Spatiotemporal Distribution and Population Structure of Clibanarius Symmetricus (Randall, 1840) (Crustacea, Diogenidae) in an Amazon Estuary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Calcinus (Decapoda: Anomura: Diogenidae) from the Tropical Western Atlantic, and a Comparison with Other Species of the Genus from the Region
20 April 1994 PROC. BIOL. SOC. WASH. 107(1), 1994, pp. 137-150 A NEW CALCINUS (DECAPODA: ANOMURA: DIOGENIDAE) FROM THE TROPICAL WESTERN ATLANTIC, AND A COMPARISON WITH OTHER SPECIES OF THE GENUS FROM THE REGION Nestor H. Campos and Rafael Lemaitre Abstract.—A new species of a diogenid hermit crab, Calcinus urabaensis, is described from the Gulf of Uraba, on the Caribbean coast of Colombia. The new species is the third in the genus described from the western Atlantic, and can be distinguished from the other two known species of the genus Calcinus in the region, C. tibicen (Herbst) and C. verrilli (Rathbun), by differences in coloration and armature of the dactyl of the left cheliped, third pereopod, and telson. A comparison of the three species is included. Resumen.—Se describe una nueva especie de cangrejo ermitano pertenecienta a la familia Diogenidae, Calcinus urabaensis, colectada en el Golfo de Uraba, Caribe sur. La nueva especie es la tercera conocida de este genero en el Atlantico occidental, y se diferencia de las otras dos especies del genero Calcinus de la region, C tibicen (Herbst) y C. verrilli (Rathbun), en la coloracion y espinas del dactilo de la quela izquierda, tercer pereopodo, y telson. Se presenta una comparacion de las tres especies. Compared to other tropical regions of the junior synonyms of C tibicen (see Proven world oceans, the western Atlantic contains zano 1959; McLaughlin, pers. comm.). very few species of the diogenid genus Cal In 1985, during an expedition to the Gulf cinus Dana, 1852. Recent studies of Cal of Uraba, on the Caribbean coast of Colom cinus species in the Pacific, for example, have bia (Campos & Manjarres 1988), the senior shown that nine species occur on the Ha author collected a male hermit crab be waiian Islands (Haig & McLaughlin 1984), lieved to represent an undescribed species 11 species on the Mariana Islands (Wooster of Calcinus. -
Spermatophore Morphology of the Endemic Hermit Crab Loxopagurus Loxochelis (Anomura, Diogenidae) from the Southwestern Atlantic - Brazil and Argentina
Invertebrate Reproduction and Development, 46:1 (2004) 1- 9 Balaban, Philadelphia/Rehovot 0168-8170/04/$05 .00 © 2004 Balaban Spermatophore morphology of the endemic hermit crab Loxopagurus loxochelis (Anomura, Diogenidae) from the southwestern Atlantic - Brazil and Argentina MARCELO A. SCELZ01*, FERNANDO L. MANTELATT02 and CHRISTOPHER C. TUDGE3 1Departamento de Ciencias Marinas, FCEyN, Universidad Nacional de Mar del Plata/CONICET, Funes 3350, (B7600AYL), Mar del Plata, Argentina Tel. +54 (223) 475-1107; Fax: +54 (223) 475-3150; email: [email protected] 2Departamento de Biologia, Faculdade de Filosojia, Ciencias e Letras de Ribeirao Preto (FFCLRP), Universidade de Sao Paulo (USP), Av. Bandeirantes 3900, Ribeirao Preto, Sao Paulo, Brasil 3Department of Systematic Biology, National Museum ofNatural History, Smithsonian Institution, Washington, DC 20013-7012, USA Received 10 June 2003; Accepted 29 August 2003 Summary The spermatophore morphology of the endemic and monotypic hermit crab Loxopagurus loxochelis from the southwestern Atlantic is described. The spermatophores show similarities with those described for other members of the family Diogenidae (especially the genus Cliba narius), and are composed of three major regions: a sperm-filled, circular flat ampulla; a columnar stalk; and a pedestal. The morphology and size of the spermatophore of L. loxochelis, along with a distinguishable constriction or neck that penetrates almost halfway into the base of the ampulla, are characteristic of this species. The size of the spermatophore is related to hermit crab size. Direct relationships were found between the spermatophore ampulla width, total length, and peduncle length with carapace length of the hermit crab. These morphological characteristics and size of the spermatophore ofL. -
2020/2021 Field Course Homework Assignment
2020/2021 Field Course Homework Assignment Our class only meets once per month so in order to make the most out of our time together, please complete your monthly homework assignment on the respective topic prior to the class. Each assignment includes scripture reading, reading online articles, watching videos, and answering provided questions. Please complete the assignment for the appropriate class, answering the assigned questions, taking notes on the reading and be prepared to discuss it during our class time. “The works of the Lord are great, studied by all who have pleasure in them.” Psalm 111:2 Each assignment includes an “Apply What You’ve Learned” section that offers the students a chance to write a prayer of praise to the Lord for His Creation. This is because science class done correctly becomes a worship service. Students are encouraged to use these sections to offer heartfelt praise to the Lord. Questions If there are questions regarding the homework assignments, contact your instructor, Christa Jewett, using the following information: Phone Number: 954-895-8579 (No calls after 9:00 PM, please!) Email: [email protected] Click Here to View a Printable Version of this Lesson Plan O Lord, how manifold are Your works! In wisdom, You have made them all, the earth is full of your possessions – this great and wide sea, in which are innumerable teeming things, living things both small and great. Psalm 104:24- 25 Please note that this section of your homework assignment is to be completed before the class scheduled for December 11, 2020. To complete your homework, read the scriptures and assigned online articles and answer the associated questions. -
University of Florida Thesis Or Dissertation
DOES CULTCH TYPE AND RESTORATION HISTORY INFLUENCE DECAPOD CRUSTACEAN COLONIZATION OF OYSTER REEFS? By MEGAN SCHERRER LAMB A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 © 2018 Megan Scherrer Lamb To the oysters ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Behringer, for taking me on as a distance student and providing me with counsel and advice. Thank you to my committee members Dr. Andy Kane and Dr. Shirley Baker who provided valuable input and support. I would like to thank my lab mates for welcoming me to the lab and their willingness to help me, even though they saw me more over a computer screen than in person. Thank you to the Apalachicola National Estuarine Research Reserve which has provided support, water quality data, and equipment use to allow me to complete this project, especially J. Garwood and C. Snyder for technical assistance. Thank you to C. Jones and J. Shields at the Florida Department of Agriculture and Consumer Services for answering questions and providing fossilized material used in collectors. Additional shell material was provided by T. Ward and Paddy’s Raw Bar. I would like to thank D. Armentrout, T. Griffith, M. K. Davis, M. Davis, C. Snyder, E. Bourque, M. Christopher, K. Peter, H. Heinke-Green, S. Simpson, and W. Annis for assistance with field sample collection. Thanks to J. Collee from UF-IFAS Consulting provided assistance with statistical methods. I would like to thank my parents for all the support, encouragement, and education they have provided me with over my entire lifetime. -
Molecular Phylogenetic Analysis of the Paguristes Tortugae Schmitt, 1933 Complex and Selected Other Paguroidea (Crustacea: Decapoda: Anomura)
Zootaxa 4999 (4): 301–324 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4999.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:ACA6BED4-7897-4F95-8FC8-58AC771E172A Molecular phylogenetic analysis of the Paguristes tortugae Schmitt, 1933 complex and selected other Paguroidea (Crustacea: Decapoda: Anomura) CATHERINE W. CRAIG1* & DARRYL L. FELDER1 1Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, Louisiana, 70504–2451, [email protected]; https://orcid.org/0000-0001-7679-7712 *Corresponding author. [email protected]; https://orcid.org/0000-0002-3479-2654 Abstract Morphological characters, as presently applied to describe members of the Paguristes tortugae Schmitt, 1933 species complex, appear to be of limited value in inferring phylogenetic relationships within the genus, and may have similarly misinformed understanding of relationships between members of this complex and those presently assigned to the related genera Areopaguristes Rahayu & McLaughlin, 2010 and Pseudopaguristes McLaughlin, 2002. Previously undocumented observations of similarities and differences in color patterns among populations additionally suggest genetic divergences within some species, or alternatively seem to support phylogenetic groupings of some species. In the present study, a Maximum Likelihood (ML) phylogenetic analysis was undertaken based on the H3, 12S mtDNA, and 16S mtDNA sequences of 148 individuals, primarily representatives of paguroid species from the western Atlantic. This molecular analysis supported a polyphyletic Diogenidae Ortmann, 1892, although incomplete taxonomic sampling among the genera of Diogenidae limits the utility of this finding for resolving family level relationships. -
The Effects of Isolation on the Behavioral Interactions of Juvelnille Land Hermit Crabs (Coenobitidae) from the Motus of Mo’Orea, French Polynesia
ONE IS THE LONLIEST NUMBER: THE EFFECTS OF ISOLATION ON THE BEHAVIORAL INTERACTIONS OF JUVELNILLE LAND HERMIT CRABS (COENOBITIDAE) FROM THE MOTUS OF MO’OREA, FRENCH POLYNESIA *WITH AN APPENDIX SURVEYING THE HERMIT CRAB SPECIES PRESENT ON SELECT MO’OREAN MOTUS. VANESSA E. VAN ZERR Integrative Biology, University of California, Berkeley, California 94720 USA, [email protected] Abstract. Hermit crabs interact with each other in a variety of ways involving spatial use (aggregations, migrations), housing (shells), mating, recognition of conspecifics, and food. To test if isolation from conspecifics affects the behavioral interactions of hermit crabs, crabs of the species Coenobita rugosus (Milne‐Edwards 1837) of Mo’orea, French Polynesia were isolated from each other for two days, four days, six days, fifteen days, and twenty‐two days. They were kept in individual opaque containers with separate running seawater systems to prevent them from seeing or smelling each other. Afterwards, the hermit crabs were put into a tank two at a time and their behavior was recorded and compared to the behaviors of non‐isolated crabs. Behaviors looked at fell into two categories: 1) “social” interactions, meaning that the crabs reacted to each other’s presence, and 2) “nonsocial” interactions, meaning that the crabs either ignored each other’s presence or actively avoided behavioral interactions with other crabs. Results indicated that although “social” behavior showed a slight decreasing trend over time, it was not significant; however, the amount of “nonsocial” avoidance behavior seen increased significantly the longer crabs were isolated. Key words: hermit crab, Coenobita, Calcinus, Dardanus, isolation, behavior, motu. INTRODUCTION: sex ratios are uneven (Wada S. -
Subdividing the Common Intertidal Hermit Crab Pagurus Minutus Hess
Zoological Studies 57: 61 (2018) doi:10.6620/ZS.2018.57-61 Open Access Subdividing the Common Intertidal Hermit Crab Pagurus minutus Hess, 1865 (Decapoda: Anomura: Paguridae) Based on Molecular, Morphological and Coloration Analyses Jibom Jung1, Jongwoo Jung2,*, and Won Kim1,* 1School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. E-mail: [email protected] 2Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea (Received 15 April 2018; Accepted 23 November 2018; Published 30 December 2018; Communicated by Benny K.K. Chan) Citation: Jung J, Jung J, Kim W. 2018. Subdividing the common intertidal hermit crab Pagurus minutus Hess, 1865 (Decapoda: Anomura: Paguridae) based on molecular, morphological and coloration analyses. Zool Stud 57:61. doi:10.6620/ZS.2018.57-61. Jibom Jung, Jongwoo Jung, and Won Kim (2018) A phylogenetic study was conducted to investigate whether distinct genetic groups are present within the East Asian Pagurus minutus. In this study, 167 individuals of P. minutus were collected along the coasts of South Korea, east coast of Honshu, west coast of Kyushu, Okinawa Islands of Japan, and Taiwan. The collection of P. minutus was divided into three groups based on the differences in cytochrome c oxidase subunit I (COI) sequences and morphological and color characters: Major Group (MAG), Minor Group (MIG), and Taiwan-Okinawa Group (TOG). MAG commonly inhabits the entire coast of South Korea (except for the northeast coast), east coast of Honshu, and west coast of Kyushu in Japan. MIG predominantly inhabits the northeast coast of South Korea, while a small proportion inhabits the west coast of South Korea and west coast of Kyushu in Japan. -
A Novel Interaction: the Thin Stripe Hermit Crab, Clibanarius
A NOVEL INTERACTION: THE THIN STRIPE HERMIT CRAB, CLIBANARIUS VITTATUS, KILLS THE FLORIDA CROWN CONCH, MELONGENA CORONA, FOR ITS SHELL by Jennifer Cutter A Thesis Submitted to the Faculty of Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2017 Copyright by Jennifer Cutter 2017 ii ACKNOWLEDGEMENTS I would like to thank Florida Atlantic University, Harbor Branch Oceanographic Institute, and Dr. Donna Devlin for giving me the opportunity to conduct this fascinating study. I would also like to thank the other committee members (Dr. Vincent Encomio, Dr. Edward Proffitt, and Dr. William Brooks) for their help, advice, and guidance. This work was made possible through funding from the Indian River Lagoon Research Fellowship awarded by the Harbor Branch Foundation and a scholarship awarded by The Broward Shell Club. Additionally, I would like to thank Dr. Richard Turner for being willing to meet with me on several occasions to answer questions and share his vast knowledge. iv ABSTRACT Author: Jennifer Cutter Title: A Novel Interaction: The thin stripe hermit Crab, Clibanarius vittatus, kills the Florida crown conch, Melongena corona, for its shell Institution: Florida Atlantic University Thesis Advisor: Dr. Donna Devlin Degree: Master of Science Year: 2017 The hermit crab Clibanarius vittatus kills Melongena corona solely to acquire a better fitting shell. This finding is contrary to previous studies, which found that hermit crabs of other species cannot kill gastropods or, in most instances, remove freshly dead gastropods from their shells. This interaction cannot be classified as predation because Melongena tissue was never consumed. -
Hermit Crabs from the South China Sea (Crustacea: Decapoda: Anomura: Diogenidae, Paguridae, Parapaguridae)
THE RAFFLES BULLETIN OF ZOOLOGY 2000 Supplement No. 8: 377-404 © National University of Singapore HERMIT CRABS FROM THE SOUTH CHINA SEA (CRUSTACEA: DECAPODA: ANOMURA: DIOGENIDAE, PAGURIDAE, PARAPAGURIDAE) Dwi Listyo Rahayu Rand D Center for Oceanology, Indonesian Institute of Sciences (LIP/), Jt. Pasir Putih I, Ancol Timur, PO Box 4801 JKTF, Jakarta 11048, Indonesia ABSTRACT. - One hundred and two species of hermit crabs are recorded from the South China Sea. Information presented is from published references to the species. Most of the species are widely distributed in the Indo-West Pacific. INTRODUCTION Studies on hermit crabs of the South China Sea were done mostly according to country border and not to geographical border, such as hermit crab of Singapore and Malaysia (Nobili, 1900; 1903a, c; Lanchester, 1902; Rahayu, 1996), Vietnam (Fize & Serene, 1955; Forest, 1956c; 1958), Philippines (Estampador, 1937, 1959), Taiwan (Yu, 1987; Yu & Foo, 1990) and China (Wang, 1994). Some hermit crabs from this region are mentioned in the revision of one or more taxonomical groups, such as revision of the family Parapaguridae (de Saint Laurent, 1972; Lemaitre, 1996, 1997), genus Aniculus (Forest, 1984), genus Pagurixus (McLaughlin & Haig, 1984), genus Pylopaguropsis (McLaughlin & Haig, 1989), genus Pylopagurus and Tomopagurus (McLaughlin & Gunn, 1992) and genus Trizopagurus (Forest, 1995). One hundred and two species belonging to family Diogenidae, Paguridae and Parapaguridae are recorded from the South China Sea. The family Diogenidae is represented by eight genera (Aniculus, Calcinus, Ciliopagurus, Clibanarius, Dardanus, Diogenes, Paguristes and Strigopagurus), the family Paguridae is represented by eight genera (Australeremus, Ceratopagurus, Nematopagurus, Paguritta, Pagurixus, Pagurus, Pylopaguropsis and Spiropagurus) and the family Parapaguridae is represented by four genera (Bivalvopagurus, Oncopagurus, Paragiopagurus, and Sympagurus). -
Hermit Crab Is a Small Hermit Crabs in the Families Paguridae and Diogenidae Are All Crustacean Found in Ocean Aquatic Marine Crabs
4 These crabs inhabit the local shoreline Pagurus bernhardus year Pagurus prideaux round. Class: Malacotraca Order: Decapoda Family: Paguridae Genus: Pagurus Pagurus bernhardus Distribution The hermit crab is a small Hermit crabs in the families Paguridae and Diogenidae are all crustacean found in ocean aquatic marine crabs. The family Paguridae on its own contains waters worldwide. Many several hundred different species. This species P. bernhardus is species are known from known to occur from Spitsbergen, Iceland and the Murman Sea only one or a few localities, throughout the boreal North American and European coasts and many are known world and in the Mediterranean Sea. It is common in Nova Scotian wide. New species are coastal waters. This is one of two known species occurring occurring. locally at Burntcoat Head. The other species is P. prideaux. It is similar in appearance and has somewhat the same distribution. Habitat They live along coasts in Although hermit crabs do venture into deeper waters, they are most types of sea beds, more commonly found in coastal waters where there is more including rocky and shell food and places to hide. Smaller individuals live in shallower bottoms, in sea grass beds, waters than larger individuals. A few species are land based. and sandy or silty Female terrestrial hermit crabs must return to the sea to breed. sediments, but excluding Larvae live mainly in pools and may be found under objects muddy bottoms. such as rocks and seaweed. Food It consumes microscopic bivalves, scraps of dead animals, The hermit crab is an microbes, and detritus. They are also able to filter organic omnivorous scavenger, particles from the water and will even graze on periphyton (a feeding on a wide variety of type of algae). -
Crustacea: Anomura: Diogenidae)
Memoirs of Museum Victoria 60(1): 91–97 (2003) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs Calcinus hermit crabs from Easter Island, with biogeographic considerations (Crustacea: Anomura: Diogenidae) JOSEPH POUPIN1, CHRISTOPHER B. BOYKO2 AND GUILLERMO L. GUZMÁN3 1Institut de Recherche de l'École navale, IRENav, École navale, Lanvéoc-Poulmic, BP 600, 29240 Brest Naval, France ([email protected]) 2Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA ([email protected]) 3Museo del Mar Universidad Arturo Prat, Casilla 121, Iquique, Chile ([email protected]) Abstract Poupin, J., Boyko, C.B., and Guzmán, G.L. 2003. Calcinus hermit crabs from Easter Island, with biogeographic consid- erations (Crustacea: Anomura: Diogenidae). In: Lemaitre, R., and Tudge, C.C. (eds), Biology of the Anomura. Proceedings of a symposium at the Fifth International Crustacean Congress, Melbourne, Australia, 9–13 July 2001. Memoirs of Museum Victoria 60(1): 91–97. From collections made in 1998 and 1999, three species of Calcinus are recorded from Easter I.: Calcinus pascuensis Haig, 1974; C. imperialis Whitelegge, 1901; and C. vachoni Forest, 1958. A redescription of Calcinus pascuensis is given and a neotype is selected. Occurrence of Calcinus imperialis is confirmed by examination of almost 80 specimens, including many juveniles. Calcinus vachoni is recorded for the first time from the island. The Easter I. Calcinus fauna is compared with that of other localities in the Pacific, and biogeographic affinities are discussed. Keywords Crustacea, Anomura, Diogenidae, Calcinus, biogeography, Easter Island Introduction genus Calcinus were obtained, with only three species repre- sented: C. -
Ix. References
IX. REFERENCES BAXTER, K. N., C. H. FURR, JR., and E. SCOTT. 1988. The commercial bait shrimp fishery in Galveston Bay, Texas, 1959-87. Mar. Fish. Rev., 50(2):20- 28. BESSETTE, C. 1985. Growth, distribution and abundance of juvenile penaeid shrimp in Galveston Bay. M.S. Thesis submitted to University of Houston, Department of Biology. Houston, TX. 132 p. BLACKBURN, C. J., and S. K. DAVIS. 1992. Bycatch in the Alaska region: Problems and management measures ~ historic and current. In, R. W. Schoning, R.W. Jacobson, D. L. Alverson, T. H. Gentle, and J. Auyong (editors), Proceedings Of The National Industry Bycatch Workshop, February 4-6, 1992, Newport, OR. Natural Resources Consultants. Seattle, WA. pp. 88-105. CAMPBELL, R. P., C. HONS, and L. M. GREEN. 1991. Trends in fmfish landings of sport-boat anglers in Texas marine waters, May 1974 - May 1990. Texas Parks and Wildlife Department, Management Data Ser. No. 75. 209 p. DAILEY, J. A., J. C. KANA, AND L. W. MCEACHRON. 1991. Trends in relative abundance of selected finfishes and shellfishes along the Texas Coast: November 1975 - December 1990. Texas Parks and Wildlife Department, Management Data Ser. No. 74, 128 p. DE DIEGO, M.E. 1984. Description of three ecology studies on brown shrimp Penaeus aztecus and white shrimp P. setiferus conducted by the National Marine Fisheries Service, Galveston, Texas. Paper submitted in partial fulfillment of M. Ag. Thesis. Texas A&M University, Department of Wildlife and Fisheries Science (Aquaculture). December 1984. 30 pp. DIVITA, R., M. CREEL, and P. F. SHERIDAN. 1983. Foods of coastal fishes during brown shrimp Penaeus aztecus, migration frm Texas estuaries (June - July 1981).