Synchrotron-Aided Reconstruction of the Conodont Feeding Apparatus and Implications for the Mouth of the first Vertebrates

Total Page:16

File Type:pdf, Size:1020Kb

Synchrotron-Aided Reconstruction of the Conodont Feeding Apparatus and Implications for the Mouth of the first Vertebrates Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates Nicolas Goudemanda,1, Michael J. Orchardb, Séverine Urdya, Hugo Buchera, and Paul Tafforeauc aPalaeontological Institute and Museum, University of Zurich, CH-8006 Zürich, Switzerland; bGeological Survey of Canada, Vancouver, BC, Canada V6B 5J3; and cEuropean Synchrotron Radiation Facility, 38043 Grenoble Cedex, France Edited* by A. M. Celâl Sxengör, Istanbul Technical University, Istanbul, Turkey, and approved April 14, 2011 (received for review February 1, 2011) The origin of jaws remains largely an enigma that is best addressed siderations. Despite the absence of any preserved traces of oral by studying fossil and living jawless vertebrates. Conodonts were cartilages in the rare specimens of conodonts with partly pre- eel-shaped jawless animals, whose vertebrate affinity is still dis- served soft tissue (10), we show that partial reconstruction of the puted. The geometrical analysis of exceptional three-dimensionally conodont mouth is possible through biomechanical analysis. preserved clusters of oro-pharyngeal elements of the Early Triassic Novispathodus, imaged using propagation phase-contrast X-ray Results synchrotron microtomography, suggests the presence of a pul- We recently discovered several fused clusters (rare occurrences ley-shaped lingual cartilage similar to that of extant cyclostomes of exceptional preservation where several elements of the same within the feeding apparatus of euconodonts (“true” conodonts). animal were diagenetically cemented together) of the Early This would lend strong support to their interpretation as verte- Triassic conodont Novispathodus (11). One of these specimens brates and demonstrates that the presence of such cartilage is a (Fig. 2A), found in lowermost Spathian rocks of the Tsoteng plesiomorphic condition of crown vertebrates. section (Tiandong District, Guangxi Province, China) (12, 13), consists of four “grasping” elements (S1–4 elements). apical cartilage | conodont oral skeleton | early vertebrates | homology Fused clusters partially preserve the relative 3D positions and EVOLUTION orientations of the involved elements. However, they are very ow the transition from “agnathans” to gnathostomes small, fragile, tricky to manipulate, and if more than two or three H(“jawed” vertebrates) occurred is one of the most intriguing elements are involved, very complicated to analyze. One way to problems of evolutionary biology (1). Little is known about the circumvent this is to use a nondestructive imaging method such endoskeleton of fossil jawless vertebrates [e.g., fossil cyclostomes as X-ray microtomography. In our case, the required resolution (hagfishes and lampreys) and “ostracoderms”]. Although the view and contrast could not be achieved with conventional micro- is still debated (2), euconodonts would have possessed the very tomography. Hence, we scanned this Chinese cluster, as well as GEOLOGY first vertebrate mineralized skeleton in the form of their oral a complete set of isolated elements (catalog nos. PIMUZ 39841–9) denticles (3, 4). found in the same sample and belonging to the same multielement The general architecture of the conodont oral skeleton is species, at the European Synchrotron Radiation Facility, on the a bilaterally symmetrical array of usually 15 phosphatic elements, ID19 beamline, using submicron resolution propagation phase- which generally becomes disarticulated after the decay of the contrast X-ray synchrotron microtomography (PPC-SRμCT) (14) supporting tissues. Hence most conodonts are known only as (Methods). On the basis of refs. 6, 11, and 15, we reconstructed isolated elements. From the detailed study of hundreds of ar- avirtual3DapparatusofNovispathodus. The relative sizes of the “ ” ticulated natural assemblages and photographic simulation S1–4 elements were inferred from the cluster. The other relative of their collapse, Purnell and Donoghue (5) constructed a 3D sizes (M, S0,P1,P2 relative to S1–4) were derived from the few model of the Idiognathodus apparatus [presumably a template known Neogondolella natural assemblages (Fig. 2 B–C)(15,16). for all ozarkodinid apparatuses (6)] in which one pair of Both our Novispathodus cluster and the Neogondolella natural obliquely pointed M elements are located rostrally and, behind assemblages (15, 16) show that the cusps of the S1 and S2 ele- them, one unpaired S0 (subscript number indicates distance or- ments were oriented more caudally than those of the S0 and S3, 4 dering from the symmetry axis) element lying on the axis of bi- elements, a feature that Orchard and Rieber considered to be lateral symmetry and four pairs of elements (S1–4) located on unique to the “gondolellaceans” (15, p. 480). Its recurrence in all both sides of the S0 would have grasped food and, more caudally, known Triassic assemblages (17 and 18) independently of their two pairs of pectiniform elements (P1,P2) would have processed collapse angle suggests that it is not due to a taphonomic bias – this food by crushing and/or slicing (5, 7, 8) (Fig. 1 A B) (for (postmortem rotation of elements) and indeed records a config- “ ” standard orientation of single elements, see Fig. S1). Purnell uration that differs from the Idiognathodus reconstruction (5). ’ and Donoghue s reconstruction of a generalized resting (dead) Natural assemblages of Ozarkodina, the presumed rootstock of position is very well supported and in most aspects very convincing. the Ozarkodinida (19), indicate that this caudal orientation of It is therefore adopted here as a basis upon which we build our dynamic reconstruction of the feeding apparatus at work. How could these elements actually grasp or cut prey tissues? Author contributions: N.G. designed research; N.G. and S.U. performed research; P.T. Purnell and Donoghue’s functional model (section 6 of ref. 5) contributed new reagents/analytic tools; H.B. provided biostratigraphic and paleoenvir- was based chiefly on analogies with extant agnathans. Indeed, the onmental data; N.G., M.J.O., S.U., and H.B. analyzed data; and N.G. wrote the paper. “quite simple” geometry of the Idiognathodus elements does not The authors declare no conflict of interest. provide much indication of what motions are possible or not *This Direct Submission article had a prearranged editor. [except for uncommon natural assemblages (see below)]. Thus, Data deposition: The synchrotron data presented in this manuscript is available on the hypotheses were inferred from extant putative closest relatives. open access paleontological database of the ESRF at http://paleo.esrf.eu. In our view, the more “complicated” Novispathodus apparatus 1To whom correspondence should be addressed. E-mail: [email protected]. imposes additional constraints that enable us to reconstruct the This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. movement of the elements independently of phylogenetic con- 1073/pnas.1101754108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1101754108 PNAS Early Edition | 1of5 Downloaded by guest on October 2, 2021 A P1 B dorsal A B P2 sinistral rostral caudal dextral S0 S4 S1 S2 S3 M M ventral Fig. 1. Anatomical notation and orientation. (A) Dorsal view of the recon- C D structed, closed apparatus of Novispathodus. Anatomical notation after Purnell et al. (9). (B) Orientation of the apparatus within the conodont’s head. the cusp of the S1 is not restricted to the Gondolelloideans (ref. 20, reinterpreted in ref. 6, fig. 13A; 21). Fused clusters involving only the two hindeodelliform S3 and S4 elements are relatively more frequent in our collections. This suggests that they were located close and subparallel to one another (their recurrent relative position in those clusters) and Fig. 3. Geometrical correspondences between elements. (A) The S1 ele- fi had probably a common motion within the living animal. In ments match the posterior process of the S0. Per de nition, the tip of the (ab)oral view, their respective posterior processes are substraight cusp points posteriorly. ant: anterior; post: posterior. (B) Closed arrangement posteriorly and outwardly deflected behind the cusp, and their of S elements. (C) Presumed growth position of the S2 (silver) as inferred by anterior processes are laterally bowed inward, which results in an geometrical correspondences with the S3 and S4 elements (gold). (D) Pro- fi posed movement of the S0 against the M elements (silver: start and end overall sitar-like pro le. – fi positions; gold: pinching position). (A D) c: caudal; d: dextral; do: dorsal; r: The shape of the S2 ts those of the S3 and S4 in the following rostral; s: sinistral; v: ventral; blue circles: hypothetical cartilage. aspects: (i) In the “cluster position” (see above) where the cusp of the S2 is subparallel to the posterior processes of the S3 and S4 elements, the outer profile (oral view) of the S2 is similar to the If we assume that the various elements moved along trajec- fi inner pro le of the S3, and the largest denticle of its antero- tories approximately parallel to the curvature of the cusp and lateral process is aligned with the cusps of the S3 and S4 (Figs. 2A denticles (5), then the movements of the S2–4 elements must have and 3B). (ii) In a presumed “growth position” where the re- included an opening/closing pivot motion around an axis parallel spective basal cavities (initial growth centers) of the S2–4 ele- to the posterior processes of the S3 and S4. Consequently, the net
Recommended publications
  • CONODONTS of the MOJCZA LIMESTONE -.: Palaeontologia Polonica
    CONODONTS OF THE MOJCZA LIMESTONE JERZY DZIK Dzik, J. 1994. Conodonts of the M6jcza Limestone. -In: J. Dzik, E. Olemp ska, and A. Pisera 1994. Ordovician carbonate platform ecosystem of the Holy Cross Moun­ tains. Palaeontologia Polonica 53, 43-128. The Ordovician organodetrital limestones and marls studied in outcrops at M6jcza and Miedzygorz, Holy Cross Mts, Poland, contains a record of the evolution of local conodont faunas from the latest Arenig (Early Kundan, Lenodus variabilis Zone) to the Ashgill (Amorphognathus ordovicicus Zone), with a single larger hiatus corre­ sponding to the subzones from Eop/acognathus pseudop/anu s to E. reclinatu s. The conodont fauna is Baltic in general appearance but cold water genera , like Sagitto­ dontina, Scabbardella, and Hamarodus, as well as those of Welsh or Chinese af­ finities, like Comp/exodus, Phragmodus, and Rhodesognathu s are dominant in par­ ticular parts of the section while others common in the Baltic region, like Periodon , Eop/acognathus, and Sca/pellodus are extremely rare. Most of the lineages continue to occur throughout most of the section enabling quantitative studies on their phyletic evolut ion. Apparatuses of sixty seven species of thirty six genera are described and illustrated. Phyletic evolution of Ba/toniodus, Amorphognathu s, Comp/exodus, and Pygodus is biometrically documented. Element s of apparatu ses are homolog ized and the standard notation system is applied to all of them. Acodontidae fam. n., Drepa­ nodus kie/censis sp. n., and D. santacrucensis sp. n. are proposed . Ke y w o r d s: conodonts, Ordovici an, evolut ion, taxonomy. Jerzy Dzik, Instytut Paleobiologii PAN, A/eja Zwirk i i Wigury 93, 02-089 Warszawa , Poland.
    [Show full text]
  • UPPER DEVONIAN CONODONTS ASSOCIATED with a LARGE PLACODERM FISH SKULL from the CANNING BASIN, WESTERN... Download
    Rec. West. Aust. Mus. 1987,13 (4): 501-513 Upper Devonian conodonts associated with a large placoderm fish skull from the Canning Basin, Western Australia John A. Long* Abstract Conodonts retrieved from limestone encasing the skull of a large placoderm fish, from an unknown lo'cation in the south-eastern Canning Basin, indicate an age of mid-Famennian (toIIB) because of the concurrent presence of the following taxa: Nothognathella palmatiformis, Nothognathella sp. nov, A. Druce 1976,Palmatolepis glabra pectinata, P. quadrantinodosa inflexa, P. quadrantinodosa inflexoidea, P. marginifera s.s., Polygnathus triphyllatus, P. glaber s.s. and P. germanus s.s. The assemblage represents a palmatolepid-polygnathid biofacies dominated by palmatolepids, and is typical of muddy outer shelf to sandy inner shelf environ­ ments. The occurrence of certain taxa which have only been previously recorded in the Canning Basin from the Virgin Hills Formation, together with the lithology of the specimen, and palaeoecological information afforded by the conodonts, suggests that the specimen was derived from the uppermost section of the Virgin Hills Formation. Introduction A large dinichthyid placoderm fish skull has recently been described as a new genus, Westralichthys Long (1987) even though the exact location and lithological source of the specimen is unknown. A limited conodont fauna of 76 elements was recovered from dilute acetic acid preparation of the dinichthyid skull. The fauna contains a number of age diagnostic species which have been used to narrow the possible age and stratigraphic source of the specimen. It is significant that the conodonts indicate a much younger age for the skull than the well known lower Frasnian Gogo fish fauna (Gardiner and Miles 1975), also from the same region.
    [Show full text]
  • Igcp596 Abstract Volume 20110827
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte des Institutes für Geologie und Paläontologie der Karl- Franzens-Universität Graz Jahr/Year: 2011 Band/Volume: 16 Autor(en)/Author(s): Izokh N.G. Artikel/Article: Biodiversity of Devonian conodonts from the West Siberia. 49-51 ©Institut f. Erdwissensch., Geol. u. Paläont., Karl-Franzens-Universität Graz; download www.biologiezentrum.at Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 16 Graz 2011 IGCP 596 Opening Meeting Graz, 19-24th September 2011 Biodiversity of Devonian conodonts from the West Siberia IZOKH, N.G. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Acad. Koptyug Av., 3, Novosibirsk, 630090, Russia; [email protected] In West Siberia the Devonian deposits compose a part of the shelf belt along the western margin of the Siberian continent and extend from W to NE: from Altai to Salair and Kuznetsk Basin deepening farther north beneath the Mesozoic-Cenozoic cover of the West Siberian Lowland. Devonian marine sediments contain abundant benthic and pelagic fauna. Conodont associations were recovered from the NW and central parts of the West-Siberia Geo syncline (WSG), Rudny and Gorny Altai, Kuznetsk Basin. Many conodont index-species of two (deep- and shallow-water) parallel zonal scales were recovered from the several Devonian sections. The north-west of the West-Siberia Geosyncline. The Upper Emsian – middle Famennian conodont association from the Shchuchiy Ledge (IZOKH 2011). The Emsian association includes: Polygnathus serotinus TELFORD, P. bultyncki WEDDIGE, Neopanderodus perliniatus ZIEGLER & LINDSTROM, N. cf. transitans ZIEGLER & LINDSTROM, Вelodella devonica (STAUFFER), В.
    [Show full text]
  • Conodont Stratigraphy of a Highly Tectonised Silurian-Devonian Section in the San Basilio Area (SE Sardinia, Italy)
    Bollettino della Societa Paleontologica Italiana 40 (3), 2001 ISSN 0375-7633 Modena, Dicembre 2001 Conodont stratigraphy of a highly tectonised Silurian-Devonian section in the San Basilio area (SE Sardinia, Italy) Carlo CORRADINI F rancesco LEONE Alfredo Loi Enrico SERPAGLI Dipartimento del Museo di Paleobiologia Dipartimento di Scienze della Terra Dipartimento del Museo di Paleobiologia e dell'Orto Botanico Universita di Cagliari e dell'Orto Botanico Universidt di Modena e Reggio Emilia Universita di Modena e Reggio Emilia KEYWORDS- Conodonts, Biostratigraphy, Tectonics, Silurian, Devonian, SE Sardinia. ABSTRACT- Several conodont species belonging to five "late Silurian biozones (Ancoradella ploeckensis, Polygnathoides siluricus, Ozarkodina crispa, Ozarkodina remscheidensis, Oulodus elegans detortus) and four Early and Late Devonian biozones (delta, pesavis, kitabicus-excavatus and Late rhenana) allow a better interpretation of stratigraphy and tectonics of the San Basilio area in western Gerrei. Frasnian sediments are documented for the first time in SE Sardinia. RIASSUNTO- [Stratigrafia a conodonti di una sezione forremente tettonizzata di eta Siluriano-Devoniano nell'area di San Basilio (Sardegna SE)] - Grazie alla biostratigrafia a conodonti viene interpretata la complessa tettonica di una sezione nell'area di San Basilio (Sardegna sud-orientale) e viene ricostruita la successione originaria. Sono documentate cinque biozone a conodonti del Siluriano superiore (Ancoradella eioeckensis, Polygnathoides siluricus, Ozarkodina crispa,
    [Show full text]
  • Six Charts Showing Biostratigraphic Zones, and Correlations Based on Conodonts from the Devonian and Mississippian Rocks of the Upper Mississippi Valley
    14. GS: C.2 ^s- STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION SIX CHARTS SHOWING BIOSTRATIGRAPHIC ZONES, AND CORRELATIONS BASED ON CONODONTS FROM THE DEVONIAN AND MISSISSIPPIAN ROCKS OF THE UPPER MISSISSIPPI VALLEY Charles Collinson Alan J. Scott Carl B. Rexroad ILLINOIS GEOLOGICAL SURVEY LIBRARY AUG 2 1962 ILLINOIS STATE GEOLOGICAL SURVEY URBANA 1962 CIRCULAR 328 I I co •H co • CO <— X c = c P o <* CO o CO •H C CD c +» c c • CD CO ft o e c u •i-CU CD p o TJ o o co CO TJ <D CQ x CO CO CO u X CQ a p Q CO *» P Mh coc T> CD *H O TJ O 3 O o co —* o_ > O p X <-> cd cn <d ^ JS o o co e CO f-l c c/i X ex] I— CD co = co r CO : co *H U to •H CD r I .h CO TJ x X CO fc TJ r-< X -P -p 10 co C => CO o O tJ CD X5 o X c c •> CO P <D = CO CO <H X> a> s CO co c %l •H CO CD co TJ P X! h c CD Q PI CD Cn CD X UJ • H 9 P CD CD CD p <D x c •—I X Q) p •H H X cn co p £ o •> CO o x p •>o C H O CO "P CO CO X > l Ct <-c . a> CD CO X •H D. CO O CO CM (-i co in Q.
    [Show full text]
  • Catalog of Type Specimens of Invertebrate Fossils: Cono- Donta
    % {I V 0> % rF h y Catalog of Type Specimens Compiled Frederick J. Collier of Invertebrate Fossils: Conodonta SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 9 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti­ tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com­ mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes­ sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by mailing lists to libraries, laboratories, and other in­ terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available.
    [Show full text]
  • Proceedings of the Indiana Academy of Science 83
    Proceedings of the Indiana Academy of Science 83 (1993) Volume 102 p. 83-91 CONODONTS FROM COAL BALLS IN THE SPRINGFIELD COAL MEMBER OF THE PETERSBURG FORMATION (DESMOINESIAN, PENNSYLVANIAN) IN SOUTHERN INDIANA Carl B. Rexroad Indiana Geological Survey 611 North Walnut Grove Bloomington, Indiana 47405 ABSTRACT: A well-preserved and moderately diverse conodont faunule was recovered from five coal balls in the Springfield Coal Member of the Petersburg Formation from Peabody Coal Com- pany's Eby Pit, Lynnville Mine, in Warrick County, Indiana. The presence of Neognathodus roundyi and the other species recorded in this study is compatible with the middle Desmoinesian age of the Springfield. Idioprioniodus conjunctus is the most ecologically diagnostic of the conodonts and suggests organic-rich, quiet water with a low pH, which in turn suggests that the conodonts lived in a salt-water marsh bordered on one side by coal swamps and on another by near-normal marine waters. Apparently coal balls had multiple origins, and the origin of the conodont-bearing ones is uncertain. INTRODUCTION Because marine fossils are commonly associated with plant fossils in some coal balls, it is not surprising that conodonts have been reported from them. A half-dozen well-pre- served conodonts from Pennsylvanian coal balls from three different States were figured by Mamay and Yochelson (1962), but no other conodonts were figured; therefore, the overall conodont content in coal balls is unknown. To better understand the distribution of conodonts and their paleoecologic impor- tance in coal balls, samples were processed from coal balls of the middle Desmoinesian Springfield Coal Member of the Petersburg Formation from the Eby Pit of Peabody Coal Company's Lynnville Mine (SW'/4 , SWA, NE'A, Sec.
    [Show full text]
  • On Some Occurrences of Diplognathodus in Carboniferous Strata of Western Europe and North Africa
    v.d. Boogaard, Diplognathodus from W. Europe & N. Africa, Scripta Geol., 69 (1983) On some occurrences of Diplognathodus in Carboniferous strata of Western Europe and North Africa M. van den Boogaard Boogaard, M. van den. On some occurrences of Diplognathodus in Carboniferous strata of Western Europe and North Africa. - Scripta Geol., 69: 19-29, 1 fig., 1 pl., October 1983. The occurrence is reported of Diplognathodus coloradoensis, D. orphanus and D. ellesmerensis in some localities in Western Europe and one locality in North Afri- ca. M. van den Boogaard, Rijksmuseum van Geologie en Mineralogie, Hooglandse Kerkgracht 17, 2312 HS Leiden, The Netherlands. Introduction 19 Localities 20 Palaeontology 23 Concluding remarks 25 References 27 Introduction Species of the genus Diplognathodus may be useful for stratigraphie correlation of Carboniferous strata because some of them are probably stratigraphically short-ranging (e.g. D. coloradoensis according to Landing & Wardlaw, 1981, pp. 1255-1256). Because still little is known about the distribution of représentants of the genus outside North America I thought it useful to relate the few occur• rences of D. coloradoensis, D. orphanus and D. ellesmerensis I encountered during my investigation of Carboniferous limestones from Western Europe and North Africa. 20 v.d. Boogaard, Diplognathodus from W. Europe & N. Africa, Scripta Geol., 69 (1983) Acknowledgements Thanks for placing the samples at my disposal are due to Drs C.F. Winkler Prins, H.A. van Adrichem Boogaert, M.J.M. Bless, and A.C. van Ginkel. The informa• tion concerning the Cinderhill sample given by Dr W.H.C. Ramsbottom is much appreciated. Thanks also go to Mr J.G.M.
    [Show full text]
  • Biostratigraphic Problems of Morrowan and Derryan (Atokan) Strata in the Pennsylvanian System of Western United States
    Biostratigraphic problems of Morrowan and Derryan (Atokan) strata in the Pennsylvanian System of western United States D. L. DUNN Gulf Research and Development Company, H.T.S.C., P.O. Box 36506, Houston, Texas 77036 ABSTRACT CONODONT ZONES Although both foraminiferal and conodont zonations have been Lane and Straka (1974) proposed a conodont zonation (Fig. 1) proposed for Lower and Middle Pennsylvanian strata, the current for Arkansas and Oklahoma utilizing slightly different terminology state of the art indicates that several proposed Morrowan cono- from that proposed by Lane and others (1971). They did not rec- dont zones and one important Derryan(?) fusulinid zone (21) and ognize the Streptognathodus expansus—S. suberectus, the the ranges of several important associated conodonts and Idiognathodus humerus—I. sinuosis, and the Streptognathodus fusulinids are in question. The conodont zones in question are the parvus—Adetognathus spathus Zones proposed earlier (Dunn, Gnathodus girtyi simplex, the Streptognathodus expansus-S. sub- 1970b), apparently because they did not believe these zones to be erectus, the Idiognathodus humerus—I. sinuosis, and the adequately documented in northeastern Oklahoma (Lane and Streptognathodus parvus— Adetognathus spathus Zones of Dunn Straka, 1974, p. 31). Lane and Straka (1974) have failed to recog- and the Idiognathodus sinuosis, I. klapperi, and 1. convexus nize the significance of some of the most important upper Mor- Zones of Lane and Straka. The conodonts whose ranges are in rowan index fossils now known — namely, those of the first and question are Gnathodus girtyi simplex, Rhachistognathus, third zones cited above — and, consequently, have demonstrated muricatus, Declinognathodus noduliferus, Adetognathus spathus, inconsistency in the correlation of Morrowan strata and in the Neognathodus bassleri bassleri, and Idiognathoides convexus.
    [Show full text]
  • BIASES in INTERPRETATION of the FOSSIL RECORD of CONODONTS by MARK A
    [Special Papers in Palaeontology, 73, 2005, pp. 7–25] BETWEEN DEATH AND DATA: BIASES IN INTERPRETATION OF THE FOSSIL RECORD OF CONODONTS by MARK A. PURNELL* and PHILIP C. J. DONOGHUE *Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK; e-mail: [email protected] Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; e-mail: [email protected] Abstract: The fossil record of conodonts may be among and standing generic diversity. Analysis of epoch ⁄ stage-level the best of any group of organisms, but it is biased nonethe- data for the Ordovician–Devonian interval suggests that less. Pre- and syndepositional biases, including predation there is generally no correspondence between research effort and scavenging of carcasses, current activity, reworking and and generic diversity, and more research is required to bioturbation, cause loss, redistribution and breakage of ele- determine whether this indicates that sampling of the cono- ments. These biases may be exacerbated by the way in which dont record has reached a level of maturity where few genera rocks are collected and treated in the laboratory to extract remain to be discovered. One area of long-standing interest elements. As is the case for all fossils, intervals for which in potential biases and the conodont record concerns the there is no rock record cause inevitable gaps in the strati- pattern of recovery of different components of the skeleton graphic distribution of conodonts, and unpreserved environ- through time. We have found no evidence that the increas- ments lead to further impoverishment of the recorded ing abundance of P elements relative to S and M elements spatial and temporal distributions of taxa.
    [Show full text]
  • Late Devonian Conodont Fauna of the Gümüflali Formation
    TurkishJournalofEarthSciences (TurkishJ.EarthSci.),Vol.9, 2000,pp.69-89. Copyright©TÜB‹TAK LateDevonianConodontFaunaoftheGümüflali Formation,theEasternTaurides,Turkey fiENOLÇAPKINO⁄LU&‹SMETGED‹K KaradenizTeknikÜniversitesi,JeolojiMühendisli¤iBölümü,TR-61080Trabzon,TURKEY (e-mail:[email protected]) Abstract: TheLateDevonianGümüflaliformationoftheeasternTauridesisaterrigenous-carbonaterocksequence about600mthick,consistingmainlyofquartzsandstone,quartzsiltstone,shale,andcarbonaterocks. Palaeontologicandsedimentologicdatamainlyindicateashallowsubtidaldepositionalenvironment.Thissequence generallyrepresentstheshallow-waterpolygnathid-icriodidbiofacies,andcontainsconodontfaunasthatrange fromtheUpperfalsiovalis ZoneintotheUpperpraesulcata Zone.However,theydonotcorrelatewelltotheLate Devonianstandardconodontzonationbecauseofthelackofzonallydiagnosticspeciesandtheirregularvertical distributionsofthepresenttaxa.Herein,54taxabelongingtoninegeneraaredescribedandillustratedfromthe studiedsection.Icriodusadanaensis,Icriodusfekeensis,andPolygnathusantecompressus arethenewlydescribed species. KeyWords: LateDevonian,conodont,Gümüflaliformation,easternTaurides,Turkey. GümüflaliFormasyonu’nun(Do¤uToroslar,Türkiye)GeçDevoniyen KonodontFaunas› Özet: Do¤uToroslarboyuncayayg›nyüzeylemeleriolanGeçDevoniyenyafll›Gümüflaliformasyonu,yaklafl›k600 metrekal›nl›¤aulaflanbirk›r›nt›l›-karbonatkayadizisidir.Litolojisinibafll›cakuvarskumtafl›,kuvarsmiltafl›,fleylve karbonatkayalar›n›noluflturdu¤ububiriminpaleontolojikvesedimantolojiközellikleri,çökelmeninbafll›cas›¤,gel- gitalt›ortamdageliflti¤ineiflareteder.Konodontfaunas›genelliklek›y›-yak›n›polygnathid-icriodidbiyofasiyesini
    [Show full text]
  • Ian, and the Early Upper Devonian Some Icriodus Species Such As
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ian, and the early Upper Devonian some Icriodus species such as /. fusiformis, I. culicellus, I. rectiro- stratus, I. retrodepressus, I. regularicrescens, I. obliquimarginatus and /. subterminus have a wide or so­ metimes nearly cosmopolite dispersion in different magnafacies areas (type Ardenno-Rhenish and Her- cynian-Bohemian) and there is no marked difference in the earliest occurrence of each species. This means that the geographical dispersion of at least some Icriodus species was due primarily to good com­ munication seaways which could be modified in the course of time and not to very specialised local fa­ des factors. Having in mind the SEDDON and SWEET model for conodonts, the dominance of Icrio­ dus in shallow water shelf environment implies no restriction in geographical dispersion. Particularly in this environment, anomalies in the vertical distribution ofPolygnathus taxa, e. g.,-P. serotinus, P. lingui- formis div. subspecies, P. cooperi cooperi can be noticed. Reexamination of Late Pennsylvanian and Early Permian Conodont Apparatuses Using Clustering Techniques. By T. R. CARR Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706, USA. Conodont faunas containing easily identified Pa elements assignable to the genera Diplognathodus and Hindeodus have been reported from Upper Pennsylvanian and Lower Permian strata of North Ame­ rica. If the seximembrate model for the apparatus of each genus is correct, the remaining elements should also be present. However, previous investigators have normally considered ramiform elements which might be assignable to the two genera as attributable to species of either the Idiognathodus— Streptognathodus plexus or Adetognathus.
    [Show full text]