Parkside Action Group Proof of Evidence: Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Parkside Action Group Proof of Evidence: Ecology Secretary of State (SoS) for Ministry of Housing Communities and Local Government (MHCLG) PARKSIDE INQUIRY PROOF OF EVIDENCE – ECOLOGY MR P BLACK, MR P ASTLES, DR P RICHARDSON PARKSIDE ACTION GROUP PARKSIDE LINK ROAD (PLR) Planning Inspectorate References St Helens BC: APP/H4315/V/20/3253230 Warrington BC: APP/MO655/V/20/3253232 St Helens BC (SHBC) Planning Application Reference: P/2018/2049/FUL Warrington BC (WBC) Planning Application Reference: 2018/32514 & 2019/34719 PARKSIDE REGENERATION LLP (PHASE 1) Planning Inspectorate Reference: APP/H4315/V20/ 3253194 St Helens BC (SHBC)Planning Application Reference: P/2018/0048/OUP PAG Proof of Evidence Ecology Document History Date Version Status/Purpose Author 8-Dec-2020 Rev 1.0 Final Dave Tyas Contents 1 A million species facing extinction ................................................................................. 2 2 Biodiversity - Background and Policy ............................................................................ 4 3 How important is Parkside for Biodiversity? .................................................................. 5 4 What about the wider context? ...................................................................................... 6 5 The Last Great Wild Space - biodiversity and people .................................................... 9 6 Biodiversity Net Gain and mitigation .............................................................................10 7 Other issues .................................................................................................................13 8 Cumulative effects ........................................................................................................14 9 Conclusion ....................................................................................................................14 10 Appendix A – Leigh Ecology Report .............................................................................16 11 Appendix B – GMLRC record .......................................................................................16 12 Appendix C – Evidence of badgers in the Parkside area ..............................................25 13 Appendix D – letter from Leigh Ornithological Society..................................................26 14 Appendix E – Letter from Local Ornithologists .............................................................28 Definitions AQMA Air Quality Management Area BNG Biodiversity Net Gain EIA Environmental Impact Assessment ES Environmental Statement GHG Greenhouse Gases GMLRC Greater Manchester Local records centre LOS Leigh Ornithology Society NPPF National Planning Policy Framework PLR Parkside Link Road Phase 1 Phase 1 Planning Application SHC St Helens Council SRFI Strategic Rail Freight Interchange TA Traffic Assessment Parkside Action Group (PAG) Page 1 of 30 8 December 2020 PAG Proof of Evidence Ecology 1 A million species facing extinction 1.1 In May 2019, the UN reported1 that human activity is causing an unprecedented decline in biodiversity, with more than a million species across the planet threatened with extinction. Scientists report that species extinction is 100 times the ‘normal rate’. England is already one of the most impoverished countries in the world for biodiversity as we progressively destroy our wild places. 1.2 ‘Biodiversity2‘refers to the variety of life on earth, including the different species of animals, plants, and micro-organisms that coexist globally. It covers the variety of ecosystems and their component habitats, including more human designed locations, like agricultural and urban landscapes. 1.3 This proof covers the importance of Parkside Phase 1 (Phase 1) and Parkside Link Road (PLR) sites for biodiversity and the community, and how the appellant has underestimated: • the importance of the site itself and reduced its wildlife value • its regional biodiversity value, • its future potential. • why wildlife and biodiversity of this ‘Last Great Wilderness’ are important to the people of St Helens, Warrington, and Wigan, including how Covid-19 has revealed exactly how nature enhances physical health and mental well-being. 1.4 It discusses the now universally accepted requirement for Biodiversity Net Gain (BNG) and how the proposals fail to measure up. We also discuss biodiversity in relation to climate change, air quality and aquatic habitats. 1.5 We commissioned an independent consultant review of the appellants’ case and include the evidence knowledge from residents with over 40 years of experience in studying nature in the area. 1 UN Global Assessment Report on Biodiversity and Ecosystem Services, 2019 2 UN Convention on Biological Diversity www.cbd.int/ Parkside Action Group (PAG) Page 2 of 30 8 December 2020 PAG Proof of Evidence Ecology Qualifications and Professional Expertise 1.6 Peter Black is a chartered town planner, with more than 25 years’ experience in planning, habitat and tree surveys, habitat management, environmental impact assessment, and strategic environmental assessment who has worked in the public, private and voluntary sectors. He is familiar with the area and the site. He holds a Masters in Civic Design from Liverpool University and a BA (Hons) in Natural Science (Botany) from the University of Oxford. He is an Associate member of the Arboricultural Association. 1.7 Peter Black is separately representing Croft Parish Council and Culcheth and Glazebury Parish Council but here is representing the views of Parkside Action Group He is also providing evidence on Cumulative Effects, and climate change. 1.8 Peter Astles, Associate Chartered Management Accountant (ACMA), Associate Chartered Secretaries and Administrators (ACIS), an accountant by profession now retired and above membership lapsed. He has held senior financial positions in the Brewing, Banking, Insurance and Pharmaceutical sectors analysing complex commercial situations throughout his working life, both UK and overseas. He represented Newton-Le-Willows at the St Helens MBC core strategy in 2012. Brought up in rural Cheshire, his father instilled in him as a toddler a lifelong love and appreciation of the natural world. He is a local resident, amateur wildlife photographer, who has lived in Newton-Le-Willows for 50 years and studied and observed the natural world both directly on Parkside and the surrounding area for over 40 years. 1.9 Dr Paul Richardson will provide support at the biodiversity round table discussion. He is a retired GP who practised for 30 years in Leigh, 5 miles NE of the proposed development. For the past 10 years he has been involved with Leigh Ornithological Society, and participating in bird species surveys and recording in the area, including the Barrow Lane arable land which would be affected by the access/relief road proposal. He has been involved with development and management policy discussions about local green spaces on the Wigan Greenheart Forum, and the Bickershaw (Country Park) Steering Group, as well as speaking on behalf of LOS at planning meetings and inquiries. Parkside Action Group (PAG) Page 3 of 30 8 December 2020 PAG Proof of Evidence Ecology Roy Leigh3 ACIEEM is an experienced ecologist with over 20 years working as a consultant. He holds numerous survey licences and has worked on a wide range of EIA projects from large infrastructure schemes and windfarms to house extensions. He has also undertaken many novel specific studies using intrusive methods for example pit tagging and radio tracking as part of research and conservation projects. He has led on owls, raptors, and mammal species in Cheshire. He is chair of the Cheshire and Wirral Raptor Study Group. 2 Biodiversity - Background and Policy 2.1 There is a Biodiversity Crisis. The World Wildlife Fund (WWF) Living Planet Report Sept 2020 reported an average 68% decline in global species population sizes tracked over 46 years (1970-2016). For the UK, the 2019 state of nature report declared around 41% of UK species have declined over a similar timeframe. one in 7 species in the UK are in danger of extinction and 58% of species are in decline. This serious situation is replicated in St Helens and threatens our environment, health and wellbeing, economy, and quality of life. 2.2 The Environment Bill due to receive Royal Assent in early 2020 will put the environment at the centre of policy making. It will make sure that we have a cleaner, greener, and more resilient country for the next generation. In September 2020, the Prime Minister committed to 30% nature recovery by 2030. 2.3 Protection and enhancement of biodiversity is entrenched in policy. NPPF 175a requires Biodiversity Net Gain. National Planning Practice Guidance Natural Environment (10 – 35) highlights protected and priority species and habitats; assessment on biodiversity impacts at all stages of development; local ecology networks and nature recovery networks; mitigation hierarchy, net gain metrics, and promotion of woodlands, 2.4 Local planning policies for St Helens and Warrington also theoretically emphasise the need to protect and enhance biodiversity. 3 Leigh Ecology: http://www.leighecology.co.uk/ Parkside Action Group (PAG) Page 4 of 30 8 December 2020 PAG Proof of Evidence Ecology 3 How important is Parkside for Biodiversity? 3.1 Leigh Ecology was commissioned to review ecology documents submitted for Phase 1 and PLR. (Appendix A). We have also used the expertise of Leigh Ornithological Society (LOS), a group founded in 1971 which conserves wildlife, collects, and publishes biological
Recommended publications
  • LANDCLIM MJG Public Version
    LANDCLIM project Swedish Research Council Marie-José Gaillard 1, Shinya Sugita 2,1 Anna-Kari Trondman 1, Florence Mazier 3 Anne Birgitte Nielsen 4, Ralph Fyfe 5 Michelle Leydet 6 and LANDCLIM members* 1 Linnaeus University, Kalmar, Sweden 2 Tallinn University, Tallinn, Estonia 3 University of Toulouse, Toulouse, France 4 University of Göttingen, Göttingen, Germany 5 University of Plymouth, Plymouth, UK 6 University of Marseilles, Arbois, France Swedish project: LANDCLIM 6000-200 • LANDCLIM 6000-200 is a contribution to the IGBP-PAGES-Focus 4 PHAROS programme (www.pages.unibe.ch/science/focus4.html ). • The overall objective is to – better understand vegetation/land use-climate interactions on long time scales, and – to evaluate and fine-tune the regional climate model RCA3, the dynamic vegetation model (LPJGuess), and the coupled RCA3-LPJGuess model for better analysis of future climate change Proposed scheme of GCMs model-data comparison RCA3 LJPGUESS + Pollen data GCMs Model-data comparison Gaillard et al. 2010, Clim Past Testing REVEALS in southern Sweden Hellman et al. 2008a,b (JQS, VHA) Skåne Småland Tenhultasjön (292 ha) Kansjön (77 ha) Storesjön Vallsjön (512 ha) (707 ha) Coniferous Deciduous Vombsjön (1224 ha) Grassland Sövdesjön (265 ha) Snogeholmssjön Cultivated ( 240 ha) Trummen (76 ha) Built-up Börringesjön Krageholmssjön (274 ha) (186 ha) Lakes 0 20 40 60 80 km 0 25 50 75 100 km Results Sweden: Skåne (Open Landscape) Gaillard et al. 2010, Clim Past Observed vegetation Pollen Percentages (percentage cover) Skåne regional pollen percentages (20 samples), 26 Skåne observed vegetation 26 taxa <1% Acer taxa Rumex ace Picea Carpinus Rumex ace Picea <1% 3% Juniperus 2% Acer 13% 3% Pinus Fraxinus Juniperus Tilia Poaceae Tilia Poaceae 13% Pinus Calluna Ulmus 15% 19% 3% Com p.
    [Show full text]
  • Isles of Scilly
    Isles of Scilly Naturetrek Tour Report 14 - 21 September 2019 Porthcressa and the Garrison Red Squirrel Grey Seals Birdwatching on Peninnis Head Report & Images by Andrew Cleave Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Isles of Scilly Tour participants: Andrew Cleave (leader) plus 12 Naturetrek clients Summary Our early-autumn week on the Isles of Scilly was timed to coincide with the bird migration which is easily observed on the islands. Our crossings to and from Scilly on Scillonian III enabled us to see seabirds in their natural habitat, and the many boat trips we took during the week gave us close views of plenty of the resident and migrant birds which were feeding and sheltering closer to shore. We had long walks on all of the inhabited islands and as well as birds, managed to see some marine mammals, many rare plants and some interesting intertidal marine life. Informative evening lectures by resident experts were well received and we also sampled lovely food in many of the pubs and cafés on the islands. Our waterfront accommodation in Schooners Hotel was very comfortable and ideally placed for access to the harbour and Hugh Town. Day 1 Saturday 14th September We began our trip in Penzance harbour where we boarded Scillonian III for the crossing to Scilly. Conditions were fine for the crossing and those of us up on deck had good views of seabirds, including Gannets, Fulmars and winter-plumage auks as we followed the Cornish coast and then headed out into the Atlantic.
    [Show full text]
  • 4010 Northern Atlantic Wet Heaths with Erica Tetralix
    Technical Report 2008 08/24 MANAGEMENT of Natura 2000 habitats Northern Atlantic wet heaths with Erica tetralix 4010 Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora The European Commission (DG ENV B2) commissioned the Management of Natura 2000 habitats. 4010 Northern Atlantic wet heaths with Erica tetralix This document was completed in March 2008 by Mark Hampton (NatureBureau, UK) on behalf of Ecosystems. Comments, data or general information were generously provided by: Mats Eriksson, MK Natur- och Miljökonsult, Sweden. Simon Barnett, Countryside Officer, West Berkshire Council, UK. Ola Bengtsson (ecological consultant), Pro Natura, Sweden Simon Caporn, Reader in Environmental Ecology, Department of Environmental & Geographical Sciences,Manchester Metropolitan University, UK. Geert De Blust, Research Institute for Nature and Forest, Research Group Nature and Forest Management, Belgium Simon Stainer, Natural England, UK Coordination: Concha Olmeda, ATECMA & Daniela Zaghi, Comunità Ambiente ©2008 European Communities ISBN 978-92-79-08323-5 Reproduction is authorised provided the source is acknowledged Hampton M. 2008. Management of Natura 2000 habitats. 4010 Northern Atlantic wet heaths with Erica tetralix. European Commission This document, which has been prepared in the framework of a service contract (7030302/2006/453813/MAR/B2 "Natura 2000 preparatory actions: Management Models for Natura 2000 Sites”), is not legally binding. Contract realised by: ATECMA S.L. (Spain), COMUNITA AMBIENTE (Italy),
    [Show full text]
  • Oakmont Do Not Plant List
    Oakmont Do Not Plant List Common Name Botanical Name Common Name Botanical Name Trees Shrubs/Vines Acacia Acacia spp. Bamboo ALL genera Arborvitae Thuja spp. Bluebeard Caryopteris spp. Australian tea tree Leptospermum Broom ALL genera laevigatum California buckwheat Eriogonum Black walnut Juglans nigra fasciculatum California bay Umbellularia Chamise or greasewood Adenostoma californica fasciculatum California pepper tree Schinus molle Chaparral pea Pickeringia montana Cedar Cedrus spp. Coyote brush Baccharis spp. Cypress Cupressus spp. Evergreen huckleberry Vaccinium ovatum Eucalyptus Eucalyptus spp. Gas plant Dictamus albus False cypress Chamaecyparis spp. Gorse Ulex europaeus Fir Abies spp. Honeysuckle Lonicera japonica ‘Halliana’ Giant chinquapin Chrysolepis chrysophylla Hopbush or hopseed Dodonaea viscosa bush Hemlock Tsuga spp. Juniper Juniperus spp. Honeylocust Gleditsia triacanthos Manzanita Arctostaphylos spp. Juniper Juniperus spp. (Ground cover variety okay) Leyland cypress Cupressus x leyandii (used as a hedge) New Zealand tea tree Leptospermum scoparium Palm ALL genera Rosemary Rosmarinus spp. Paperbark tree Melaleuca spp. Sagebrush Artemesia californica Pine Pinus spp. Scrub oak Quercus berberidifolia Spruce Picea spp. Grevillea Grevillea noellii Sweet gum Liquidambar Yew Taxus spp. (Also a styraciflua tree) Tamarisk Tamarix spp. Tan Oak Notholithocarpus densiflorus Tree of heaven Ailanthus altissima (Fourth Revision – 8/19/2018) (1/31/2021- Title and Spelling Corrections only) Common Name Botanical Name Grasses Fountain grass Pennisetum spp. Maiden grass Miscanthus sinensis Pampas grass Cortadaria selloana Ground Cover Big leaf periwinkle Vinca major Ivy Hedera spp. Juniper Juniperus spp. Mulch Woodchips and bark are not allowed in the 0–5- foot defensible space. The mulch types listed below are not allowed anywhere on residential property. Gorilla-hair Finely shredded redwood/cedar Rubber (Fourth Revision – 8/19/2018) (1/31/2021- Title and Spelling Corrections only) .
    [Show full text]
  • Heathers and Heaths
    Heathers and Heaths Heathers and heaths are easy care evergreen plants that can give year-round garden color. With careful planning, you can have varieties in bloom every month of the year. Foliage colors include shades of green, gray, gold, and bronze; some varieties change color or have colored tips in the winter or spring. Flower colors are white and shades of pink, red, and purple. Heathers make excellent companions to rhododendrons and azaleas. They are also excellent in rock gardens or on slopes. Bees love traditional heaths and heathers; however, the new bud-bloomer Scotch heathers, whose flowers are long-lasting because they don’t open completely, do not provide good bee forage, nor do the new foliage-only series. Choose other varieties if that is a consideration. Heathers grow best in neutral to slightly acid soil with good drainage. A sandy soil mixed with compost or leaf mold is ideal. Heathers bloom best in full or partial sun. Plants will grow in a shady location but will not bloom as well and tend to get leggy. They will not do well in areas of hot reflected sunlight. To plant heather, work compost into the planting area, then dig a hole at least twice the width of the rootball. Partially fill with your amended soil and place the plant at the same level it grew in the container. Excess soil over the rootball will kill the plant. For the same reason, do not mulch too deeply or allow mulch to touch the trunks. Normally a spacing of 12-30” apart is good, depending on the variety.
    [Show full text]
  • Sites of Importance for Nature Conservation in Bridgend County
    Sites of Importance for Nature Conservation in Bridgend County Borough Council SINC number:MG-1-M SINC name: Caerau West Grid reference: SS 846 938 Area (hectares): 62.09 Survey date: 06/09/2011 Surveyor name: Rebecca East Summary description A large dry acid grassland site with purple moor grass pasture in the more low lying areas. Species diversity increases in the wetter areas. The site also includes areas of dense bracken. Qualifying features Dry acid grassland Secondary features Purple moor grass and rush pasture Potential value/ unconfirmed features The site may be suitable for a range of invertebrate and bird species for feeding and possibly ground nesting. Smaller reptile species may be found here and amphibians may use the pools of standing water for breeding. Current condition and management (including problems and opportunities for biodiversity) Sheep, cattle and horses graze the area, fairly tightly in places which may limit the biodiversity value. Himalayan balsam is present in small parts of the site, particularly where past disturbance or tipping has taken place. The site may benefit from bracken control and limiting livestock numbers. Recommendations for future management: • Consider reducing grazing pressure on grassland • Removal of tipped material. • Control of invasive species. • Management of bracken. Additional information: A few areas of similar habitat beyond the SINC boundary could be surveyed in the furture with a view to designation. Species list (Dominant species, SINC Criteria, RDB or other notable indicator
    [Show full text]
  • Bonner Zoologische Beiträge
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at Bonn. zool. Beitr. Bd. 40 H. 2 S. 109—121 Bonn, Juli 1989 Notes on four weevils in the tribe Cionini (Coleóptera: Curculionidae) associated with Scrophularia nodosa L. (Scrophulariaceae) Part I: Biology and ecology of the weevils Martin Räther Abstract. The biology of the curculionids Cionus hortulanus, C. scrophulariae, C. tuber- culosa, and Cleopus pulchellus, all associated with Scrophularia nodosa, is described. All developmental stages are registered. Figures demonstrate the life-cycle of the weevils; observations on the behaviour are mentioned. The chronological succession is demonstrated by curves of emergence. Parasitoid records are given. Key words. Cionus spp., Cleopus pulchellus, Coleóptera, Curculionidae, phytophagous insects, Scrophularia nodosa. Introduction In contrast to the internal larval feeding, usual for curculionids, the yellow, slug-like larvae of the tribe Cionini are oligophagous, external feeders of some Scrophularia- ceae. Around Kiel (northern Germany) Scrophularia nodosa and S. aquatica are the main host plants of both the adults and the larval stages of Cionus hortulanus (Geoff.), C scrophulariae (L.), C. tuberculosus (Scop.) and Cleopus pulchellus (Herbst). The anatomy and morphology of these figwort weevils and preliminary notes on their biology have been described at the end of the last century; the results were presented in a monograph by Wingelmiiller (1937). Scherf (1964) described the bionomy and morphology of the larval stages. Brief biological notes on some species were given by Cawthra (1957) for Scotland. More recently, Cunningham (1974, 1979) and Read (1976, 1977) studied the biology of some Cionini in England. This paper is based on a study of the field ecology of all phytophagous insect species feeding on S.
    [Show full text]
  • Description of Immature Stages of Phelypera Schuppeli (Boheman, 1834) with Comments on Natural History (Coleoptera: Curculionidae: Hyperinae)
    Zootaxa 3423: 45–60 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) Description of immature stages of Phelypera schuppeli (Boheman, 1834) with comments on natural history (Coleoptera: Curculionidae: Hyperinae) SERGIO ANTONIO VANIN1, 4, DANIELA DE CASSIA BENÁ1,2 & FABIANO FABIAN ALBERTONI3 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 101, 05508-900 São Paulo, SP, Brasil. E-mail:[email protected] 2Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Cidade Universitária, Rodovia Doura- dos–Itahum, km 14, 79804–970, Dourados, MS, Brasil. E-mail: [email protected] 3Museu de Zoologia, Universidade de São Paulo, Avenida Nazaré 481, 04263-000, São Paulo, SP, Brasil. E-mail: [email protected] 4Corresponding author. E-mail: [email protected] Abstract Immatures of the Phelypera schuppeli (Boheman, 1834) (Curculionidae; Hyperinae; Cepurini) are described, illustrated and compared with available descriptions of larvae and pupae of Hyperini. Immatures and adults from midwest (Doura- dos, Mato Grosso do Sul; Pirenópolis, Goiás) and southeast Brazil (Bauru, São Paulo) were found on leaves of the host plant, Pachira aquatica Aubl. ( Malvaceae, formerly Bombacaceae), a tree used as an ornamental plant in many Brazilian frost-free cities. Larvae of P. schuppeli are exophytic, brightly colored, eruciform and possess abdominal ambulatory am- pullae,
    [Show full text]
  • 3.7.10 Curculioninae Latreille, 1802 Jetzt Beschriebenen Palaearctischen Ceuthor- Rhynchinen
    Curculioninae Latreille, 1802 305 Schultze, A. (1902): Kritisches Verzeichniss der bis 3.7.10 Curculioninae Latreille, 1802 jetzt beschriebenen palaearctischen Ceuthor- rhynchinen. – Deutsche Entomologische Zeitschrift Roberto Caldara , Nico M. Franz, and Rolf 1902: 193 – 226. G. Oberprieler Schwarz, E. A. (1894): A “ parasitic ” scolytid. – Pro- ceedings of the Entomological Society of Washington 3: Distribution. The subfamily as here composed (see 15 – 17. Phylogeny and Taxonomy below) includes approx- Scudder, S. H. (1893): Tertiary Rhynchophorous Coleo- ptera of the United States. xii + 206 pp. US Geological imately 350 genera and 4500 species (O ’ Brien & Survey, Washington, DC. Wibmer 1978; Thompson 1992; Alonso-Zarazaga Stierlin, G. (1886): Fauna insectorum Helvetiae. Coleo- & Lyal 1999; Oberprieler et al. 2007), provisionally ptera helvetiae , Volume 2. 662 pp. Rothermel & Cie., divided into 34 tribes. These are geographically Schaffhausen. generally restricted to a lesser or larger degree, only Thompson, R. T. (1973): Preliminary studies on the two – Curculionini and Rhamphini – being virtually taxonomy and distribution of the melon weevil, cosmopolitan in distribution and Anthonomini , Acythopeus curvirostris (Boheman) (including Baris and Tychiini only absent from the Australo-Pacifi c granulipennis (Tournier)) (Coleoptera, Curculion- region. Acalyptini , Cionini , Ellescini , Mecinini , idae). – Bulletin of Entomological Research 63: 31 – 48. and Smicronychini occur mainly in the Old World, – (1992): Observations on the morphology and clas- from Africa to the Palaearctic and Oriental regions, sifi cation of weevils (Coleoptera, Curculionidae) with Ellescini, Acalyptini, and Smicronychini also with a key to major groups. – Journal of Natural His- extending into the Nearctic region and at least tory 26: 835 – 891. the latter two also into the Australian one.
    [Show full text]
  • Leaf Beetle Larvae
    Scottish Beetles BeesIntroduction and wasps to Leaf Beetles (Chrysomelidae) There are approximately 281 species of leaf beetles in the UK. This guide is an introduction to 17 species found in this family. It is intended to be used in combination with the beetle anatomy guide and survey and recording guides. Colourful and often metallic beetles, where the 3rd tarsi is heart shaped. Species in this family are 1-18mm and are oval or elongated oval shaped. The plants each beetle is found on are usually key to their identification. Many of the species of beetles found in Scotland need careful examination with a microscope to identify them. This guide is designed to introduce some of the leaf beetles you may find and give some key Dead nettle leaf beetle (Chrysolina fastuosa ) 5-6mm This leaf beetle is found on hemp nettle and dead nettle plants. It is beautifully coloured with its typically metallic green base and blue, red and gold banding. The elytra are densely punctured. Where to look - Found mainly in wetlands from March to December from the Central Belt to Aberdeenshire and Inverness © Ben Hamers © Ben Rosemary leaf beetle (Chrysolina americana ) 6-8mm The Rosemary beetle is a recent invasive non- native species introduced to the UK through the international plant trade. This beetle is metallic red/burgundy with green striping. There are lines of punctures typically following the green stripes. Where to look - Found in nurseries, gardens and parks. Feeds on lavender and rosemary in particular. There have been records in Edinburgh but this beetle is spreading.
    [Show full text]
  • Plants & Ecology
    Olfactory cues and insects – scaling relations and immigration rates Petter Andersson Licentiate thesis Plants & Ecology Plant Ecology 2010/1 Department of Botany Stockholm University Olfactory cues and insects – scaling relations and immigration rates Petter Andersson Licentiate thesis Supervisors: Peter Hambäck & Johan Ehrlén Plants & Ecology Plant Ecology 2010/1 Department of Botany Stockholm University Plants & Ecology Plant Ecology Department of Botany Stockholm University S-106 91 Stockholm Sweden © Plant Ecology ISSN 1651-9248 Printed by Solna Printcenter Cover: Left upper corner: Sawfly larva Tenthredo scrophulariae feeding on a figwort leaf. Right upper corner: EAG and IDAC-box; the equipment used in Paper I for recording antennal responses of moths. Left lower corner: Weevils Cionus scrophulariae mating. Right lower corner: Adult sawfly T. scrophulariae. Background picture: Color-marked weevil C. tuberculosus from the colonization experiment in Paper II, feeding on a figwort plant. Photo: Petter Andersson. 2 OLFACTORY CUES AND INSECTS – SCALING RELATIONS AND IMMIGRATION RATES PETTER ANDERSSON Summary For herbivorous insects, location of host plants and habitat patches strongly depend on the type of sensory cue that is used during the search process and the probability of detecting a patch depends on the relative attraction between patches of different size. The visual impression of a patch increases predictably with the patch diameter and consequently, immigration rates of visually searching insects are often predicted by the scaling to patch size of visual cues. However, for olfactory cues, the relative attraction between small and large patches is unknown, but has been suggested to increase faster with patch size than visual information. In this thesis, I explore the scaling relation between olfactory cues and patch size.
    [Show full text]
  • Climate Change and Primary Birch Forest (Betula Pubescens Ssp
    International Journal of Research in Geography (IJRG) Volume 2, Issue 2, 2016, PP 36-47 ISSN 2454-8685 (Online) http://dx.doi.org/10.20431/2454-8685.0202004 www.arcjournals.org Climate Change and Primary Birch Forest (Betula pubescens ssp. czerepanovii) Succession in the Treeline Ecotone of the Swedish Scandes Leif Kullman Department of Ecology and Environmental Science Umeå University, SE 901 87 Umeå, Sweden [email protected] Abstract: In a context of recent climate change, the conversion of treeless alpine tundra to mountain birch (Betula pubescens ssp. czerepanovii) forest was studied by repeat photography, demographic and growth surveillance in permanent plots. In addition, flora change was recorded within the emerging birch forest stand. The study was initiated in 1980, when a large snow bank covered the site well into mid-July. Climate warming and associated enhanced snow melt since the early 20th century had made the snow disappear earlier during most summers. In response, a fairly dense population of seed-regenerated low-growing birch saplings gradually emerged. During subsequent decades, this population grew substantially in numbers. The population stagnated in average height until the early 1980s, when height growth and recruitment accelerated. Thereafter, a dense stand of tree-sized birches emerged. Concurrently, the character of the ground cover transformed from alpine to forest, as the presence of a tree layer governs the composition of the lower vegetation strata. Possibly, the course of elevational subalpine forest expansion in a hypothetical case of further climate warming is suggested by the present study. The establishment of this forest stand bears some resemblance to the first Holocene mountain birch forests.
    [Show full text]