What Is Dark Energy? How the Universe Has Cooled

Total Page:16

File Type:pdf, Size:1020Kb

What Is Dark Energy? How the Universe Has Cooled National Aeronautics and Space Administration Age of the Universe: Size of the Universe: 13.7 Billion Years Cosmic Times 94 Billion Light Years 2006 Faster Walk On The Dark Side Journey Seeds of Modern Universe There is fresh evidence for the existence of Here’s how the ISW effect works. Gravity is dark energy, a peculiar entity that is hastening a property of matter, so matter exists in “gravity the expansion of the cosmos. Dark energy wells” in space-time. More matter makes a to Cosmos’ amazingly comprises almost three-quarters of deeper well. If there is no change in the depth the universe. It appears to be accelerating the of a well while a photon crosses it, the well has distances between galaxies and working against no effect on the photon’s energy. But if dark Dark Heart energy stretches out deep wells of gravity into gravity, but its nature is still unknown. Scientists are gearing up to shed some light mere shallow dents, then CMB photons crossing The new evidence is the discovery of an on the darkest mystery in the universe: dark the well will change their energy. The recent effect dark energy has on photons of light from energy. observations of these subtle changes in the CMB the earliest universe. This ancient light began NASA and the US Department of Energy have provides further evidence for the existence of moving across the universe just 380,000 years selected three concept studies for consideration dark energy. after the Big Bang, and its initial energy has to become their Joint Dark Energy Mission This additional evidence is good news to been shifted into the microwave part of the (JDEM). JDEM is slated for launch as early as astronomers who first detected a gravity-defying energy spectrum in the 13 billion years since. 2013. We see the light today as what scientists call dark energy in 1998. At that time, two teams JDEM’s goal is to sharpen and double- of astronomers were measuring the retreat of a Teams Science WMAP Credit: COBE and the cosmic microwave background (CMB) check the distance measurements to Type Ia collection of very distant Type Ia supernovae. radiation. The detection of an effect in the CMB supernovae. This, in turn, should reveal critical A sky map of the temperature fluctuations in the Cosmic Microwave Background as measured by the Wilkinson These supernovae are created by the explosion called Integrated Sachs-Wolfe (ISW) confirms clues to how fast the universe has expanded at Microwave Anisotropy Probe. The dark blue regions are only a few millionths of a degree cooler than the red of a white dwarf. The teams from the Supernova regions. Astronomers analyzing these fluctuations have determined the percentages of matter and energy in the that dark energy had an additional influence on different points in cosmic history. Cosmology Project at Lawrence Berkeley universe. those photons. Type Ia’s are considered a standard of National Lab and the High-Z Supernova Search ISW was named after Rainer Kurt Sachs and comparison used to determine the distance to Cosmic researchers now have the sharpest work out the energy composition. They find nor- had intended to measure the rate at which Arthur Michael Wolfe, who first described it in other astronomical objects. By observing a large focus ever of the universe’s early structure. This mal matter comprises 4% of the universe, dark the universe’s expansion was slowing down. 1967. But its influence on the CMB was recently number of these “standard candle” supernovae better view comes in the form of super-sensi- matter is 23% of the universe, and the energy is Instead, they found that the distance between verified by an international collaboration of in galaxies far and near, researchers hope to find tive temperature data of the sky-filling cosmic 73%. Rather nicely, the energy needed falls right Earth and these supernovae was growing, and researchers: Stephen Boughn (Haverford out just how quickly those galaxies are flying microwave background (CMB) collected by in the range of the amount of gravity-repulsing at an increasingly faster rate. Starting about College) and Robert Crittenden (University of away from us. the Wilkinson Microwave Anisotropy Probe dark energy discovered by astronomers in 1998. five billion years ago, some unexplained “dark” Portsmouth), Charles Bennett’s (NASA) WMAP The three proposed concepts are the Supernova (WMAP). The CMB is the afterglow of the Big WMAP has also, for the first time, detected energy began to overwhelm the force of gravity team, and a collaboration of astronomers from Acceleration Probe (SNAP), the Advanced Dark Bang. the polarization of light in the CMB across the and push galaxies apart. the Sloan Digital Sky Survey and the Institut Energy Physics Telescope (ADEPT), and the WMAP has vastly improved on the fuzzier, entire sky. This is important because it helps The researchers chose to name it dark energy, d’Astrophysique de Paris. Dark Energy Space Telescope (Destiny). Each but groundbreaking first image of the CMB work out details of what happened during the not to be confused with dark matter, which is Their conclusions result from efforts to pull would look at the supernovae in a different way. unveiled in 1993 from NASA’s Cosmic Back- first split second after the Big Bang. That’s when another confounding problem in cosmology. together a treasure trove of data, on the large- SNAP would use a 1.8-meter optical/infrared ground Explorer satellite (COBE). the universe puffed up like a hyperactive lump As for what dark energy is, that’s anybody’s scale structures of the universe and on light telescope with a CCD (charge-coupled device) What WMAP has now confirmed are the of bread dough. It’s that moment of what as- guess right now. While there are at least a half from the newborn universe. The data included light detector like those in digital cameras. But acoustic “peaks” of the undulating Big Bang tronomers call inflation which allowed for tiny dozen theories, none seem very close to an observations from visible light, x-ray, radio and with a billion pixels, SNAP’s detector beats any shockwaves in the CMB. These were first ob- fluctuations in the original Big Bang to translate authoritative answer. microwave telescopes. handheld camera by a factor of a thousand. SNAP served in 1999 and 2000 with ground-based in- into huge, but subtle differences in temperature would spot about 2,000 Type Ia supernovae each struments, leading to the conclusion that the ge- seen in the CMB. And those differences, in turn, year over a wide range of distances – about 200 ometry of the universe is flat. What that means, are now thought to be the seeds of today’s gi- times more supernovae than are now detected among other things, is that on a large scale, par- gantic clusters of galaxies . each year. allel lines would stay parallel. Researchers are now comparing and combin- ADEPT would use a 1.1-meter near-infrared WMAP’s measurement of these acoustic ing the new WMAP data with a range of other telescope to locate 100 million galaxies and peaks gives the amount of normal matter and cosmic measurements – vast surveys of stars, 1,000 Type Ia’s. Its data would be compared with dark matter in the universe. Because WMAP has galaxy clustering, hydrogen gas clouds, super- that of the minute temperature differences in the nailed down the flatness of the universe, astron- novae, and others – to uncover a new unified un- cosmic microwave background. The mission omers know what the overall matter and energy derstanding of the universe’s past, present and would reveal how well the earliest (most distant) composition of the universe must be. Knowing future. galaxies match up with the earliest clumps of the matter composition, they have been able to matter, and how dark energy has altered the distribution since then. Destiny would have a 1.65-meter near- infrared telescope, designed to detect 3,000 Type Ia supernovae over two years. It would ‘First Light’ spend an additional year surveying, in detail, 1,000 square-degrees of sky. This would gather Wins Nobel Credit: NASA / WMAP Science Teams Teams Science WMAP / Credit: NASA new readings on changes in the large-scale Astrophysicists John Mather and George Smoot have been awarded the 2006 Nobel Prize WMAP data reveals that the universe’s contents include 4% atoms, the building blocks of stars and planets. Dark distribution of matter in the cosmos since the Big in Physics. It was presented for their 1992 dis- matter comprises 23% of the universe. This matter, different from atoms, does not emit or absorb light. It has only Bang. Both phases of Destiny’s mission would been detected indirectly by its gravity. 73% of the universe, is composed of “dark energy”, that acts as a sort of an improve on the sensitivity of similar ground- coveries about the cosmic microwave back- anti-gravity. This energy, distinct from dark matter, is responsible for the present-day acceleration of the universal based observations by a factor of about 10. ground (CMB), the light from the beginning of expansion. the universe as we see it today. According to the Nobel jury, “These mea- surements also marked the inception of cosmol- ogy as a precise science.” Using data from the space-based Cosmic Biggest Mystery: Background Explorer (COBE), a team led by Mather and Smoot teased out the details of What is Dark Energy? how the universe has cooled. They measured The further we look into the cosmos, the cal constant an annoying fudge factor, without the spectrum of light from this background and Credit: Johns Hopkins, Lawrence Berkeley Lab, NASA/DOE found that it matched predictions from the Big more puzzled we are.
Recommended publications
  • Dark Energy and Dark Matter As Inertial Effects Introduction
    Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved.
    [Show full text]
  • Dark Energy and Dark Matter
    Dark Energy and Dark Matter Jeevan Regmi Department of Physics, Prithvi Narayan Campus, Pokhara [email protected] Abstract: The new discoveries and evidences in the field of astrophysics have explored new area of discussion each day. It provides an inspiration for the search of new laws and symmetries in nature. One of the interesting issues of the decade is the accelerating universe. Though much is known about universe, still a lot of mysteries are present about it. The new concepts of dark energy and dark matter are being explained to answer the mysterious facts. However it unfolds the rays of hope for solving the various properties and dimensions of space. Keywords: dark energy, dark matter, accelerating universe, space-time curvature, cosmological constant, gravitational lensing. 1. INTRODUCTION observations. Precision measurements of the cosmic It was Albert Einstein first to realize that empty microwave background (CMB) have shown that the space is not 'nothing'. Space has amazing properties. total energy density of the universe is very near the Many of which are just beginning to be understood. critical density needed to make the universe flat The first property that Einstein discovered is that it is (i.e. the curvature of space-time, defined in General possible for more space to come into existence. And Relativity, goes to zero on large scales). Since energy his cosmological constant makes a prediction that is equivalent to mass (Special Relativity: E = mc2), empty space can possess its own energy. Theorists this is usually expressed in terms of a critical mass still don't have correct explanation for this but they density needed to make the universe flat.
    [Show full text]
  • Can an Axion Be the Dark Energy Particle?
    Kuwait53 J. Sci.Can 45 an(3) axion pp 53-56, be the 2018 dark energy particle? Can an axion be the dark energy particle? Elias C. Vagenas Theoretical Physics Group, Department of Physics Kuwait University, P.O. Box 5969, Safat 13060, Kuwait [email protected] Abstract Following a phenomenological analysis done by the late Martin Perl for the detection of the dark energy, we show that an axion of energy can be a viable candidate for the dark energy particle. In particular, we obtain the characteristic length and frequency of the axion as a quantum particle. Then, employing a relation that connects the energy density with the frequency of a particle, i.e., , we show that the energy density of axions, with the aforesaid value of mass, as obtained from our theoretical analysis is proportional to the dark energy density computed on observational data, i.e., . Keywords: Axion, axion-like particles, dark energy, dark energy particle 1. Introduction Therefore, though the energy density of the electric field, i.e., One of the most important and still unsolved problem in , can be detected and measured, the dark energy density, contemporary physics is related to the energy content of the i.e., , which is much larger has not been detected yet. universe. According to the recent results of the 2015 Planck Of course, one has to avoid to make an experiment for the mission (Ade et al., 2016), the universe roughly consists of detection and measurement of the dark energy near the 69.11% dark energy, 26.03% dark matter, and 4.86% baryonic surface of the Earth, or the Sun, or the planets, since the (ordinary) matter.
    [Show full text]
  • Dark Energy and CMB
    Dark Energy and CMB Conveners: S. Dodelson and K. Honscheid Topical Conveners: K. Abazajian, J. Carlstrom, D. Huterer, B. Jain, A. Kim, D. Kirkby, A. Lee, N. Padmanabhan, J. Rhodes, D. Weinberg Abstract The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group \Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv. arXiv:1309.5386v2 [astro-ph.CO] 24 Sep 2013 2 1 Cosmology and New Physics Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy. Cosmologists have historically turned to fundamental physics to understand the early Universe, successfully explaining phenomena as diverse as the formation of the light elements, the process of electron-positron annihilation, and the production of cosmic neutrinos.
    [Show full text]
  • Modified Newtonian Dynamics
    Faculty of Mathematics and Natural Sciences Bachelor Thesis University of Groningen Modified Newtonian Dynamics (MOND) and a Possible Microscopic Description Author: Supervisor: L.M. Mooiweer prof. dr. E. Pallante Abstract Nowadays, the mass discrepancy in the universe is often interpreted within the paradigm of Cold Dark Matter (CDM) while other possibilities are not excluded. The main idea of this thesis is to develop a better theoretical understanding of the hidden mass problem within the paradigm of Modified Newtonian Dynamics (MOND). Several phenomenological aspects of MOND will be discussed and we will consider a possible microscopic description based on quantum statistics on the holographic screen which can reproduce the MOND phenomenology. July 10, 2015 Contents 1 Introduction 3 1.1 The Problem of the Hidden Mass . .3 2 Modified Newtonian Dynamics6 2.1 The Acceleration Constant a0 .................................7 2.2 MOND Phenomenology . .8 2.2.1 The Tully-Fischer and Jackson-Faber relation . .9 2.2.2 The external field effect . 10 2.3 The Non-Relativistic Field Formulation . 11 2.3.1 Conservation of energy . 11 2.3.2 A quadratic Lagrangian formalism (AQUAL) . 12 2.4 The Relativistic Field Formulation . 13 2.5 MOND Difficulties . 13 3 A Possible Microscopic Description of MOND 16 3.1 The Holographic Principle . 16 3.2 Emergent Gravity as an Entropic Force . 16 3.2.1 The connection between the bulk and the surface . 18 3.3 Quantum Statistical Description on the Holographic Screen . 19 3.3.1 Two dimensional quantum gases . 19 3.3.2 The connection with the deep MOND limit .
    [Show full text]
  • Dark Energy – Much Ado About Nothing
    Dark Energy – Much Ado About Nothing If you are reading this, then very possibly you have heard that Dark Energy makes up roughly three-fourths of the Universe, and you are curious about that. You may have seen the Official NASA Pie Chart that shows what the Universe is made of (at right). You may have heard Tyson deGrasse expounding about it on PBS. And there is no question that the term “Dark Energy” does refer to something. However, from the layman’s point of view, there are two small problems with understanding Dark Energy when you call it Dark Energy: (1) It’s not dark. (2) It’s not energy. Dark Energy is the winner of my personal award for the most misleading physics jargon of the 21st Century. This monument to misdirection was generated because it sounded cool, not because it is even close to being accurate. The jargon term Dark Matter already existed – and does, by the way, refer to something real – and rather than giving a descriptive name to their theoretical musings, the theoreticians decided, why not use a cute parallel name to Dark Matter? Why not create the buzz term Dark Energy? To which I say, like wow, man. That name is so – hip. Unfortunately, it is also nearly meaningless. Thus, the first thing we must do is get it straight: Dark Energy does not exist. Calling it an energy implies that the Dark Energy is, well, an energy – and it isn’t. It cannot be turned into heat, or electricity, or anything else that you and I would normally identify as energy.
    [Show full text]
  • Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation
    DES-2020-0554 FERMILAB-PUB-21-240-AE Dark Energy Survey Year 3 Results: Multi-Probe Modeling Strategy and Validation E. Krause,1, ∗ X. Fang,1 S. Pandey,2 L. F. Secco,2, 3 O. Alves,4, 5, 6 H. Huang,7 J. Blazek,8, 9 J. Prat,10, 3 J. Zuntz,11 T. F. Eifler,1 N. MacCrann,12 J. DeRose,13 M. Crocce,14, 15 A. Porredon,16, 17 B. Jain,2 M. A. Troxel,18 S. Dodelson,19, 20 D. Huterer,4 A. R. Liddle,11, 21, 22 C. D. Leonard,23 A. Amon,24 A. Chen,4 J. Elvin-Poole,16, 17 A. Fert´e,25 J. Muir,24 Y. Park,26 S. Samuroff,19 A. Brandao-Souza,27, 6 N. Weaverdyck,4 G. Zacharegkas,3 R. Rosenfeld,28, 6 A. Campos,19 P. Chintalapati,29 A. Choi,16 E. Di Valentino,30 C. Doux,2 K. Herner,29 P. Lemos,31, 32 J. Mena-Fern´andez,33 Y. Omori,10, 3, 24 M. Paterno,29 M. Rodriguez-Monroy,33 P. Rogozenski,7 R. P. Rollins,30 A. Troja,28, 6 I. Tutusaus,14, 15 R. H. Wechsler,34, 24, 35 T. M. C. Abbott,36 M. Aguena,6 S. Allam,29 F. Andrade-Oliveira,5, 6 J. Annis,29 D. Bacon,37 E. Baxter,38 K. Bechtol,39 G. M. Bernstein,2 D. Brooks,31 E. Buckley-Geer,10, 29 D. L. Burke,24, 35 A. Carnero Rosell,40, 6, 41 M. Carrasco Kind,42, 43 J. Carretero,44 F. J. Castander,14, 15 R.
    [Show full text]
  • TECHNICAL ASPECTS of ILLUSTRIS- a COSMOLOGICAL SIMULATION Dr Sheshappa SN1, Megha S Kencha Reddy2 , N Chandana3
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072 TECHNICAL ASPECTS OF ILLUSTRIS- A COSMOLOGICAL SIMULATION Dr Sheshappa SN1, Megha S Kencha Reddy2 , N Chandana3, Ranjitha N4, Sushma Fouzdar5 1Faculty, Dept. of ISE, Sir MVIT, Karnataka, India, [email protected], 2VIII semester, Dept. of ISE, Sir MVIT ---------------------------------------------------------------------------***--------------------------------------------------------------------------- Abstract - THE BIG QUESTION - Where did we come galaxy formation. Recent simulations follow the from and where are we going?Humans have been trying formation of individual galaxies and galaxy populations to figure out the origin of the known universe since the from well-defined initial conditions and yield realistic beginning of time and Since the early part of the 1900s, galaxy properties. At the core of these simulations are the Big Bang theory is the most accepted explanation and detailed galaxy formation models. Of the many aspects has dominated the discussion of the origin and fate of the these models are capable of, they describe the cooling of universe. And the future of the universe can only be gas, the formation of stars, and the energy and hypothesized based on our knowledge but the question momentum injection caused by supermassive black does not seem to get irrelevant anytime in the near holes and massive stars. Nowadays, simulations also future. With the advancement technology and the model the impact of radiation fields, relativistic particles available research, data and techniques like data mining and magnetic fields, leading to an increasingly complex and machine learning the problems can be visualised description of the galactic ecosystem and the detailed through accurate digital representations and simulations evolution of galaxies in the cosmological context.
    [Show full text]
  • Bulk Viscosity As an Alternative to Dark Energy
    Prepared for submission to JCAP CERN-PH-TH/2011-156, LAPTH-023/11 Dark goo: Bulk viscosity as an alternative to dark energy Jean-Sebastien Gagnon,a Julien Lesgourguesb aTechnische Universit¨at Darmstadt, Schlossgartenstrasse 2, 64289, Darmstadt, Germany bEcole´ Polytechnique F´ed´erale de Lausanne, CH-1015, Lausanne, Switzerland; CERN, Theory Division, CH-1211 Geneva 23, Switzerland; LAPTh (CNRS - Universit´ede Savoie), BP 110, F-74941 Annecy-le-Vieux Cedex, France. E-mail: [email protected], [email protected] Abstract. We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an “effective” pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles
    [Show full text]
  • The Next Generation of Hydrodynamical Simulations of Galaxy Formation
    HLRS Golden Spike Award 2016 The Next Generation of Hydrodynamical Simulations of Galaxy Formation Scientific background galaxies in clusters and the characteristics of Galaxies are comprised of up to several hundred hydrogen on large scales, and at the same time billion stars and display a variety of shapes and matched the metal and hydrogen content of sizes. Their formation involves a complicated galaxies on small scales. Indeed, the virtual uni- blend of astrophysics, including gravitational, verse created by Illustris resembles the real one hydrodynamical and radiative processes, as well so closely that it can be adopted as a powerful as dynamics in the enigmatic „dark sector“ of laboratory to further explore and characterize the Universe, which is composed of dark mat- galaxy formation physics. This is underscored ter and dark energy. Dark matter is thought to by the nearly 100 publications that have been consist of a yet unidentified elementary parti- written using the simulation thus far. cle, making up about 85% of all matter, whereas dark energy opposes gravity and has induced However, the Illustris simulation also showed an accelerated expansion of the Universe in the some tensions between its predictions and recent past. Because the governing equations observations of the real Universe, calling for both, are too complicated to be solved analytically, improvements in the physical model as well as numerical simulations have become a primary in the numerical accuracy and size of the simu- tool in theoretical astrophysics to study cosmic lations used to represent the cosmos. For exam- structure formation. Such calculations connect ple, one important physical ingredient that was the comparatively simple initial state left behind missing are magnetic fields.
    [Show full text]
  • An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory
    universe Article An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory Konstantin G. Zloshchastiev Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa; [email protected] Received: 29 August 2020; Accepted: 10 October 2020; Published: 15 October 2020 Abstract: We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, to such an extent that one can distinguish sub-Newtonian, Newtonian, galactic, extragalactic and cosmological terms. The last of these dominates at the largest length scale of the model, where superfluid vacuum induces an asymptotically Friedmann–Lemaître–Robertson–Walker-type spacetime, which provides an explanation for the accelerating expansion of the Universe. The model describes different types of expansion mechanisms, which could explain the discrepancy between measurements of the Hubble constant using different methods. On a galactic scale, our model explains the non-Keplerian behaviour of galactic rotation curves, and also why their profiles can vary depending on the galaxy. It also makes a number of predictions about the behaviour of gravity at larger galactic and extragalactic scales. We demonstrate how the behaviour of rotation curves varies with distance from a gravitating center, growing from an inner galactic scale towards a metagalactic scale: A squared orbital velocity’s profile crosses over from Keplerian to flat, and then to non-flat. The asymptotic non-flat regime is thus expected to be seen in the outer regions of large spiral galaxies.
    [Show full text]
  • Supernovae, Dark Energy, and the Accelerating Universe: the Status of the Cosmological Parameters
    Supernovae, Dark Energy, and the Accelerating Universe: The Status of the Cosmological Parameters Saul Perlmutter Supernova Cosmology Project Lawrence Berkeley National Laboratory Berkeley, CA 94720 1 Introduction I was asked to present the status of the cosmological parameters, and in partic- ular the status of the recent results concerning the accelerating universe—and the possible cosmological constant or dark energy that is responsible for the universe’s acceleration. This result comes most directly from the recent type Ia supernova work, so although I will mention a few of the approaches to the cos- mological parameters, I will emphasize the work with the type Ia supernovae. I will try to give you a sense of exactly how we reached the current conclusions and what the current level of confidence is in that conclusion. Because this presentation will be emphasizing the supernova work, I would like to highlight the strong team of scientists in our Supernova Cosmology Project [1, 2]; you will probably recognize some of the particle physics heritage of this particular team. I also would like to list the names of the members of the other supernova team, led by Brian Schmidt of the Australian National University, that has been working in this field [3]. These two groups together comprise a good fraction of the entire community of scientists working on supernovae. 2 Supernovae as a simple, direct cosmological measurement tool The particular advantage of the type Ia supernova approach to measuring the cosmological parameters is the fact that you can explain essentially the entire method in one graph. The basic idea is that you want to find an object of known brightness, a “standard candle," and then plot it on the astronomer’s Hubble diagram (Fig.
    [Show full text]