Evolutionary Convergence and Divergence in Archaeal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 DMA-Tudor Interaction Modules Control the Specificity of In
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.297994; this version posted September 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. DMA-tudor interaction modules control the specificity of in vivo condensates Edward M. Courchaine1, Andrew E.S. Barentine2,3, Korinna Straube1, Joerg Bewersdorf2,3, Karla M. Neugebauer*1,2 5 1Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 2Cell Biology, Yale University, New Haven, CT 3Biomedical Engineering, Yale University, New Haven, CT 10 *Correspondence to: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.297994; this version posted September 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Summary: Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the ‘survival of motor neuron protein’ (SMN) is required for the formation of three different 15 membraneless organelles (MLOs), we hypothesized that at least one region of SMN employs a unifying mechanism of condensation. Unexpectedly, we show here that SMN’s globular tudor domain was sufficient for dimerization-induced condensation in vivo, while its two intrinsically disordered regions (IDRs) were not. The condensate-forming property of the SMN tudor domain required binding to its ligand, dimethylarginine (DMA), and was shared by at least seven 20 additional tudor domains in six different proteins. -
Identification of a Heterozygous ACAN Mutation in a 15-Year-Old Boy With
Case report https://doi.org/10.6065/apem.1938198.099 Ann Pediatr Endocrinol Metab 2020;25:272-276 Identification of a heterozygous ACAN mutation in a 15-year-old boy with short stature who presented with advanced bone age: a case report and review of the literature Tae Youp Kim, MD1, Longitudinal bone growth is primarily mediated by the growth plate, which is Kyung Mi Jang, MD, PhD1, a specialized cartilaginous structure. Aggrecan, encoded by ACAN, is a primary Chang Won Keum, PhD2, proteoglycan component of the extracellular matrix in both the growth plate and Seung Hwan Oh, MD, PhD3, articular cartilage. Aggrecanopathies have emerged as a phenotype of genetic Woo Yeong Chung, MD, PhD4 skeletal disease in humans. A heterozygous ACAN mutation causes short stature, premature growth cessation, and accelerated bone age maturation. We report 1Department of Pediatrics, Yeungnam the case of a 15-year-old boy with familial short stature, with height of 149 cm University Hospital, Yeungnam Univer- (Korean standard deviation score [SDS] of -3.6) and weight of 50.5 kg (-1.48 SDS). sity College of Medicine, Daegu, Korea He presented with mild midfacial hypoplasia, frontal bossing, a broad chest, and 2Rare Genetic Disease Research Center, a short neck. The father's and mother's heights were 150 cm (-4.8 SDS) and 153 3Billion INC, Seoul, Korea cm (-1.69 SDS), respectively. The patient's bone age was 2–3 years more advanced 3 Departments of Laboratory Medicine than his chronological age, and no endocrine abnormalities were detected. Whole- 4 and Pediatrics, Inje University Busan exome sequencing followed by Sanger sequencing revealed a heterozygous ACAN Paik Hospital, Inje University College of mutation, c.512C>T (p.Ala171Val), in both the proband and his father. -
Structural Characterisation of Aggrecan in Cartilaginous Tissues and Tissue Engineered Constructs a Thesis Submitted to the Univ
Structural Characterisation of Aggrecan in Cartilaginous Tissues and Tissue Engineered Constructs A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2017 Russell J Craddock The School of Biological Sciences Division of Cell Matrix Biology and Regenerative Medicine List of Contents List of Contents ................................................................................................................. 2 List of Figures ................................................................................................................... 6 List of Tables ..................................................................................................................... 8 List of Equations ............................................................................................................... 8 List of Conference Presentations and Publications ....................................................... 8 List of Abbreviations ........................................................................................................ 9 Abstract ........................................................................................................................... 10 Declaration ...................................................................................................................... 11 Copyright Statement ...................................................................................................... 11 Acknowledgements ........................................................................................................ -
Binding of Hyaluronan and Its Neutral Analog by TSG-6 Link Domain
Binding of hyaluronan and its neutral analog by TSG-6 Link domain Roman Witasek 1, Eva Kutálková 1, Josef Hrnčiřík 1 and Marek Ingr 1,2 1Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic 2Charles University, Faculty of Science, Department of Biochemistry, Hlavova 8/2030, 12843 Praha 2, Czech Republic 2nd Users’ Conference of Zlín IT4Innovations −> −> Hyaluronic acid (hyaluronan) – HA [4)-β-D-Glc pA-(1 3)-β-D-Glc pNAc-(1 ]n 1→3 1→4 1→3 1→4 1→4 • Essential component of proteoglycan - the main constituent of the extracellular matrix of connective tissues • Signaling molecule involved in carcinogenesis, inflammation and wound healing • Biological activity depends on the chain length (from MDa to short oligosaccharides) http://medinfo.ufl.edu/pa/chuck/summer/handouts/images/gag.jpg Hyaladherins – hyaluronan binding proteins TSG-6 Containing Link domain Consists of Link and CUB domain • Proteoglycan forming Link binds hyaluronan and other GAGs Aggrecan positively charged Brevican • CUB Neurocan not well known function Versican negatively charged Membrane receptors CUB CD44 – the main transmembrane receptor Link LYVE-1 – lymphatic endothelial cells Soluble receptor TSG-6 Without Link domain RHAMM – membrane receptor, partially disordered Inter-α-inhibitor Interactions of TSG-6 with glycosaminoglycans (GAGs) Several interactions of GAG oligosaccharides were identified by NMR experiments Computational details: Hyaluronan 1: K11, Y12, H45, V57, Y59, P60, I61, K63, F70, I76, Y78, R81, W88 • MD simulations carried out 2 st in GROMACS v. 5.1.1 Heparin : K34, K54, R56 + 1 mode: K20, K41, R84 ; • nd CHARMM 36 force field 2 mode: K72 • TIP3P model of water Chondroitin sulfate 3: 1st mode similar to HA ; • Water box 8 ×8×8 nm 2nd mode: K20, K34, K41, K54 • HA (GlcHA) oligosaccharides of 12 Questions: monosacharide units • TSG-6 Link domain – PDB code: 2N40 1. -
Histone Peptide Microarray Screen of Chromo and Tudor Domains Defines New Histone Lysine Methylation Interactions Erin K
Shanle et al. Epigenetics & Chromatin (2017) 10:12 DOI 10.1186/s13072-017-0117-5 Epigenetics & Chromatin RESEARCH Open Access Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions Erin K. Shanle1†, Stephen A. Shinsky2,3,6†, Joseph B. Bridgers2, Narkhyun Bae4, Cari Sagum4, Krzysztof Krajewski2, Scott B. Rothbart5, Mark T. Bedford4* and Brian D. Strahl2,3* Abstract Background: Histone posttranslational modifications (PTMs) function to regulate chromatin structure and function in part through the recruitment of effector proteins that harbor specialized “reader” domains. Despite efforts to eluci- date reader domain–PTM interactions, the influence of neighboring PTMs and the target specificity of many reader domains is still unclear. The aim of this study was to use a high-throughput histone peptide microarray platform to interrogate 83 known and putative histone reader domains from the chromo and Tudor domain families to identify their interactions and characterize the influence of neighboring PTMs on these interactions. Results: Nearly a quarter of the chromo and Tudor domains screened showed interactions with histone PTMs by peptide microarray, revealing known and several novel methyllysine interactions. Specifically, we found that the CBX/ HP1 chromodomains that recognize H3K9me also recognize H3K23me2/3—a poorly understood histone PTM. We also observed that, in addition to their interaction with H3K4me3, Tudor domains of the Spindlin family also recog- nized H4K20me3—a previously uncharacterized interaction. Several Tudor domains also showed novel interactions with H3K4me as well. Conclusions: These results provide an important resource for the epigenetics and chromatin community on the interactions of many human chromo and Tudor domains. -
Tnfα-Stimulated Gene-6 (TSG6) Activates Macrophage PNAS PLUS Phenotype Transition to Prevent Inflammatory Lung Injury
TNFα-stimulated gene-6 (TSG6) activates macrophage PNAS PLUS phenotype transition to prevent inflammatory lung injury Manish Mittala, Chinnaswamy Tiruppathia, Saroj Nepala, You-Yang Zhaoa, Dagmara Grzycha, Dheeraj Sonia, Darwin J. Prockopb,1, and Asrar B. Malika,1 aDepartment of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612 and bInstitute for Regenerative Medicine, Texas A&M University Health Science Center and College of Medicine, Bryan, TX 77807 Contributed by Darwin J. Prockop, November 3, 2016 (sent for review September 7, 2016; reviewed by Arshad Rehman and Sarah Yuan) TNFα-stimulated gene-6 (TSG6), a 30-kDa protein generated by acti- macrophages and other inflammatory cells sequestered in lungs (15). vated macrophages, modulates inflammation; however, its mechanism Macrophages in ALI are activated through the sensing of pathogen- of action and role in the activation of macrophages are not fully un- associated molecular patterns (PAMPs) and damage-associated derstood. Here we observed markedly augmented LPS-induced inflam- molecular patterns (DAMPs) via Toll-like receptors (TLRs). On −/− matory lung injury and mortality in TSG6 mice compared with WT binding of LPS to TLR4, macrophages produce proinflammatory +/+ (TSG6 ) mice. Treatment of mice with intratracheal instillation of cytokines, such as IFNγ,TNFα,andIL-1β,whichsignalthere- TSG6 prevented LPS-induced lung injury and neutrophil sequestration, cruitmentofneutrophilsandlymphocytes at the site of infection -
Genesdev19560 1..6
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION Vasileva et al. 2009; Wang et al. 2009; Siomi et al. 2010). Structural basis for In Drosophila, the Piwi family protein Aub is symmetri- methylarginine-dependent cally dimethylated at Arg11, Arg13, and Arg15, and loss of methylation at these sites disrupts the interaction with recognition of Aubergine the maternal effect protein Tud and reduces association with piRNA (Kirino et al. 2009, 2010; Nishida et al. 2009). by Tudor However, a mechanistic understanding of methylargi- Haiping Liu,1,2,6 Ju-Yu S. Wang,3,6 Ying Huang,3,4,6,7 nine-dependent Tud–Aub interaction is lacking. At present, no structure of any protein in complex with a symmetric Zhizhong Li,3 Weimin Gong,1 Ruth Lehmann,3,4,5,9 1,8 dimethylation of arginine (sDMA)-modified protein/peptide and Rui-Ming Xu has been reported. The best characterized sDMA–Tudor interaction to date is the binding of sDMA-modified spli- 1National Laboratory of Biomacromolecules, Institute of ceosomal Sm proteins by the Tudor domain of Survival Biophysics, Chinese Academy of Sciences, Beijing 100101, Motor Neuron (SMN) (Brahms et al. 2001; Friesen et al. People’s Republic of China; 2Graduate University of Chinese 2001; Sprangers et al. 2003), although an understanding of Academy of Sciences, Beijing 100049, People’s Republic of their binding mode in atomic resolution details is still China; 3The Helen L. and Martin S. Kimmel Center for Biology lacking. Interestingly, several Tudor domains have been and Medicine, Skirball Institute of Biomolecular Medicine, New shown to bind histone tails with methylated lysine resi- York University School of Medicine, New York, New York dues, and an understanding of the structural basis for 10016, USA; 4Howard Hughes Medical Institute, New York methyllysine recognition by Tudor domains has been de- University School of Medicine, New York, New York 10016, veloped (Botuyan et al. -
Ligand Binding and Signaling of HARE/Stabilin-2
biomolecules Review Ligand Binding and Signaling of HARE/Stabilin-2 Edward N. Harris * and Fatima Cabral Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA * Correspondence: [email protected]; Tel.: +1-(402)-472-7468 Received: 18 June 2019; Accepted: 7 July 2019; Published: 11 July 2019 Abstract: The Stabilin receptors are a two-member family in the type H class of scavenger receptors. These dynamic receptors bind and internalize multiple ligands from the cell surface for the purpose of clearing extracellular material including some synthetic drugs and for sensing the external environment of the cell. Stabilin-1 was the first receptor to be cloned, though the biological activity of Hyaluronic Acid Receptor for Endocytosis (HARE)/Stabilin-2 was observed about 10 years prior to the cloning of Stabilin-1. Stabilin-1 has a more diverse expression profile among the tissues than HARE/Stabilin-2. This review will focus on HARE/Stabilin-2 and its interactions with hyaluronan, heparin, and phosphorothioate antisense oligonucleotides and what is known about how this receptor participates in signaling upon ligand binding. Keywords: stabilin; HARE; receptor-mediated endocytosis; scavenger receptor; hyaluronan 1. Initial Discovery The discovery of the cloned Stabilin receptors began with Stabilin-1 in the early 1990s. A monoclonal antibody raised against whole human spleen homogenate produced a monoclonal antibody (MS-1) against an antigen that was initially identified as a large protein that is preferentially expressed in the sinusoidal endothelia of spleen, lymph node, liver, and adrenal cortex [1]. The identified MS-1 antigen is an inducible protein not found in normal skin lesions, but rather in diseased skin and some cancers such as psoriasis, melanoma, and T-cell lymphomas. -
A Tudor Domain Protein, SIMR-1, Promotes Sirna Production at Pirna- Targeted Mrnas in C. Elegans
RESEARCH ARTICLE A tudor domain protein, SIMR-1, promotes siRNA production at piRNA- targeted mRNAs in C. elegans Kevin I Manage1, Alicia K Rogers1, Dylan C Wallis1, Celja J Uebel1, Dorian C Anderson1, Dieu An H Nguyen1, Katerina Arca1, Kristen C Brown2,3, Ricardo J Cordeiro Rodrigues4,5, Bruno FM de Albuquerque4, Rene´ F Ketting4, Taiowa A Montgomery2, Carolyn Marie Phillips1* 1Department of Biological Sciences, University of Southern California, Los Angeles, United States; 2Department of Biology, Colorado State University, Fort Collins, United States; 3Cell and Molecular Biology Program, Colorado State University, Fort Collins, United States; 4Biology of Non-coding RNA Group, Institute of Molecular Biology, Mainz, Germany; 5International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, Mainz, Germany Abstract piRNAs play a critical role in the regulation of transposons and other germline genes. In Caenorhabditis elegans, regulation of piRNA target genes is mediated by the mutator complex, which synthesizes high levels of siRNAs through the activity of an RNA-dependent RNA polymerase. However, the steps between mRNA recognition by the piRNA pathway and siRNA amplification by the mutator complex are unknown. Here, we identify the Tudor domain protein, SIMR-1, as acting downstream of piRNA production and upstream of mutator complex-dependent siRNA biogenesis. Interestingly, SIMR-1 also localizes to distinct subcellular foci adjacent to P granules and Mutator foci, two phase-separated condensates that are the sites of piRNA- dependent mRNA recognition and mutator complex-dependent siRNA amplification, respectively. *For correspondence: Thus, our data suggests a role for multiple perinuclear condensates in organizing the piRNA [email protected] pathway and promoting mRNA regulation by the mutator complex. -
Biogenesis and Mechanism of Action of Small Non-Coding Rnas: Insights from the Point of View of Structural Biology
Int. J. Mol. Sci. 2012, 13, 10268-10295; doi:10.3390/ijms130810268 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Biogenesis and Mechanism of Action of Small Non-Coding RNAs: Insights from the Point of View of Structural Biology Marina C. Costa 1, Ana Lúcia Leitão 2 and Francisco J. Enguita 1,* 1 Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal; E-Mail: [email protected] 2 Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-21-7999503; Fax: +351-21-7999412. Received: 30 May 2012; in revised form: 17 July 2012 / Accepted: 2 August 2012 / Published: 17 August 2012 Abstract: Non-coding RNAs are dominant in the genomic output of the higher organisms being not simply occasional transcripts with idiosyncratic functions, but constituting an extensive regulatory network. Among all the species of non-coding RNAs, small non-coding RNAs (miRNAs, siRNAs and piRNAs) have been shown to be in the core of the regulatory machinery of all the genomic output in eukaryotic cells. Small non-coding RNAs are produced by several pathways containing specialized enzymes that process RNA transcripts. The mechanism of action of these molecules is also ensured by a group of effector proteins that are commonly engaged within high molecular weight protein-RNA complexes. -
CXCL8 Direct Interaction with the Chemokine TSG-6 Inhibits
TSG-6 Inhibits Neutrophil Migration via Direct Interaction with the Chemokine CXCL8 This information is current as Douglas P. Dyer, Jennifer M. Thomson, Aurelie Hermant, of September 23, 2021. Thomas A. Jowitt, Tracy M. Handel, Amanda E. I. Proudfoot, Anthony J. Day and Caroline M. Milner J Immunol 2014; 192:2177-2185; Prepublished online 5 February 2014; doi: 10.4049/jimmunol.1300194 Downloaded from http://www.jimmunol.org/content/192/5/2177 Supplementary http://www.jimmunol.org/content/suppl/2014/02/05/jimmunol.130019 Material 4.DCSupplemental http://www.jimmunol.org/ References This article cites 56 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/192/5/2177.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology TSG-6 Inhibits Neutrophil Migration via Direct Interaction with the Chemokine CXCL8 Douglas P. -
Structural Basis for Recognition of Arginine Methylated Piwi Proteins by the Extended Tudor Domain
Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain Ke Liua,b,1, Chen Chenc,1, Yahong Guob,1, Robert Lamb, Chuanbing Bianb, Chao Xub, Dorothy Y. Zhaoc, Jing Jinc, Farrell MacKenzieb, Tony Pawsonc,d,2, and Jinrong Mina,b,e,2 aHubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Huazhong Normal University, Wuhan 430079, People’s Republic of China; bStructural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada; cSamuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; dDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; and eDepartment of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8 Contributed by Tony Pawson, September 2, 2010 (sent for review August 23, 2010) Arginine methylation modulates diverse cellular processes and The Tudor domain, together with Chromo, MBT, PWWP, and represents a molecular signature of germ-line-specific Piwi family Agenet-like domains, comprise the “royal family” of protein proteins. A subset of Tudor domains recognize arginine methylation domains that engage in protein–protein interactions (16, 17). modifications, but the binding mechanism has been lacking. Here The Tudor domain is characterized by a β-barrel core and in many we establish that, like other germ-line Tudor proteins, the ancestral cases an aromatic cage suitable for docking methylated lysine or staphylococcal nuclease domain-containing 1 (SND1) polypeptide is arginine (16, 18). The Tudor domain family is largely divided into expressed and associates with PIWIL1/Miwi in germ cells. We find two groups: a methyllysine binding group (i.e., JMJD2A, 53BP1) that human SND1 binds PIWIL1 in an arginine methylation-depen- and a methylarginine binding group (SMN, TDRD group [Tdrd1- dent manner with a preference for symmetrically dimethylated Tdrd12]) (19).