Page 1 TROPICS 3 (3/4): 295-308 Issued March, 1994 List of Plant

Total Page:16

File Type:pdf, Size:1020Kb

Page 1 TROPICS 3 (3/4): 295-308 Issued March, 1994 List of Plant TROPICS 3 Ql$:295-308 Issued March, 1994 Llst of Plant Specles ldenttfted ln Kahuzl-Blega Natlonal Park, Za|re Takakazu YUMOTO Faculty of Science, Kobe University, Nada, Kobe 651,Japan Juichi YAMAGIWA Primate Research Institute, Kyoto Univenity, Inuyama, Aichi 484, Japan Ndunda MWANZA Cenue de Recherches en Sciences Naturelles, Lwiro, D.S. Bukavu, Zire Tamaki MARIJHASHI Department of Human and Cultural Sciences, Musashi Univenity, Nerima 176, Japan ABSTRACT The identified plants, which were collected during the study of eastem lowland gorillas (Gorilla gorilla grauerD and chimpanzrns (Pan troglodytes schweinfirthii) in Kahuzi-Biega National Puk,Zahe, from 1987 to 1991, are listed. Kahuzi-Biega National Park includes lowland forest and montane forest, both of which are inhibited by gorillas and chimpanzees. This paper liss 329 species belonging o 83 families that occurred in a two study ueas. 118 species were collected in the Kahuzi region (at an altitude of 1,800 ta 2,6W m ) and 220 species in the ltebero region (at an altitude of 600 to 1,300 m ). Only 9 species were collected in both regions. The foodplans of gorillas and chimpanzees (2fr) species belonging to 69 families), and trees with diameters of 10 cm at breast height or more were collected intensively. For each plant species, the life form, vernacular name ftirega or mashi) and whether apes and/or elephants utilized it as foods, are given. This list is highly biased towards food plants of primates, but provides a preliminry inventory of plants to compare with other study sites of great apes. Key lVords: chimpanzees / eastem lowland gorillas / elephants / food plants / Kahuzi-Biega Park / Zaire The evolution and adaptive radiation of primates have occurred under the influence of world- wide climate changes during the Tertiary and Quartenary periods. Among non-human primates, habitats of great apes (gorillas, chimpanzees, bonobos and orang-utans) have been confined to the Eopical rain forests until recently, except for a few chimpanzee populations, which have extended their range into savannatr woodlands. What kind of socio-ecological factors have influenced the evolutionary divergence of apes and produced proto-hominids from their common ancestors? In order tro answer this question, it is necessary to clarify the interspecific relationships among apes who are living sympatrically in various habitats. Our field work aimed to collect data on the correlation between apes' unique life styles and the structure of their habitat" and on the mechanisms of the coexistence and competition between prima0e species. Zai're is situated in cenfial Africa and has an arca of 2,345,000 km2. Approximately 8O Vo of the county is covered by tropical forest. The forest of the eastem Zaire, including Kahuzi- Biega National Park, is a part of the escarpment slope of the African Rift Valley. This forest is one of the hot points of primate evolution in the African continent during the past a few million years when wet and dry environments altemated on the African continent. It has recently been shown that in the most recent glacial age, the vegetation of the Congo Basin was almost all savannah woodland with rain forest only on the escarpment slopes or high mountains in eastern Zaire (Hamilton, 1976, 1981; Samthein, 1978). Under such big changes 296 T. YUIT,TOTO, J. YnunGIwA, N. MwaNZA & T. ManuHAsHI ZAIRE Fig. 1. Map of study area. O stoay Areas 0 50km of the forests rclated to world-wide climate change, many primates might have evolved in this region. We thought that the Kahuzi-Biega National Park would be the best study site for our research project, since the Park covers the vegetation continuity from lowland to montane foresl During the study, we realized that the identification of plant species, which occur in the habitats of primates as well as those that provide their foods, is essential. Most organized taxonomic research inZure has, in recent decades, gone into Flore d'Afrique Centrale (Flore du Congo Belge until 1960). 3,539 species of vascular plants are covered in Flore d'Afrique Centale !o 1970, and these are thought to represent about 35 Vo of the total 10,000 - 11,000 species presumed by Frodin (1984). From the specimens obained in our study, a new species, Keetia ornata Bridson et Robbrecht (Rubiaceae), was described (Bridson & Robbrecht, 1993). A lot of new species are, no doubt, still waiting for the description in this area In this paper, we provide the list of the fully identified plant species collected during our study from 1987 to 1991. The specimens were identified by T. Yumoto !o match with the identified specimen including the types in the herbarium of Jardin Botanique National de Belgique, Brussels; Museum National d'Histoire Naturelle, Paris; and Kew Garden, London. All the voucher specimen are kept in the herbarium of Faculty of Science, Kobe University, Japan. STUDY SITES AND METHODS The Kahuzi-Biega National Park, situated in the eastem part of Republic of Taire (the head- quafier, 2o5" S, 28"45 "E: Fig. 1), includes tropical and montane forests, in which chimpanzees and gorillas live sympatrically. A survey of their ecology and a population census has been progress since 1987 (Yamagiwa et. al, 1992a, 1992b,1993a,1993b, 1994; Mwanza et. al, Plant list in Kahuzi-Biega 1992). The National Park was first established as a Forest Reserve in 1960 and became a National Park in 1970 for the protection of eastern lowland gorillas (Mankoto, 1988). The original part of the Park which is situated in the highland forest zone covers an area of 600 km2 between the altitudes of 1,800 to 3,308 m. This was enlarged to cover lowland forest at altitudes of 600 to 1,800 m in 1975, and today cover a total area of 6, 000 km2. The survey was conducted in the two areas; the Kahuzi region in the original part of the Park, and the Itebero region in the extended part of the Park. The vegetation of the Kahuzi region is composed of bamboo (Arundinaria alpina) forest (.37Vo), primary montane forest (28 7o), secondary montane forest (20 Vo), Cyperus swamps (7 Vo) md other vegetation (8Vo), as described by Goodall (1977) and Murnyak (1981). The topography of this area is mountainous, with well-forested slopes. Several large, flat area are covered by Cyperus swamps. Bamboo forest consisted mainly of Arundinaria alpina is found at altitudes of 2,350 to 2,6W m, and mixed bamboo/ primary or secondary montane forest (mixed bamboo forest) are found at altitudes of 2,2N to 2,350 m. Subalpine vegetation Erica arborea (Ericaceae) appears at altitudes of 2,60O m. Giant senecio (Senecio sp.) and lobelia (Lobelia sp.) are found as dominant species on the top of Mt. Kahuzi (3,308 m). Primary montane forest covers the eastern part ofthe original Park area, and secondary montane forest covers the westem part. Dominant species of trees arc: Podocarpus usambarensis (Podo- carpaceae), Symphonia globulifera (Guttiferae) and Carapa grandiflora (Meliaceae) in primary forest; Hagenia abyssinica (Rosaceae), Myrianthus holstii (Moraceae) and Vernonia spp. (Compositae) in secondary forest; Hypericum revolutum (Guttiferae) and Rapanea rnelanophloeos (Myrsinaceae) in the Cyperus (Cyperus latifulius) swamps; Symphonia globulifera (Guttiferae) and Syzigiurn parvifulium (Myrtaceae) are also found in and around the swamps. Herbs, vines and ferns (Urera hypselodendron, Basella alba, Lactuca sp. Pteridium aquilinum, etc.) constitule the dense terresnial vegetation of secondary forest. The Itebero region is situated in the extended part of the Park at an dtitude of 600 to 1,300 m. It is covered with nopical forest, which includes primary forest, secondary forest, abandoned field, and ancient secondary forest. Primary forests are characterizedby Caesal- piniaceae: Michelsonia microphylla, Gilbertiodendron dewevrei, Julbernardia seretii, Dialium polyanthum and Cynornetra alexandrl; Mimosaceae: Piptadeniastrum africanum; and Myristicaceae: Staudtia gabonensis and Pycnanthus angolensis. The Zingiberaceae species include Aframomum spp. and Costus afer, with the Marantaceae species form the generally scarce terrestrial vegetation, but along riverside and in ravines, the density of herbaceous plan6 is quite high. The area was inhabited by local people, the kirega, and used for cultivation and hunting prior to 1985. The secondary forest and abandoned fields have been invaded by Musanga cecropioides (Moraceae) and Macaranga spinosa (Euphorbiaceae) and herbaceous plants are dense. Cassava and oil palm (Elaeis guineensis) are still found in abandoned fields. Ancient secondary forests are the result of deforestation by a mining company in the colonial era and subsequent successional regeneration. Ficus sur, Uapaca guineensis andCeltis brieyi are commonly found in this forest. Halopegia azurea is one of the dominant herbaceous plants. Uapaca corbisierii is occasionally found in swamps. We conducted the tree census in the Itebero region in 1989. We measured tree diameters (above 10 cm in DBH) in a belt transect 10 mX8,000 m along the contour line at 650 m above sea level. 6,922 individuals belonging to ca. 150 species were recorded. The most abundant 10 species made up 61.2 Vo of the total basal area, and 6 legume species (5 Caesal- 298 T. Yuuoro, J. YnnaecrwA, N. MweNzA & T. MenuHASHr Table 1. List of plants collected in the Kahuzi region Plant species Life Local name Part-eaten form by apes PTERIDOPHYTA Dennstaedtiaceae Pteridium aquilinum (L.) Kuhn F Lusilisilu (mashi) C (P) GYMNOSPERMAE Podocarpaceae P odo c arp us usambarensis Pilger T Umutu (mashi) ANGIOSPERMAE DICOTYLEDONEAE Acanthaceae Acanthus pubes c ens Engl. S Lurodu (mashi) G (P) Annonaceae Artabotrys palustris Louis ex Boutique L Mao / Munanga (mashi) G (L) Monnnthotaxis orophila (Boutique) Verdc. L Munanga (mashi) C (t ) Apocynaceiae Baissea axillaris (Benth.) Hua. L Muberebere (mashi) Tabernaemontana pachysiphon Stapf S Buroji (mashi) Tabernaemontana stapfiana Britten S Muberebere (mashi) Araliaceae Polyscia fulva (Hiern) Harms T Ndongi (mashi) G (P) Sc hffiera goetzenii Harms S Chifunanga (mashi) G (8, L) Schefflera myriantfta (Bak.) Drake S Chifirnanga (mashi) G (B, L) Asclepiadaceae Periploca linearifolia Dill.
Recommended publications
  • Nutritional Strategy and Social Environment in Redtail Monkeys (Cercopithecus Ascanius)
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2020 Nutritional Strategy and Social Environment in Redtail Monkeys (Cercopithecus ascanius) Margaret Bryer The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3554 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] NUTRITIONAL STRATEGY AND SOCIAL ENVIRONMENT IN REDTAIL MONKEYS (CERCOPITHECUS ASCANIUS) by MARGARET A. H. BRYER A dissertation submitted to the Graduate Faculty in Anthropology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2020 i © 2020 MARGARET A. H. BRYER All Rights Reserved ii Nutritional strategy and social environment in redtail monkeys (Cercopithecus ascanius) by Margaret A. H. Bryer This manuscript has been read and accepted for the Graduate Faculty in Anthropology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. December 6, 2019 Jessica M. Rothman Chair of Examining Committee December 6, 2019 Jeff Maskovsky Executive Officer Supervisory Committee: Larissa Swedell Andrea L. Baden Marina Cords David Raubenheimer THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Nutritional strategy and social environment in redtail monkeys (Cercopithecus ascanius) by Margaret A. H. Bryer Advisor: Jessica M. Rothman An animal’s nutritional strategy involves the complex interplay between its dynamic physiology and its environment, an environment that includes a landscape of foods that vary in nutritional composition as well as a social environment of other feeding individuals.
    [Show full text]
  • Plant Collections from Ethiopia Desalegn Desissa & Pierre Binggeli
    Miscellaneous Notes & Reports in Natural History, No 001 Ecology, Conservation and Resources Management 2003 Plant collections from Ethiopia Desalegn Desissa & Pierre Binggeli List of plants collected by Desalegn Desissa and Pierre Binggeli as part of the biodiversity assessment of church and monastery vegetation in Ethiopia in 2001-2002. The information presented is a slightly edited version of what appears on the herbarium labels (an asci-delimited version of the information is available from [email protected]). Sheets are held at the Addis Ababa and Geneva herberia. Abutilon longicuspe Hochst. ex A. Rich Malvaceae Acacia etbaica Schweinf. Fabaceae Desalgen Desissa & Pierre Binggeli DD416 Desalegn Desissa & Pierre Binggeli DD432 Date: 02-01-2002 Date: 25-01-2002 Location: Ethiopia, Shewa, Zena Markos Location: Ethiopia, Tigray, Mekele Map: 0939A1 Grid reference: EA091905 Map: 1339C2 Grid reference: Lat. 09º52’ N Long. 39º04’ E Alt. 2560 m Lat. 13º29' N Long. 39º29' E Alt. 2150 m Site: Debir and Dey Promontary is situated 8 km to the West of Site: Debre Genet Medihane Alem is situated at the edge of Mekele Inewari Town. The Zena Markos Monastery is located just below Town at the base of a small escarpment. The site is dissected by a the ridge and overlooks the Derek Wenz Canyon River by 1200 m. stream that was dry at the time of the visit. For site details go to: The woodland is right below the cliff on a scree slope. Growing on a http://members.lycos.co.uk/ethiopianplants/sacredgrove/woodland.html large rock. For site details go to: Vegetation: Secondary scrubby vegetation dominated by Hibiscus, http://members.lycos.co.uk/ethiopianplants/sacredgrove/woodland.html Opuntia, Justicia, Rumex, Euphorbia.
    [Show full text]
  • Volatiles of Black Pepper Fruits (Piper Nigrum L.)
    molecules Article Volatiles of Black Pepper Fruits (Piper nigrum L.) Noura S. Dosoky 1 , Prabodh Satyal 1, Luccas M. Barata 2 , Joyce Kelly R. da Silva 2 and William N. Setzer 1,3,* 1 Aromatic Plant Research Center, Suite 100, Lehi, UT 84043, USA; [email protected] (N.S.D.); [email protected] (P.S.) 2 Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; [email protected] (L.M.B.); [email protected] (J.K.R.d.S.) 3 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA * Correspondence: [email protected]; Tel.: +1-256-824-6519 Academic Editor: Francesca Mancianti Received: 4 October 2019; Accepted: 5 November 2019; Published: 21 November 2019 Abstract: Black pepper (Piper nigrum) is historically one of the most important spices and herbal medicines, and is now cultivated in tropical regions worldwide. The essential oil of black pepper fruits has shown a myriad of biological activities and is a commercially important commodity. In this work, five black pepper essential oils from eastern coastal region of Madagascar and six black pepper essential oils from the Amazon region of Brazil were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The major components of the essential oils were α-pinene, sabinene, β-pinene, δ-3-carene, limonene, and β-caryophyllene. A comparison of the Madagascar and Brazilian essential oils with black pepper essential oils from various geographical regions reported in the literature was carried out. A hierarchical cluster analysis using the data obtained in this study and those reported in the literature revealed four clearly defined clusters based on the relative concentrations of the major components.
    [Show full text]
  • Impacts of Global Climate Change on the Phenology of African Tropical Ecosystems
    IMPACTS OF GLOBAL CLIMATE CHANGE ON THE PHENOLOGY OF AFRICAN TROPICAL ECOSYSTEMS GABRIELA S. ADAMESCU MSc by Research UNIVERSITY OF YORK Biology October 2016 1 Abstract The climate has been changing at an unprecedented rate, affecting natural systems around the globe. Its impact has been mostly reflected through changes in species’ phenology, which has received extensive attention in the current global-change research, mainly in temperate regions. However, little is known about phenology in African tropical forests. Africa is known to be vulnerable to climate change and filling the gaps is an urgent matter. In this study we assess plant phenology at the individual, site and continental level. We first compare flowering and fruiting events of species shared between multiple sites, accounting for three quantitative indicators, such as frequency, fidelity for conserving a certain frequency and seasonal phase. We complement this analysis by assessing interannual trends of flowering and fruiting frequency and fidelity to their dominant frequency at 11 sites. We complete the bigger picture by analysing flowering and fruiting frequency of African tropical trees at the site and community level. Next, we correlate three climatic indices (ENSO, IOD and NAO) with flowering and fruiting events at the canopy level, at 16 sites. Our results suggest that 30 % of the studied species show plasticity or adaptability to different environments and will most likely be resilient to moderate future climate change. At both site and continental level, we found that annual flowering cycles are dominant, indicating strong seasonality in the case of more than 50% of African tropical species under investigation.
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Tree Species Selection for Buffer Zone Agroforestry: the Case of Budongo Forest in Uganda
    52 International Forestry Review Vol.10(1), 2008 Tree species selection for buffer zone agroforestry: the case of Budongo Forest in Uganda W. K. KASOLO and A. B. TEMU Nyabyeya Forest College, Private Bag Masindi Uganda and World, Agroforestry Centre (ICRAF) P.O Box 30677 Nairobi, Kenya Emails: [email protected] and [email protected] SUMMARY This paper highlights the importance of careful selection of tree species for use in buffer zone agroforestry, as a conservation strategy for threatened forest resources. A case study from the Budongo Forest buffer zone in Uganda is used to elaborate the process, where local communities applied a pair-wise ranking system to establish priority tree species and technologies for agroforestry. Maesopsis eminii, Vernonia amygdalina and Lasiodiscus mildbraedii were the top three species selected for integration into the buffer zone farms. Their selection refl ects the many good attributes experienced by farmers in the area, such as provision of timber, construction poles, and fi rewood. The most popular technologies were woodlots, boundary planting and shade trees (multistrata tree planting), in that order of priority. Areas for further research include an evaluation of the economic aspects of the species and technologies, on farm propagation and management protocols and markets for the tree products. Keywords: Buffer zone, Budongo forest, local communities, Agroforestry technologies, species selection Sélection d’arbres pour l’agroforesterie des zones-tampon: le cas de la forêt Budongo en Ouganda W. K. KASOLO et A. B. TEMU Cet article souligne l’importance d’une sélection précise d’espèces d’arbres en vue de leur utilisation dans l’agroforesterie des zones- tampons.
    [Show full text]
  • Trees and Plants for Bees and Beekeepers in the Upper Mara Basin
    Trees and plants for bees and beekeepers in the Upper Mara Basin Guide to useful melliferous trees and crops for beekeepers December 2017 Contents Who is this guide for? .......................................................................................................................................................................................................................................................................... 1 Introduction to the MaMaSe Project .................................................................................................................................................................................................................................................. 1 Market driven forest conservation initiatives in the Upper Mara basin ............................................................................................................................................................................................. 2 Water, apiculture, forests, trees and livelihoods ................................................................................................................................................................................................................................ 3 Types of bees ....................................................................................................................................................................................................................................................................................... 4 How this
    [Show full text]
  • “Pimienta” De Los Géneros Piper, Pimenta, Lindera, Ruta, Schin
    NOTAS BREVES Botanica Complutensis ISSN-e: 1988-2874 https://dx.doi.org/10.5209/bocm.73020 Composición de aceites esenciales de diferentes especies de “pimienta” de los géneros Piper, Pimenta, Lindera, Ruta, Schinus y Zanthoxylum Héctor Alonso-Miguel1, María José Pérez-Alonso1, Ana Cristina Soria2, Manuel Blanco Martínez1 Resumen. Se ha extraído mediante hidrodestilación el aceite esencial de diez especies usadas como pimienta: Piper borbonense, P. capense, P. retrofractum, P. nigrum, Zanthoxylum bungeanum y Z. armatum, Lindera neesiana, Ruta chalepensis, Schinus terebenthifolia, Pimenta dioica. Los análisis realizados mediante cromatografía de gases acoplada a espectrometría de masas encontraron que todas presentan β-felandreno y derivados de cariofileno y felandreno, siendo estos compuestos de propiedades pungentes los característicos de la especia pimienta. El rendimiento de esencia varía desde 0,43% para R. chalepensis hasta 7,61% para P. borbonense. Los compuestos mayoritarios fueron: P. borbonense (α-felandreno, 12,43%), P. capense (δ-cadineno, 25,59%,), P. retrofractum (γ-cadineno, 31,63%), P. nigrum ((E)-β-cariofileno, 22,88%), P. dioica (eugenol, 48,93%), L. neesiana (miristicina, 14,13%), R. chalepensis (2-undecanona, 64,93%), S. therebenthifolia (δ-3-careno, 29,21%), Z. armatum (linalool, 53,30%); Z. bungeanum (linalool, 64,09%). Todo esto muestra las diferencias en el metabolismo secundario de las pimientas y por tanto sus posibles aplicaciones en diferentes industrias. Palabras clave: Pimienta; especia; aceites esenciales; Piper; Ruta; Pimenta; Lindera; Schinus; Zanthoxylum [en] Composition of essential oils of different species of “pepper” of the Piper, Pimenta, Lindera, Ruta, Schinus and Zanthoxylum genera Abstract.The essential oil of ten species used as pepper has been extracted by hydrodistillation: Piper borbonense, P.
    [Show full text]
  • Etude Florisitique D'une Végétation Naturelle En Anthropise: Cas De La
    UNIVERSITE DE KISANGANI CENTRE UNIVERSITAIRE EXTENSION DE BUKAVU C.U.B B.P. 570 BUKAVU FACULTE DES SCIENCES ETUDE FLORISTIQUE D’UNE VEGETATION NATURELLE EN MILIEU ANTHROPISE : CAS DE LA FORMATION ARBUSTIVE XEROPHILE DE CIBINDA, AU NORD DE BUKAVU Par Chantal KABOYI Nzabandora Mémoire présenté et défendu en vue de L’obtention du grade de Licence en Sciences Option : Biologie Orientation : Phytosociologie et Taxonomie végétale Directeur : Prof. Dr Jean-Baptiste Dhetchuvi Matchu-Mandje Année académique 2003-2004 II DEDICACE A nos très chers parents, Joseph NZABANDORA et Florence KOFIMOJA, pour tant d’amour et de sacrifice consentis dans notre parcours terrestre et dont l’aboutissement de nos études universitaires demeure un des témoignages les plus éloquents que nous n’ayons jamais eu dans la vie ; A notre charmante sœur jumelle Julienne BASEKE avec qui, de par notre existence, nous avons été faites pour partager une vie inséparable et chaleureuse ; A nos petits frères et sœurs, pour tant d’amour et de respect qu’ils n’on cessé de témoigner à notre égard, que ce travail soit pour vous un exemple à suivre ; A notre futur époux et nos futurs enfants pour l’amour, l’attente et la compréhension qui nous caractériseront toujours. III AVANT-PROPOS Au terme de notre parcours universitaire, il nous est un agréable devoir de formuler nos vifs remerciements à tous ceux qui, de près ou de loin, ont contribué à notre formation tant morale qu'intellectuelle. Nos sincères remerciements s'adressent, tout d'abord, aux autorités académiques, administratives ainsi qu'aux professeurs, chefs de travaux et assistants du Centre Universitaire Extension de Bukavu (CUB), pour toutes les théories apprises tout au long de notre séjour en son sein.
    [Show full text]
  • Yakoma, Nord-Ubangi, République Démocratique
    International Journal of Applied Research 2021; 7(1): 36-43 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Etudes ethnobotanique des plantes utilisées en Impact Factor: 8.4 IJAR 2021; 7(1): 36-43 médecine traditionnelle à Gini (Yakoma, Nord- www.allresearchjournal.com Received: 15-11-2020 Ubangi, République Démocratique du Congo) Accepted: 24-12-2020 Samy Ngunde te Ngunde a) Institut Supérieur Pédagogique Samy Ngunde te Ngunde, Clément Inkoto Liyongo, Roger Kowozogono de Yakoma, Yakoma, République Koto, Tresor Zua Gozo, Blanchard Mayundo Kwezi and Jeff Iteku Démocratique du Congo, Africa b) Department de Biology, Faculté Bekomo des Sciences, University de Kinshasa, Kinshasa, République Démocratique du Congo, Africa Abstract Le but de cette étude est de contribuer à une meilleure connaissance des plantes médicinales utilisées Clément Inkoto Liyongo dans le traitement des maladies courantes par le peuple Ngbandi du groupement de GINI dans le Nord- Department de Biology, Faculté Ubangi. Sur base de consentement libre des enquêtés, une enquête ethnobotanique a été réalisée à l’aide des Sciences, University de Kinshasa, Kinshasa, République d’un questionnaire auprès des guérisseurs du peuple Ngbandi. Les résultats obtenus dans la présente Démocratique du Congo, Africa étude ont permis de répertorier cinquante-huit espèces des plantes médicinales appartenant à trente-six familles botaniques et réparties en cinquante-trois genres. La macération est le mode de préparation le Roger Kowozogono Koto plus utilisé et l’administration des recettes se fait beaucoup plus par voie orale. Dans l’ensemble des Institut Supérieur Pédagogique de quarante-six maladies soignées, la gastrite est la plus citée suivie de la carie dentaire.
    [Show full text]
  • Forest Tree Persistence, Elephants, and Stem Scars1
    BIOTROPICA 36(4): 505±521 2004 Forest Tree Persistence, Elephants, and Stem Scars1 Douglas Sheil and Agus Salim Center for International Forestry Research (CIFOR), P.O. Box 6596 JKPWB, Jakarta 10065, Indonesia ABSTRACT Sixteen percent of tree stems 10 cm diameter or greater recorded in seven 1 ha plots in Rabongo Forest, Uganda had stem damage attributable to elephants (Loxodonta africana). We propose four strategies that may help tree species persist under these conditions: repellence, resistance, tolerance and avoidance. We sought and found evidence for each strategy. Large, shade-tolerant Cynometra alexandri dominated basal area (often .50%) and showed severe scarring. Nearly 80 percent of stems were small pioneer species. Scarring frequency and intensity increased with stem size. Stem-size distributions declined steeply, implying a high mortality to growth rate ratio. Tree species with spiny stems or with known toxic bark defenses were unscarred. Epiphytic ®gs escaped damage while at small sizes. Mid-successional tree species were scarce and appeared sensitive to elephants. Savanna species were seldom scarred. Taking stem size- effects into account by using a per-stem logistic modeling approach, scarring became more probable with slower growth and with increasing species abundance, and also varied with location. Pioneer and shade-bearer guilds showed a de®cit of intermediate-sized stems. Evidence that selective elephant damage is responsible for monodominant C. alexandri forests remains equivocal; however, elephants do in¯uence tree diversity, forest structure, and the wider landscape. Key words: African semi-deciduous rain forest; bark damage; Cynometra alexandri; herbivory; Loxodonta africana; monodominant; species richness; succession; tolerance; Uganda. TREE DAMAGE CAUSED BY ELEPHANTS (LOXODONTA AF- size, is long-lived (Sheil et al.
    [Show full text]
  • Traditional Plants Used for Medicinal Purposes by Local Communities Around the Northern Sector of Kibale National Park, Uganda
    Journal of Ethnopharmacology 136 (2011) 236–245 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jethpharm Traditional plants used for medicinal purposes by local communities around the Northern sector of Kibale National Park, Uganda Jane Namukobe a,∗, John.M. Kasenene b, Bernard T. Kiremire a, Robert Byamukama a, Maud Kamatenesi-Mugisha b, Sabrina Krief c, Vincent Dumontet d, John D. Kabasa e a Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda b Department of Botany, Makerere University, P.O. Box 7062, Kampala, Uganda c Eco-Anthropologie et Ethnobiologie, UMR 7206 MNHN 43 rue Buffon 75005 Paris, France d Institut de Chimie des Substances Naturelles, CNRS-Avenue de la Terrasse, 91198 Gif-sur-Yvette, France e Faculty of Veterinary Medicine P.O. Box 7062, Kampala, Uganda article info abstract Article history: Ethnopharmacological relevance: The study was done to establish medicinal plants used in the treatment Received 6 December 2010 of various diseases by the people in the Northern sector of Kibale National Park in western Uganda. It Received in revised form 21 April 2011 was also aimed at establishing the plant parts used and the mode of preparation of remedies. These Accepted 21 April 2011 plants create a basis for phytochemical evaluation which can lead to the discovery of biologically active Available online 28 April 2011 compounds that can be used as starting materials in the development of new drugs targeting selected diseases such as malaria. Keywords: Materials and methods: The required information was obtained using open interviews, semi-structured Medicinal plants People questionnaires, focus group discussions and transect walks.
    [Show full text]