Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China sustainability Article Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China Xiaowei Yao, Zhanqi Wang * and Hongwei Zhang School of Public Administration, China University of Geosciences, Wuhan 430074, China; [email protected] (X.Y.); [email protected] (H.Z.) * Correspondence: [email protected]; Tel.: +86-27-6788-3088 Academic Editor: Vincenzo Torretta Received: 9 January 2016; Accepted: 30 March 2016; Published: 5 April 2016 Abstract: Humans’ demands for biological resources and energies have always been increasing, whereas evidence has shown that this demand is outpacing the regenerative and absorptive capacity of the planet. Since China is experiencing unprecedented urbanization and industrialization processes, how much impact this has imposed on the earth during economic development worldwide is conspicuous. Therefore, this paper tries to examine the environmental impact in detail and track its changes in a typical city of Central China, Wuhan, based on ecological footprint analysis. By calculating the ecological footprint and its components in terms of biologically productive land areas during the period of 1995–2008, it is found that the ecological footprint increased in fluctuations from 1.48 gha per capita to 2.10 gha per capita, with the carbon footprint contributing most within the whole time period. Compared to the tiny declining biocapacity of the region, a gradually aggravated ecological deficit in the city was observed, which increased from 1.12 gha per capita in 1995 to 1.79 gha per capita in 2008. Component analysis on the trends of the ecological footprint and ecological deficit reveals that the impact on the ecosystem induced by humans’ demands for resource production and energy consumption became greater than before, and cutting down the consumption of fossil fuels could reduce the carbon footprint and the overall ecological deficit of the city. Keywords: ecological footprint; ecological deficit; biocapacity; energy consumption; carbon footprint; biological resource; Wuhan 1. Introduction It has been widely recognized that sustainable development with various species on the planet is the common pursuit of human beings. However, there is an increasing worldwide discussion about humans’ sustainability due to the rising trend of greenhouse gas (GHG) emissions and the excessive consumption of natural resources. Even though the key impact factors are still under debate, academia across the world has come to an agreement that this situation is basically ascribed to anthropogenic disturbances with agriculture, urban development and energy production [1–4]. In order to provide indicators for sustainability on the environmental side, in other words, to measure the human environmental impact on the earth, several methods have been developed during the recent decades [5–7]. However, each approach has its strengths and weaknesses in application [8]. Among these, ecological footprint (EF) analysis is one of the most widely used approaches. It is a quantitative environmental accounting tool for estimating the requirements for resource consumption and waste assimilation by a certain number of populations. Instead of calculating what population a particular region can support sustainably, the ecological footprint indicator directly shows the areas of biologically productive land appropriated to sustain a defined population, which were described Sustainability 2016, 8, 329; doi:10.3390/su8040329 www.mdpi.com/journal/sustainability Sustainability 2016, 8, 329 2 of 14 as “footprints” that humans impose on the earth’s surface [9]. Therefore, it represents the impact of human consumption activities and waste assimilation requirements on the natural ecosystems, and moreover, is able to compare the consumption (footprint) with the amount of resources that nature can produce in the same time (biocapacity). Due to its full picture of the sustainability concept of the planet and its global comparability, accessibility and operability, the ecological footprint model has been applied to various scales by many scholars and governments. At the global scale, today humanity uses the equivalent of 1.6 planets to provide the resources we use and absorb our waste, according to the research report of the Global Footprint Network [10]. Carbon has been the dominant component of humans’ ecological footprint for several decades, primarily caused by the burning of fossil fuels such as coal, oil and natural gas. It rose up to 53% of the total ecological footprint by 2010, while it was only 36% in 1961 and 45% in 2005 [10]. At national and sub-national scales, Wackernagel et al. have explored ecological footprint trends in Austria, the Philippines, and South Korea for the past 40 years [11]. Pereira et al. analyzed the ecological footprint in Brazil combined with energy synthesis [12]. Palacios-Agundez et al. provided a detailed assessment of ecosystem services supply and demand and analyzed the local service provisioning mismatch by using ecological footprint analysis [13]. Moore et al. calculated the residential consumption and ecological footprint of Metro Vancouver in 2006 by means of bottom-up ecological footprint analysis with the urban metabolism framework [14]. There are also footprint studies at smaller scales, for example on specific sectors and products, to identify local environmental impacts [15,16]. In order to assess the impact by a certain kind of resource consumption or waste generation associated with human activities across multiple dimensions., a series of footprint-style indicators including the carbon footprint, water footprint, energy footprint, biodiversity footprint, nitrogen footprint and chemical footprint, et al. have been widely proposed and analyzed [17–24]. In recent years, efforts have been made to build up a “footprint family” [25–27] as a combination set of ecological footprint, carbon footprint and water footprint indicators to evaluate the comprehensive impact of resource consumption and GHG emissions on the earth. However, some important issues are still quite controversial in the footprint combination, such as cross-scale measuring and weighting [28–30]. Currently, the concept of the ecological footprint created by Wackernagel has become very popular and the analysis model has a clear benchmark to compare the human consumption of resources and energies versus what nature offers to humans. China has been experiencing very fast economic development in recent years, but its process of urbanization and industrialization is still far from completion. This implies that there has been considerable demand for various products (agricultures, energies, etc.) and services (waste assimilation, etc.) because it is one of the biggest developing countries in the world. As a consequence, how much impact China imposes on the earth’s system is what we need to examine first, so it can be compared with the biocapacity to reveal whether the environment has been overloaded or not. Moreover, how the impact has changed in accordance with time and space is another question that we need to explore, as it directly reflects the implementation effect of sustainability policy. These objectives are of profound guiding significance for future socio-economic development. Though there has been research on the footprint analysis of Chinese society [31,32], explorations are seldom reported at the sub-national scale of this huge developing country. This study therefore aims to explore the two questions above based on a case analysis at a regional scale. It takes a typical city, Wuhan, in central China to track the dynamic changes of the city’s demand for raw materials and energies in terms of corresponding, biologically productive land types, and furthermore, to identify the component changes within the footprint in terms of material productivity and energy consumption. It is greatly valuable for local governments to adjust industrial structures and implement more suitable land use policies for reducing pressures on the planet. Sustainability 2016, 8, 329 3 of 14 Sustainability 2016, 8, 329 3 of 14 2. Study Area 2. StudyThis Areastudy was performed in Wuhan Municipality (113°41′E–115°05′E, 29°58′N–31°22′N), central China, which is the capital city of Hubei Province. It covers a total area of 8523 km2 with a ˝ 1 ˝ 1 ˝ 1 ˝ 1 populationThis study of 10.33 was million performed inhabitants in Wuhan (2014). Municipality Seated along (113 the middle41 E–115 reaches05 E, of 29 the58 YangtzeN–31 22River,N), 2 thecentral city China,is located which at the is the Yangtze capital Plain city ofwith Hubei only Province. small hilly It covers parts in a totalthe north area of and 8523 northeast. km with In a addition,population the of Yangtze 10.33 million River’s inhabitants largest tributary, (2014). Seated Hanjiang along River, the middle flows from reaches the of west the Yangtzeand into River, the city’sthe city downtown, is located and at thetens Yangtze of lakes Plain interconnect with only within small the hilly region; parts the in water the north bodies and occupy northeast. nearly In 20%addition, of the the metropolitan Yangtze River’s area. largest tributary, Hanjiang River, flows from the west and into the city’s downtown,Owning and to a tens considerably of lakes interconnect abundant withinamount the of region; water theresources water bodiesand good occupy heat nearly conditions, 20% of Wuhanthe metropolitan and its surrounding area. areas used to be an important grain‐ and fishery‐producing
Recommended publications
  • The Water, Land, and Carbon Footprints of Different Human Diets in China
    FACULTY OF ENGINEERING TECHNOLOGY WATER ENGINEERING & MANAGEMENT The Water, Land, and Carbon Footprints of Different Human Diets in China Hang Song M.Sc. Thesis August 2017 Supervisors: Prof.dr.ir. A.Y. Hoekstra MSc. C.C.A. Verburg Water Management Group Faculty of Engineering Technology Water Engineering & Management University of Twente P.O. Box 217 7500 AE Enschede The Netherlands THE WATER, LAND, AND CARBON FOOTPRINTS OF DIFFERENT HUMAN DIETS IN CHINA THE WATER, LAND, AND CARBON FOOTPRINTS OF DIFFERENT HUMAN DIETS IN CHINA Summary The demand for agricultural production is increasing significantly due to the growth of economic and population worldwide. The agricultural products have huge impact on water use, land use, and greenhouse gas emissions. This can be quantitatively expressed by three indicators: water footprint (WF), land footprint (LF), and land footprint (CF). While China is the most populated country in the world, the impact of the human food consumed in China is not only within the country but also in other parts of the world where food is imported. In this research, the water, land, and carbon footprints of consumption (퐹푐표푛푠) in China are analyzed for five different diets: the current diet (REF) from the statistics of FAO; a healthy diet (CDG) based on the recommendations by Chinese Nutrition Society; a pesco- vegetarian diet (PES), which includes fish, eggs, and dairy; an ovo-lacto vegetarian diet (OLV), which includes eggs and dairy; and a vegan diet (VEG), which excludes all animal products. While REF has a higher intake of kcal and protein per day than CDG, the other three diets are chosen such that the kcal and protein intake per day equals that of CDG.
    [Show full text]
  • Land, Water and Carbon Footprints of Circular Bioenergy Production Systems T ∗ B
    Renewable and Sustainable Energy Reviews 111 (2019) 224–235 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser Land, water and carbon footprints of circular bioenergy production systems T ∗ B. Holmatova, , A.Y. Hoekstraa,b, M.S. Krola a Twente Water Centre, Faculty of Engineering Technology, University of Twente, Horst Complex Z223, P.O Box 217, 7500, AE Enschede, Netherlands b Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, 259772, Singapore ARTICLE INFO ABSTRACT Keywords: Renewable energy sources can help combat climate change but knowing the land, water and carbon implications Bioenergy of different renewable energy production mixes becomes a key. This paper systematically applies land, waterand Biofuel carbon footprint accounting methods to calculate resource appropriation and CO2eq GHG emissions of two Energy scenario energy scenarios. The ‘100% scenario’ is meant as a thinking exercise and assumes a complete transition towards Carbon footprint bioenergy, mostly as bioelectricity and some first-generation biofuel. The ‘SDS-bio scenario’ is inspired byIEA's Land footprint sustainable development scenario and assumes a 9.8% share of bioenergy in the final mix, with a high share of Sustainable development Water footprint first-generation biofuel. Energy inputs into production are calculated by differentiating inputs into fuelversus electricity and exclude fossil fuels used for non-energy purposes. Results suggest that both scenarios can lead to emission savings, but at a high cost of land and water resources. A 100% shift to bioenergy is not possible from water and land perspectives.
    [Show full text]
  • The Land Use Change Impact of Biofuels Consumed in the EU Quantification of Area and Greenhouse Gas Impacts
    Ref. Ares(2015)4173087 - 08/10/2015 The land use change impact of biofuels consumed in the EU Quantification of area and greenhouse gas impacts The land use change impact of biofuels consumed in the EU Quantification of area and greenhouse gas impacts By: Hugo Valin (IIASA), Daan Peters (Ecofys), Maarten van den Berg (E4tech), Stefan Frank, Petr Havlik, Nicklas Forsell (IIASA) and Carlo Hamelinck (Ecofys), with further contributions from: Johannes Pirker, Aline Mosnier, Juraj Balkovic, Erwin Schmid, Martina Dürauer and Fulvio di Fulvio (all IIASA) Date: 27 August 2015 Project number: BIENL13120 Reviewers: Ausilio Bauen (E4tech), Michael Obersteiner (IIASA) and the Scientific Advisory Committee: - Prem Bindraban, Don O’Connor, Robert Edwards, Jacinto Fabiosa, David Laborde, Chris Malins, André Nassar, Koen Overmars and Richard Plevin Project coordination: Michèle Koper (Ecofys) This study has been commissioned and funded by the European Commission. A cooperation of Ecofys, IIASA and E4tech ECOFYS Netherlands B.V. | Kanaalweg 15G | 3526 KL Utrecht| T +31 (0)30 662-3300 | F +31 (0)30 662-3301 | E [email protected] | I www.ecofys.com Chamber of Commerce 30161191 ii Acknowledgements The study consortium is grateful for the useful information and the many comments, questions and recommendations we received throughout the preparation of the study between September 2013 and June 2015 from a wide variety of stakeholders, including representatives from industry associations, NGOs and scientific experts, either by attending one of the eight stakeholder meetings we organised during the study process or by corresponding with us per email. We also thank the European Commission Steering Committee for their input and reviews.
    [Show full text]
  • CUBA's TRANSITION to ECOLOGICAL SUSTAINABILITY in Swedish
    CUBA’S TRANSITION TO ECOLOGICAL SUSTAINABILITY Jan Strömdahl KUWAIT 6 5 DENMARK USA 4 SWEDEN 3 GERMANY JAPAN RUSSIA 2 SOUTH AFRICA BRAZIL 1 CHINA CUBA NIGERIA ECOLOGICAL FOOTPRINT, NUMBER OF GLOBES/PERSON FOOTPRINT, ECOLOGICAL HAITI INDIA 0,3 0,4 0,5 0,6 0,7 0,8 0,9 LOW HDI MEDIUM HDI HIGH HDI VERY HIGH HDI HUMAN DEVELOPMENT INDEX, HDI TABLE OF CONTENTS 1. INTRODUCTION 4 2. CUBA AND SUSTAINABILITY 5 2.1 The Human Development Index 6 2.2 Ecological footprint 8 2.3 Later Living Planet Reports 10 2.4 Conclusions in the Living Planet Reports 12 2.5 Analysis of ecological footprints for selected countries 13 2.6 Global target for sustainability 14 2.7 Measures for protection against climate change 15 2.8 How has Cuba succeeded so far? 16 3. AGRICULTURAL AND OTHER LAND USE 18 3.1 Exploitation and Revolution - a historical background 18 3.2 Present situation 20 3.3 Food security 24 3.4 Organic farming 26 3.5 Organic urban and suburban agriculture 27 3.6 Permaculture 30 3.7 Environmental and health aspects 33 3.8 Outlook 33 4. WATER 36 4.1 Present situation 37 4.2 Water footprints 39 4.3 Fisheries 40 4.4 Water pollution 41 4.5 Water and sewage supply 43 4.6 Closing remarks 44 5 ENERGY 46 5.1 Energy revolution starts 47 5.2 Oil still dominate 50 5.3 Renewable fuels and technologies 50 5.4 Fossil fuels and technologies 54 5.5 The rise and fall of nuclear power 54 5.6 Efficiency and savings 57 5.7 Two forerunners - Granma and Guamá 57 5.8 A second energy revolution 59 5.9 Environmental and health impacts 62 5:10 Social aspects 63 6 TRANSPORTATION 65 6.1 Horses and bikes dominate locally 67 6.2 Railway tradition 71 6.3 Freight most by truck 73 6.3 Decentralization and improved effectiveness 73 6.4 Environmental and health implications 75 6.5 Social aspects 76 6.6 Cuba´s challenges 76 2 7 HOUSING 78 7.1 The housing policy of revolution 79 7.2 Current situation 81 7.3 Building tecchnics and materials 83 7.4 Havana 86 7.5 Housing as social right 86 7.6 What about the future? 87 8.
    [Show full text]
  • Sustainable Construction Investment, Real Estate Development, and COVID-19: a Review of Literature in the Field
    sustainability Review Sustainable Construction Investment, Real Estate Development, and COVID-19: A Review of Literature in the Field Arturas Kaklauskas 1,*, Edmundas Kazimieras Zavadskas 2,* , Natalija Lepkova 1 , Saulius Raslanas 1, Kestutis Dauksys 1, Ingrida Vetloviene 2 and Ieva Ubarte 2 1 Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania; [email protected] (N.L.); [email protected] (S.R.); [email protected] (K.D.) 2 Institute of Sustainable Construction, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania; [email protected] (I.V.); [email protected] (I.U.) * Correspondence: [email protected] (A.K.); [email protected] (E.K.Z.) Abstract: Aspects of sustainable construction investment and real estate development (CIRED) and their interrelations during the period pre-, intra-, and post-COVID-19, are presented in the research. Applications of the topic model, environmental psychology theory, building life cycle method, and certain elements of bibliometrics, webometrics, article level metrics, altmetrics, and scientometrics make it possible to perform a quantitative analysis on CIRED. The CIRED topic model was developed in seven steps. This paper aims to present a literature review on CIRED throughout the pandemic and to look at the responses from the real estate and construction sector. This sector is a field that appears to be rapidly expanding, judging from the volume of current research papers. This review focuses on last year’s leading peer-reviewed journals. A combination of various keywords was Citation: Kaklauskas, A.; Zavadskas, applied for the review and the criteria for paper selections included construction investment, real E.K.; Lepkova, N.; Raslanas, S.; estate development, civil engineering, COVID-19, and sustainability, as well as residential, industrial, Dauksys, K.; Vetloviene, I.; Ubarte, I.
    [Show full text]
  • Energy and Land Use
    GLOBAL LAND OUTLOOK WORKING PAPER ENERGY AND LAND USE Prepared by: Uwe R. Fritsche (coordinating author), International Institute for Sustainability Analysis and Strategy (Darmstadt, Germany); Göran Berndes, Chalmers University (Gothenburg, Sweden); Annette L. Cowie, New South Wales Department of Primary Industries/University of New England (Armidale, Australia); Virginia H. Dale and Keith L. Kline, Oak Ridge National Laboratory (Oak Ridge, Tennessee); Francis X. Johnson, Stockholm Environment Institute (Stockholm, Sweden & Nairobi, Keny); Hans Langeveld, Biomass Research (Wageningen, the Netherlands); Navin Sharma, International Centre for Research in Agroforestry (Nairobi, Kenya); Helen Watson, KwaZulu-Natal University (Durban, South Africa); Jeremy Woods, Imperial College London (United Kingdom). Copy editing by Margie Peters-Fawcett. September 2017 DISCLAIMER The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the United Nations Convention to Combat Desertification (UNCCD) or the International Renewable Energy Agency (IRENA) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by UNCCD or IRENA in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the authors or contributors and do not necessarily reflect the views or policies of UNCCD or IRENA or their members. © UNCCD and IRENA 2017 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of UNCCD and IRENA as the source and copyright holder.
    [Show full text]
  • Riskier Business: the Uk’S Overseas Land Footprint
    WORKING TOGETHER TO UNDERSTAND RISKS TO NATURAL CAPITAL RISKIER BUSINESS: THE UK’S OVERSEAS LAND FOOTPRINT SUMMARY REPORT MAY 2020 2 RISKIER BUSINESS: THE UK’S OVERSEAS LAND FOOTPRINT EXECUTIVE SUMMARY 3 SUMMARY - RISKIER BUSINESS: THE UK’S OVERSEAS LAND FOOTPRINT The UK’s overseas land footprint, a key element of the UK’s total environmental footprint overseas, has increased by 15% on average compared to our 2011-15 analysis. Between 2016 and 2018, an area equivalent to 88% of the total UK land area was required to supply the UK’s demand for just seven agricultural and forest commodities – beef & leather, cocoa, © DAVID BEBBER / WWF-UK A large fire burns in the Cerrado in Brazil, one of the world’s oldest and most diverse tropical palm oil, pulp & paper, rubber, soy, and timber. This rise is in response to an ecosystems and one of the most endangered on the planet. One million hectares of forest is lost in the Cerrado each year to make way for soy plantations for food, animal feed and biofuels. increasing demand for agricultural and forestry products, including those led by shifts in UK policy (notably, the greater demand for fuel wood as a source of renewable energy). This summary is based on the upcoming full report, Riskier Business: the UK’s Overseas Land Footprint. Growing demand for forest and agricultural commodities drives greenhouse gas emissions and can have negative impacts on biodiversity overseas, but current UK legislation does not require these impacts to be monitored or mitigated. Greenhouse 1 This report updates and extends our 2017 assessment, Risky Business , gas emissions arising from imported commodities are included in UK environmental accounts, but which focused on the impacts resulting from the UK’s trade in the same seven agricultural and forest not in the UK carbon budget or climate strategy – so there are no requirements to mitigate them.
    [Show full text]
  • Beyond Bioenergy Toward a Clean Energy and Forest-Positive Future with Social Justice at Its Heart
    Beyond Bioenergy Toward a Clean Energy and Forest-Positive Future with Social Justice at its Heart Strategy Overview | 2020 - 2024 October 2020 1 | BEYOND BIOENERGY TOWARD A CLEAN AND FOREST-POSITIVE FUTURE WITH SOCIAL JUSTICE AT ITS HEART ver the last decade, our societies have made and local communities, and advance sustainable land Oincremental progress toward building a clean energy use and agriculture, in line with the joint philanthropic and forest-positive future to fight the climate crisis and statement on ‘Supporting Forests, Rights, and Lands safeguard the well-being of our children and for Climate.’ Our support is intended to contribute to grandchildren. Despite continuing progress, the threat to global cooperation efforts to achieve the Paris agreement our climate is escalating. Renewable energy deployment targets, international human rights frameworks, and is only just keeping pace with growth in energy demand, the United Nations Sustainable Development Goals. political polarization limits our ability to conserve critical carbon-sinks like the Amazon rainforest, and continued Although much of this strategy is focused on reducing reliance on fossil fuels puts us at significant risk of demand for bioenergy that does not support overshooting the Paris agreement targets. climate stability or other Sustainable Development Goals (e.g. food security, forest health), the Packard Although often overlooked, our forests Foundation supports the development and use of contain more carbon than all exploitable oil, gas, those bioenergy resources that generate benefits and coal deposits. for the climate as well as local communities. Together with oceans and wetlands, they play a vital “Climate-positive” bioenergy includes organic waste role in stabilizing our planet’s climate by removing streams (i.e.
    [Show full text]
  • Buy Property in Patna
    Buy Property In Patna contravening:inequitablyCayenned andwhile braided escapism supratemporal and Barth stellar stead Gaspar Wye some pluralize constellated uniform quite so andreminiscently modernly! announces. Shurlock but Isolating boogie is bilocular her Florian Rikki andstill immanely. weaken Semi commercial property in patna and anytime, homes that strikes a sum insured of The new localities in Patna real estate gets started by people and they are aided by infra development in Patna and amenities lie Schools. We mean best reason with devendra green city: the design schools in patna by just a service provider, patna is transacting every individual authorities, there is key trigger for. Experience of patna is unique in buying your budget residential project approvals provided. See the Section on Understanding Filesystem Permissions. At Ashiana, adhering to project completion timelines is a key priority for us. Secure yourself having any unseen eventuality by looking a PA policy. You can point your own CSS here. Exel marketing group works in real estate marketing. Crore biggest real estate development near my business loan from feasibility study to buy a blend of properties in buying a problem with the bypass. Here in properties are there is now regarding our level of. Cookies allow us to order you better. Property in Patna Real Estate Properties for Sale & Rent in. Moneyfy enables users to be investment ready by helping them complete their KYC digitally. Where you will lessen and features a selected are properties available on. Easy accessibility to the bypass. Bank loan is approved from major banks such as State Bank of India.
    [Show full text]
  • Working Guidebook to the National Footprint Accounts
    Working Guidebook to the National Footprint Accounts Working Guidebook to the National Footprint Accounts Research Department | April 2016 Updated: April 26, 2018 Working Guidebook to the National Footprint Accounts WORKING PAPER Version 1.2 (2018-04-26) Authors: David Lin Laurel Hanscom Jon Martindill Michael Borucke Lea Cohen Alessandro Galli Elias Lazarus Golnar Zokai Katsunori Iha Mathis Wackernagel Suggested Citation: D. Lin, L. Hanscom, J. Martindill, M. Borucke, L. Cohen, A. Galli, E. Lazarus, G. Zokai, K. Iha, D. Eaton, M. Wackernagel. 2018. Working Guidebook to the National Footprint Accounts. Oakland: Global Footprint Network. The designations employed and the presentation of materials in the Working Guidebook to the National Footprint Accounts does not imply the expression of any opinion whatsoever on the part of Global Footprint Network or its partner organizations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Special thanks to Lea Cohen for her outstanding work on the 2016 update of this guidebook. For further information, please contact: Global Footprint Network 426 17th Street, Suite 600 Oakland, CA 94612 USA Phone: +1.510.839.8879 E-mail: [email protected] Main website: http://www.footprintnetwork.org/ Open data website: http://data.footprintnetwork.org/ © Global Footprint Network 2018. All rights reserved. Table of Contents 1 Introduction ......................................................................................................................
    [Show full text]
  • Imported Deforestation: Understanding Switzerland's Overseas Footprint for Forest-Risk Commodities WWF-Switzerland
    IMPORTED DEFORESTATION UNDERSTANDING SWITZERLAND’S OVERSEAS FOOTPRINT FOR FOREST-RISK COMMODITIES © Richard Carey / AdobeStock 2 IMPORTED DEFORESTATION IMPORTED DEFORESTATION 3 CONTENTS BACKGROUND ........................................................4 KEY FINDINGS FOR SWITZERLAND .................................5 RECOMMENDATIONS .............................................. 10 COMMODITY SPECIFIC FINDINGS ................................. 14 SOY ............................................................ 14 PALM OIL ...................................................... 18 COCOA ......................................................... 22 TIMBER, PULP & PAPER ..................................... 26 COFFEE ........................................................ 30 SUGARCANE................................................... 34 COCONUT ...................................................... 38 This report summarises findings of original research undertaken by 3Keel, commissioned by WWF-Switzerland; Authors: Dr Steve Jennings and Caitlin McCormack (3Keel), Romain Deveze (WWF Switzerland) OVERVIEW OF METHODOLOGY ................................... 42 Design: 3Keel Publication date: December 2020 The full report is available at www.wwf.ch/de/stories LIMITATIONS ....................................................... 43 4 IMPORTED DEFORESTATION IMPORTED DEFORESTATION 5 Area of overseas land required each year to supply Switzerland’s imports BACKGROUND of forest and agricultural commodities (annual average 2015-19) The demand for agricultural
    [Show full text]
  • The Footprint and Biocapacity of Ontario, Canada: Comparing Results for 2005 and 2010
    The Footprint and Biocapacity of Ontario, Canada: Comparing Results for 2005 and 2010 March 2015 www.footprintnetwork.org Produced for the Ontario Ministry of Natural Resources and Forestry TECHNICAL SUMMARY REPORT Completed March 20, 2015 Authors: Golnar Zokai Jason Ortego David Zimmerman Mathis Wackernagel For further information, please contact: 312 Clay Street, Suite 300 Oakland, CA 94607-3510 USA Phone: +1.510.839.8879 [email protected] www.footprintnetwork.org © Text and graphics: 2015 Global Footprint Network. All rights reserved. Any reproduction in full or in part of this publication must mention the title and credit the aforementioned publisher as the copyright owner. 2 Table of Contents ACRONYMS AND ABBREVIATIONS ................................................................................................................ 4 1. PURPOSE OF THIS REPORT .................................................................................................................... 5 2. ECOLOGICAL FOOTPRINT RESULTS ....................................................................................................... 5 2.1 Humanity’s Ecological Footprint ................................................................................................... 5 2.2 Canada’s Ecological Footprint ....................................................................................................... 6 3. ONTARIO’S ECOLOGICAL FOOTPRINT AND BIOCAPACITY .................................................................... 9 3.1 Ontario’s Ecological
    [Show full text]