmltype(’<classroster> <student snum="12345"> <sname> Owen Kaser </sname> <gpa> 1.1 </gpa> <friends> ....stuff omitted... </classroster>’)); Table t now has one row. xquery.txt Fri Apr 05 18:27:33 2019 23 Getting XML out of a table -------------------------- Can supposedly process the whole table as hunk of XML. In a table with an XMLType column and nothing else, Oracle docs suggest you can retrieve the "pseudocolumn" OBJECT_VALUE eg select object_value from t; Note that it didn’t work for me. xquery.txt Fri Apr 05 18:27:33 2019 24 Getting XML fragments out ------------------------- You can process individual fragments of XML from a table using "XMLQuery". It takes an XQuery and passes in a value (t.x below) for processing select xmlquery(’for $i in //student where $i/gpa > 1.5 order by $i/gpa return $i/@snum’ passing x returning content) from t; This returns 1111. The "passing" and "returning content" keywords are mandatory with xmlquery. xquery.txt Fri Apr 05 18:27:33 2019 25 "Passing as" ------------------------- You can associate a table attribute to a variable using "passing as". Below, variable $d is set to the chunk of XML in attribute x. select xmlquery(’for $i in $d//student where $i/gpa > 1.5 order by $i/gpa return $i/@snum’ ’ passing x as "d" returning content) from t; This returns 1111, as before.
Recommended publications
  • SPARQL with Xquery-Based Filtering?
    SPARQL with XQuery-based Filtering? Takahiro Komamizu Nagoya University, Japan [email protected] Abstract. Linked Open Data (LOD) has been proliferated over vari- ous domains, however, there are still lots of open data in various format other than RDF, a standard data description framework in LOD. These open data can also be connected to entities in LOD when they are as- sociated with URIs. Document-centric XML data are such open data that are connected with entities in LOD as supplemental documents for these entities, and to convert these XML data into RDF requires various techniques such as information extraction, ontology design and ontology mapping with human prior knowledge. To utilize document-centric XML data linked from entities in LOD, in this paper, a SPARQL-based seam- less access method on RDF and XML data is proposed. In particular, an extension to SPARQL, XQueryFILTER, which enables XQuery as a filter in SPARQL is proposed. For efficient query processing of the combination of SPARQL and XQuery, a database theory-based query optimization is proposed. Real-world scenario-based experiments in this paper showcase that effectiveness of XQueryFILTER and efficiency of the optimization. 1 Introduction Open data movement is a worldwide movement that data are published online with FAIR principle1. Linked Open Data (LOD) [4] started by Sir Tim Berners- Lee is best aligned with this principle. In LOD, factual records are represented by a set of triples consisting of subject, predicate and object in the form of a stan- dardized representation framework, RDF (Resource Description Framework) [5]. Each element in RDF is represented by network-accessible identifier called URI (Uniform Resource Identifier).
    [Show full text]
  • Building Xquery Based Web Service Aggregation and Reporting Applications
    TECHNICAL PAPER BUILDING XQUERY BASED WEB SERVICE AGGREGATION AND REPORTING APPLICATIONS TABLE OF CONTENTS Introduction ........................................................................................................................................ 1 Scenario ............................................................................................................................................ 1 Writing the solution in XQuery ........................................................................................................... 3 Achieving the result ........................................................................................................................... 6 Reporting to HTML using XSLT ......................................................................................................... 6 Sample Stock Report ......................................................................................................................... 8 Summary ........................................................................................................................................... 9 XQuery Resources ............................................................................................................................ 9 www.progress.com 1 INTRODUCTION The widespread adoption of XML has profoundly altered the way that information is exchanged within and between enterprises. XML, an extensible, text-based markup language, describes data in a way that is both hardware- and software-independent. As such,
    [Show full text]
  • Xquery Tutorial
    XQuery Tutorial Agenda • Motivation&History • Basics • Literals • XPath • FLWOR • Constructors • Advanced • Type system • Functions • Modules 2 Motivation • XML Query language to query data stores • XSLT for translation, not for querying • Integration language • Connect data from different sources • Access relational data represented as XML • Use in messaging systems • Need expressive language for integration 3 Design Goals • Declarative & functional language • No side effects • No required order of execution etc. • Easier to optimize • Strongly typed language, can handle weak typing • Optional static typing • Easier language • Non-XML syntax • Not a cumbersome SQL extension 4 History • Started 1998 as “Quilt” • Influenced by database- and document-oriented community • First W3C working draft in Feb 2001 • Still not a recommendation in March 2006 • Lots of implementations already available • Criticism: much too late • Current work • Full text search • Updates within XQuery 5 A composed language • XQuery tries to fit into the XML world • Based on other specifications • XPath language • XML Schema data model • various RFCs (2396, 3986 (URI), 3987 (IRI)) • Unicode • XML Names, Base, ID • Think: XPath 1.0 + XML literals + loop constructs 6 Basics • Literals • Arithmetic • XPath • FLWOR • Constructors 7 Basics - Literals • Strings • "Hello ' World" • "Hello "" World" • 'Hello " World' • "Hello $foo World" – doesn't work! • Numbers • xs:integer - 42 • xs:decimal – 3.5 • xs:double - .35E1 • xs:integer* - 1 to 5 – (1, 2, 3, 4, 5) 8 Literals (ctd.)
    [Show full text]
  • Xpath and Xquery
    XPath and XQuery Patryk Czarnik Institute of Informatics University of Warsaw XML and Modern Techniques of Content Management – 2012/13 . 1. Introduction Status XPath Data Model 2. XPath language Basic constructs XPath 2.0 extras Paths 3. XQuery XQuery query structure Constructors Functions . 1. Introduction Status XPath Data Model 2. XPath language Basic constructs XPath 2.0 extras Paths 3. XQuery XQuery query structure Constructors Functions . XPath XQuery . Used within other standards: Standalone standard. XSLT Main applications: XML Schema XML data access and XPointer processing XML databases . DOM . Introduction Status XPath and XQuery Querying XML documents . Common properties . Expression languages designed to query XML documents Convenient access to document nodes Intuitive syntax analogous to filesystem paths Comparison and arithmetic operators, functions, etc. Patryk Czarnik 06 – XPath XML 2012/13 4 / 42 Introduction Status XPath and XQuery Querying XML documents . Common properties . Expression languages designed to query XML documents Convenient access to document nodes Intuitive syntax analogous to filesystem paths Comparison and arithmetic operators, functions, etc. XPath XQuery . Used within other standards: Standalone standard. XSLT Main applications: XML Schema XML data access and XPointer processing XML databases . DOM . Patryk Czarnik 06 – XPath XML 2012/13 4 / 42 . XPath 2.0 . Several W3C Recommendations, I 2007: XML Path Language (XPath) 2.0 XQuery 1.0 and XPath 2.0 Data Model XQuery 1.0 and XPath 2.0 Functions and Operators XQuery 1.0 and XPath 2.0 Formal Semantics Used within XSLT 2.0 Related to XQuery 1.0 . Introduction Status XPath — status . XPath 1.0 . W3C Recommendation, XI 1999 used within XSLT 1.0, XML Schema, XPointer .
    [Show full text]
  • Xpath, Xquery and XSLT
    XPath, XQuery and XSLT Timo Lilja February 25, 2010 Timo Lilja () XPath, XQuery and XSLT February 25, 2010 1 / 24 Introduction When processing, XML documents are organized into a tree structure in the memory All XML Query and transformation languages operate on this tree XML Documents consists of tags and attributes which form logical constructs called nodes The basic operation unit of these query/processing languages is the node though access to substructures is provided Timo Lilja () XPath, XQuery and XSLT February 25, 2010 2 / 24 XPath XPath XPath 2.0 [4] is a W3C Recomendation released on January 2007 XPath provides a way to query the nodes and their attributes, tags and values XPath type both dynamic and static typing if the XML Scheme denition is present, it is used for static type checking before executing a query otherwise nodes are marked for untyped and they are coerced dynamically during run-time to suitable types Timo Lilja () XPath, XQuery and XSLT February 25, 2010 3 / 24 XPath Timo Lilja () XPath, XQuery and XSLT February 25, 2010 4 / 24 XPath Path expressions Path expressions provide a way to choose all matching branches of the tree representation of the XML Document Path expressions consist of one or more steps separated by the path operater/. A step can be an axis which is a way to reference a node in the path. a node-test which corresponds to a node in the actual XML document zero or more predicates Syntax for the path expressions: /step/step Syntaxc for a step: axisname::nodestest[predicate] Timo Lilja () XPath, XQuery and XSLT February 25, 2010 5 / 24 XPath Let's assume that we use the following XML Docuemnt <bookstore> <book category="COOKING"> <title lang="it">Everyday Italian</title> <author>Giada De Laurentiis</author> <year>2005</year> <price>30.00</price> </book> <book category="CHILDREN"> <title lang="en">Harry Potter</title> <author>J K.
    [Show full text]
  • Xquery 3.0 69 Higher-Order Functions 75 Full-Text 82 Full-Text/Japanese 85 Xquery Update 87 Java Bindings 91 Packaging 92 Xquery Errors 95 Serialization 105
    BaseX Documentation Version 7.2 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 24 Mar 2012 17:30:37 UTC Contents Articles Main Page 1 Getting Started 3 Getting Started 3 Startup 4 Startup Options 6 Start Scripts 13 User Interfaces 16 Graphical User Interface 16 Shortcuts 20 Database Server 23 Standalone Mode 26 Web Application 27 General Info 30 Databases 30 Binary Data 32 Parsers 33 Commands 37 Options 50 Integration 64 Integrating oXygen 64 Integrating Eclipse 66 Query Features 68 Querying 68 XQuery 3.0 69 Higher-Order Functions 75 Full-Text 82 Full-Text/Japanese 85 XQuery Update 87 Java Bindings 91 Packaging 92 XQuery Errors 95 Serialization 105 XQuery Modules 108 Cryptographic Module 108 Database Module 113 File Module 120 Full-Text Module 125 HTTP Module 128 Higher-Order Functions Module 131 Index Module 133 JSON Module 135 Map Module 140 Math Module 144 Repository Module 148 SQL Module 149 Utility Module 153 XSLT Module 157 ZIP Module 160 ZIP Module: Word Documents 162 Developing 164 Developing 164 Integrate 165 Git 166 Maven 172 Releases 174 Translations 175 HTTP Services 176 REST 176 REST: POST Schema 184 RESTXQ 185 WebDAV 189 WebDAV: Windows 7 190 WebDAV: Windows XP 192 WebDAV: Mac OSX 195 WebDAV: GNOME 197 WebDAV: KDE 199 Client APIs 201 Clients 201 Standard Mode 202 Query Mode 203 PHP Example 205 Server Protocol 206 Server Protocol: Types 210 Java Examples 212 Advanced User's Guide 214 Advanced User's Guide 214 Configuration 215 Catalog Resolver 216 Statistics 218 Backups 222 User Management 222 Transaction Management 224 Logging 225 Events 226 Indexes 228 Execution Plan 230 References Article Sources and Contributors 231 Image Sources, Licenses and Contributors 233 Article Licenses License 234 Main Page 1 Main Page Welcome to the documentation of BaseX! BaseX [1] is both a light-weight, high-performance and scalable XML Database and an XPath/XQuery Processor with full support for the W3C Update and Full Text extensions.
    [Show full text]
  • RDF Xquery Evaluation Model
    RDF • Topics • Finish up XML. • What is RDF? • Why is it interesting? • SPARQL: The query language for querying RDF. • Learning Objectives: • Identify data management problems for which RDF is a desirable representation. • Design RDF stores for a given data management problem. • Write queries in SPARQL 4/22/10 1 XQuery Evaluation Model • The FOR clause acts more or less like a FROM clause in SQL • You can have multiple variables and paths: For $v1 IN path1 $v2 IN path2 • The query iterates over all combinations of values from the component XPath expressions. • Variables $v1 and $v2 are assigned one value at a time. • The WHERE and RETURN clauses are applied to each combination. • The LET clause is applied to each combination of values produced by the FOR clause. • It assigns to a variable the complete set of values produced by its path expression. • The RETURN clause is similar to a select clause. • Identifies the pieces that you actually want to return. 4/22/10 2 Berkeley DB XML • What is it? • A native XML database built atop Berkeley DB. • Think of BDB as the storage layer and XML/XQuery as the schema and query layers. • Concepts • Document: A well-formed XML document, treated like a row/tuple in an RDBMS. • Container: a collection of related documents (kind of like a table). • Can combine different document types in a container (unlike a relational table). 4/22/10 3 Containers • Include documents and meta-data • Indices • Dictionaries mapping element and attribute names to ID numbers. • Statistics to aid in optimization • Document meta-data • Two flavors of containers: • Whole document: each key/data pair contains an entire document.
    [Show full text]
  • Compiling Xquery to Native Machine Code
    Compiling XQuery to Native Machine Code Declarative Amsterdam @ Online 2020-10-09 Adam Retter [email protected] @adamretter 1 About Me Director and CTO of Evolved Binary XQuery / XSLT / Schema / RelaxNG Scala / Java / C++ / Rust* Concurrency and Scalability Creator of FusionDB multi-model database (5 yrs.) Contributor to Facebook's RocksDB (5 yrs.) Core contributor to eXist-db XML Database (15 yrs.) Founder of EXQuery, and creator of RESTXQ Was a W3C XQuery WG Invited expert Me: www.adamretter.org.uk 2 Framing the Problem FusionDB inherited eXist-db's XQuery Engine Several bugs/issues Especially: Context Item and Expression Precedence See: https://github.com/eXist-db/exist/labels/xquery EOL - Parser implemented in Antlr 2 (1997-2005) Mixes concerns - Grammar with Java inlined in same file Hard to optimise - lack of clean AST for transform/rewrite Hard to maintain - lack of docs / support We made some small incremental improvements Performance Mismatch XQuery Engine is high-level (Java) Operates over an inefficient DOM abstraction FDB Core Storage is low-level (C++) 3 Resolving the Problem We need/want a new XQuery Engine for FusionDB Must be able to support all XQuery Grammars Query, Full-Text, Update, Scripting, etc. Must offer excellent error reporting with context Where did the error occur? Why did it occur? Should suggest possible fixes (e.g. Rust Compiler) Must be able to exploit FDB storage performance Should exploit modern techniques Should be able to utilise modern hardware Would like a clean AST without inline code Enables AST -> AST transformations (Rewrite optimisation) Enables Target Independence 4 Anatomy of an XQuery Engine 5 Parser Concerns Many Different Algorithms LR - LALR / GLR LL - (Predictive) Recursive Descent / ALL(*) / PEG Others - Earley / Leo-Earley / Pratt / Combinators / Marpa Implementation trade-offs Parser Generators, e.g.
    [Show full text]
  • Resource Description Framework (RDF)
    Resource Description Framework (RDF) W8.L15.M5.T15.1.1and4 Contents 1 XML: A Glimpse 2 Resource Description Framework (RDF) 3 RDF Syntax 4 RDF Semantics 5 Reasoning 6 Summary W8.L15.M5.T15.1.1and4 Resource Description Framework (RDF) 1 / 34 Contents 1 XML: A Glimpse 2 Resource Description Framework (RDF) 3 RDF Syntax 4 RDF Semantics 5 Reasoning 6 Summary W8.L15.M5.T15.1.1and4 Resource Description Framework (RDF) 2 / 34 What is XML? XML stands for eXtensible Markup Language XML is a markup language much like HTML XML was designed to store and transport data XML is a W3C Recommendation All major browsers have a built-in XML parser to access and manipulate XML. W8.L15.M5.T15.1.1and4 Resource Description Framework (RDF) 3 / 34 XML vs. HTML W8.L15.M5.T15.1.1and4 Resource Description Framework (RDF) 4 / 34 XML and HTML (Similarities) They both use tags and attributes Tags may be nested Human can read and interpret both XML and HTML quite easily Machines can read and interpret only to some extent Both XML and HTML were influenced and derived from SGML (Standard Generalized Markup Language) W8.L15.M5.T15.1.1and4 Resource Description Framework (RDF) 5 / 34 XML vs. HTML (Differences) HTML is to tell machines about how to interpret formatting for graphical presentation (focus on how data looks) XML is to tell machines about metadata content and relationships between different pieces of information (focus on what data is) XML allows the definition of constraints on values HTML tags are fixed, while XML tags are user defined HTML is not Case sensitive, whereas XML is Case sensitive.
    [Show full text]
  • A Prototype for Translating Xslt Into Xquery
    A PROTOTYPE FOR TRANSLATING XSLT INTO XQUERY Ralf Bettentrupp University of Paderborn, Faculty 5, Fürstenallee 11, D-33102 Paderborn, Germany Sven Groppe, Jinghua Groppe Digital Enterprise Research Institute (DERI), University of Innsbruck, Institute of Computer Science, AT-6020 Innsbruck Stefan Böttcher University of Paderborn, Faculty 5, Fürstenallee 11, D-33102 Paderborn, Germany Le Gruenwald University of Oklahoma, School of Computer Science, Norman, Oklahoma 73019, U.S.A Keywords: XML, XSLT, XQuery, Source-to-Source Translation. Abstract: XSLT and XQuery are the languages developed by the W3C for transforming and querying XML data. XSLT and XQuery have the same expressive power and can be indeed translated into each other. In this paper, we show how to translate XSLT stylesheets into equivalent XQuery expressions. We especially investigate how to simulate the match test of XSLT templates by two different approaches which use reverse patterns or match node sets. We then present a performance analysis that compares the execution times of the translation, XSLT stylesheets and their equivalent XQuery expressions using various current XSLT processors and XQuery evaluators. 1 INTRODUCTION the old XSLT stylesheets so that the translated XQuery expressions can be applied instead. Note XSLT (W3C, 1999b) and XQuery (W3C, 2005) are that XSLT has been used in many companies for a both languages developed for transforming and longer time than XQuery; therefore many querying XML documents. XSLT and XQuery have applications already use XSLT. Furthermore, many the same expressive power. In this paper, we show XSLT stylesheets for different purposes can be how to translate XSLT stylesheets into equivalent found on the web, but the new XQuery technology XQuery expressions.
    [Show full text]
  • Online Appendices to WFH Productivity in Open-Source Projects
    Online Appendices ”WFH Productivity in Open-Source Projects” Lucas Shen (March 2021) Figure A1: Largest countries in sample Notes. Sample size by country, in descending order. Panel (a) sorts countries by number of commits per user-repository. Panel (b) sorts countries by number of user-repository. 1 Figure A2: US states (by Commits) Notes. US sample size by states, in descending order. States sorted by number of commits per user-repository. Figure A3: US states (by Users & Repositories) Notes. US sample size by states, in descending order. States sorted by number user-repository. 2 (a) Staggered Timing in County-level Business Closures (b) County-level Variation in Sample Sizes Figure A4: Geographical Variation in US sample Notes—Panel (a) plots the county-level variation in business closures from the US-state level records and crowdsourced county-level records. Blue indicates earlier closures, while red indicates later closures. South Dakota is (still) the sole state without closure at the time of writing. Panel (b) plots the geographic variation of commits from geocoded U.S. users—larger markers indicate larger activity in the sample period. 3 (a) Early response (by 15 Feb) (b) Intermediate response (by 17 Mar) (c) Late response (by 30 Apr) Figure A5: Country variation in WFH enforcement Notes. Figure plots the variation in government-enforced WFH levels during the COVID-19 pandemic. WFH indicators come from the OxCGRT (?). 4 (a) Early response (by 15 Feb) (b) Intermediate response (by 17 Mar) (c) Late response (by 30 Apr) Figure A6: U.S. states variation in WFH enforcement Notes. Figure plots the U.S.
    [Show full text]
  • Project-Team WAM Web, Adaptation and Multimedia
    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Project-Team WAM Web, Adaptation and Multimedia Grenoble - Rhône-Alpes Theme : Knowledge and Data Representation and Management c t i v it y ep o r t 2009 Table of contents 1. Team .................................................................................... 1 2. Overall Objectives ........................................................................ 1 3. Scientific Foundations .....................................................................2 3.1. XML Processing 2 3.2. Multimedia Models and Languages 2 3.3. Multimedia Authoring 3 4. Application Domains ......................................................................4 5. Software ................................................................................. 4 5.1. Amaya 4 5.2. LimSee3 5 5.3. LibA2ML 6 5.4. XML Reasoning Solver 6 6. New Results .............................................................................. 6 6.1. Static Analysis Techniques for XML Processing 6 6.2. Content Adaptation 7 6.3. Multimedia Authoring 7 6.3.1. Amaya 7 6.3.2. LimSee3 7 6.3.3. Augmented Reality Audio (ARA) Editing 8 6.4. Document Formats 8 6.4.1. XTiger Language 8 6.4.2. A2ML Audio Format 8 7. Other Grants and Activities ............................................................... 9 7.1. National Grants and Collaborations 9 7.1.1. Codex 9 7.1.2. C2M 9 7.2. European Initiatives 9 7.3. International Initiatives 10 8. Dissemination ........................................................................... 10 8.1.
    [Show full text]