Larval Development of the Land Hermit Crab Coenobita Compressus H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Calcinus (Decapoda: Anomura: Diogenidae) from the Tropical Western Atlantic, and a Comparison with Other Species of the Genus from the Region
20 April 1994 PROC. BIOL. SOC. WASH. 107(1), 1994, pp. 137-150 A NEW CALCINUS (DECAPODA: ANOMURA: DIOGENIDAE) FROM THE TROPICAL WESTERN ATLANTIC, AND A COMPARISON WITH OTHER SPECIES OF THE GENUS FROM THE REGION Nestor H. Campos and Rafael Lemaitre Abstract.—A new species of a diogenid hermit crab, Calcinus urabaensis, is described from the Gulf of Uraba, on the Caribbean coast of Colombia. The new species is the third in the genus described from the western Atlantic, and can be distinguished from the other two known species of the genus Calcinus in the region, C. tibicen (Herbst) and C. verrilli (Rathbun), by differences in coloration and armature of the dactyl of the left cheliped, third pereopod, and telson. A comparison of the three species is included. Resumen.—Se describe una nueva especie de cangrejo ermitano pertenecienta a la familia Diogenidae, Calcinus urabaensis, colectada en el Golfo de Uraba, Caribe sur. La nueva especie es la tercera conocida de este genero en el Atlantico occidental, y se diferencia de las otras dos especies del genero Calcinus de la region, C tibicen (Herbst) y C. verrilli (Rathbun), en la coloracion y espinas del dactilo de la quela izquierda, tercer pereopodo, y telson. Se presenta una comparacion de las tres especies. Compared to other tropical regions of the junior synonyms of C tibicen (see Proven world oceans, the western Atlantic contains zano 1959; McLaughlin, pers. comm.). very few species of the diogenid genus Cal In 1985, during an expedition to the Gulf cinus Dana, 1852. Recent studies of Cal of Uraba, on the Caribbean coast of Colom cinus species in the Pacific, for example, have bia (Campos & Manjarres 1988), the senior shown that nine species occur on the Ha author collected a male hermit crab be waiian Islands (Haig & McLaughlin 1984), lieved to represent an undescribed species 11 species on the Mariana Islands (Wooster of Calcinus. -
Spermatophore Morphology of the Endemic Hermit Crab Loxopagurus Loxochelis (Anomura, Diogenidae) from the Southwestern Atlantic - Brazil and Argentina
Invertebrate Reproduction and Development, 46:1 (2004) 1- 9 Balaban, Philadelphia/Rehovot 0168-8170/04/$05 .00 © 2004 Balaban Spermatophore morphology of the endemic hermit crab Loxopagurus loxochelis (Anomura, Diogenidae) from the southwestern Atlantic - Brazil and Argentina MARCELO A. SCELZ01*, FERNANDO L. MANTELATT02 and CHRISTOPHER C. TUDGE3 1Departamento de Ciencias Marinas, FCEyN, Universidad Nacional de Mar del Plata/CONICET, Funes 3350, (B7600AYL), Mar del Plata, Argentina Tel. +54 (223) 475-1107; Fax: +54 (223) 475-3150; email: [email protected] 2Departamento de Biologia, Faculdade de Filosojia, Ciencias e Letras de Ribeirao Preto (FFCLRP), Universidade de Sao Paulo (USP), Av. Bandeirantes 3900, Ribeirao Preto, Sao Paulo, Brasil 3Department of Systematic Biology, National Museum ofNatural History, Smithsonian Institution, Washington, DC 20013-7012, USA Received 10 June 2003; Accepted 29 August 2003 Summary The spermatophore morphology of the endemic and monotypic hermit crab Loxopagurus loxochelis from the southwestern Atlantic is described. The spermatophores show similarities with those described for other members of the family Diogenidae (especially the genus Cliba narius), and are composed of three major regions: a sperm-filled, circular flat ampulla; a columnar stalk; and a pedestal. The morphology and size of the spermatophore of L. loxochelis, along with a distinguishable constriction or neck that penetrates almost halfway into the base of the ampulla, are characteristic of this species. The size of the spermatophore is related to hermit crab size. Direct relationships were found between the spermatophore ampulla width, total length, and peduncle length with carapace length of the hermit crab. These morphological characteristics and size of the spermatophore ofL. -
Observations on the Biology of the Hermit Crab, Coenobita Compressus H
Rev. Bio!' Tl'Op.. 20(2). 265-273. 1972 Observations on the biology of the hermit crab, Coenobita compressus H. Milne Edwards (Decapoda; Anomura) on the west coast of the Americas* by Eldon E. BaU" t, (Received for pubJi(ation )uly 5, 1972) AnSTRACT: The 5emi·terre,t¡ial hwnit rompl'eJ!llf, IS one erab, Cut/wbitll of tbe most conspicuous supra-littoral invertcbrates on the \Vest coast of the Amtrican UOpiC5. During Stanfvrcl Qctanographic Expeditivn lS. which 5�mplcd lhe intenidal Hora anJ fau"" al variouó points betwc�n Peru ami California, information \Vas (ollcctcd on lhe nahlral history of this species over a \Vide ran,¡;c oí lalitudes and habitatl, Thi5 information, whieh i, sumo mari!�d here, includes detJils on color, distribution, local names, type of .\ hell oc�\lpied, pcrccntage of fcm�k, ovigerous al \'ariou, localities, food and \'JriOllS a:;pteb oi beha,'i()!'. 111e semi·terrcstrial hcrmit crab H. MiJl1C Edwards CQ(J10bit" compl'l'JJtti IS a conspicuous and frcqucntly abundant iohabitant of the supra.Jittoral zone of thc castcrn tropical Pacific fl'OlTI Mcxico to Pcru. However, aside fmm brid mentions in the papers of (2), BRlGHT (1), and I-IAIG, el al. (3), GLASSELL there is little information available 00 the natural histo¡y of this species. ConsiderabJe mformation on the biology of was Coellohifa wmpreJJtiJ obtained as part of a survey oE the hermit crab fauna o[ the castern tropical Pa· cific during Stanford Oceanogra hlC Expcditioo 18 from l\pril to June p 1968. 11115 cxpcdition, abüard lhe RV Te Vega, sampled lhc mteríldal fauna and Íiora from Paila, Perú (50S) to Bahía Magdalena, Ba¡a California (24"N), A mal.' of this cruisc and a station list are prcscnted in Fi¡z.urc 1 ;tnd TabIe 1, rcspcctively. -
Land Hermit Crab (Coenobita Clypeatus) Densities and Patterns Of
Journal of Biogeography (J. Biogeogr.) (2006) 33, 314–322 ORIGINAL Land hermit crab (Coenobita clypeatus) ARTICLE densities and patterns of gastropod shell use on small Bahamian islands Lloyd W. Morrison1* and David A. Spiller2 1Department of Biology, Missouri State ABSTRACT University, Springfield, MO, USA and 2Center Aim To examine patterns of abundance, density, size and shell use in land hermit for Population Biology and Section of Evolution and Ecology, University of California, Davis, crabs, Coenobita clypeatus (Herbst), occurring on three groups of small islands, CA, USA and to determine how these variables change among islands. Location Small islands in the Central Exuma Cays and near Great Exuma, Bahamas. Methods Land hermit crabs were captured in baited pitfall traps and were separately attracted to baits. A mark–recapture technique was used in conjunction with some pitfall traps monitored for three consecutive days. The size of each crab and the type of adopted gastropod shell were recorded, along with physical island variables such as total island area, vegetated area, island perimeter, elevation and distance to the nearest mainland island. Results Relative abundances, densities and sizes of crabs differed significantly among the three island groups. Densities of land hermit crabs were as high as ) 46 m 2 of vegetated island area. In simple and multiple linear regressions, the only variable that was a significant predictor of the abundance of hermit crabs was the perimeter to area ratio of the island. Patterns of gastropod shell use varied significantly among the island groups, and the vast majority of adopted shells originated from gastropod species that inhabit the high intertidal and supratidal shorelines of the islands. -
Basic Crab Care
BASIC CRAB CARE Blondie the Ecuadorian crab Just the Basics To live comfortably in captivity, hermit crabs require the following: • Temperature no lower than 72°F. Consistent low temperatures can kill a hermit crab. Don't allow them to bake in a window, either. If they get too hot they will die, and overheating causes irreversible damage and a slow, painful death. Signs of overheating are a musty smell and discharge of brown liquid • A constant humidity level of at LEAST 70% humidity. Try to remember that you want the inside of your crabitat to have a moist, "tropical" feel to it • Substrate deep enough that the crabs can bury but not so deep that it negates the effects of your under-tank heater. If you are having trouble keeping your crabitat warm, try moving some substrate from over the heater. If you are having trouble getting the crabitat to cool down, turn off the heater. See the molting page if you need information on heating a molter's isolation tank • Food, water, shells and other tank decorations to keep the crabs engaged and active. Friends! I'm sure you've heard this before, but you really shouldn't keep only one hermit crab alone as a pet. The name 'hermit' is misapplied to our little friends -- they are quite gregarious and like to be around their own kind. In the wild, they travel in packs of up to 100 crabs, scavenging the beach for food and shells. The reason they travel in packs is simple: Where there are more crabs, there are more shells. -
131 Annotated Checklist of Anomuran Decapod
THE RAFFLES BULLETIN OF ZOOLOGY 2010 Supplement No. 23: 131–137 Date of Publication: 31 Oct.2010 © National University of Singapore ANNOTATED CHECKLIST OF ANOMURAN DECAPOD CRUSTACEANS OF THE WORLD (EXCLUSIVE OF THE KIWAOIDEA AND FAMILIES CHIROSTYLIDAE AND GALATHEIDAE OF THE GALATHEOIDEA) PART III – AEGLOIDEA Patsy A. McLaughlin Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, WA 98221-4042, USA Email: hermit@fi dalgo.net Rafael Lemaitre Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 4210 Silver Hill Road, Suitland, Maryland 20746, USA Email: [email protected] Keith A. Crandall Department of Biology and Monte L. Bean Life Science Museum 401 Widtsoe Building, Brigham Young University, Provo, UT 84602, USA Email: [email protected] INTRODUCTION distinctiveness. Ortmann’s (1902) insistence that Aegla was a monotypic genus prevailed, and for the next 40 years, most, The Recent Aegloidea Dana, 1852, represented by the single if not all, studies of Aegla were reported as dealing only with genus, Aegla Leach, 1820, is unique among anomurans, not A. laevis. Despite being exclusively freshwater in habitat, only because of its occurrence exclusively in freshwater, but aeglids closest relatives were thought to be found somewhere because of its endemicity to South America. The fi rst detailed among the galatheids (Schmitt, 1942b), and, until recently report on the genus was given by Schmitt (1942b) in which (McLaughlin et al., 2007) the family was classifi ed as a 15 new species and two new subspecies were added to the member of the superfamily Galatheoidea, despite mounting four species recognized in the genus at the time. -
The Bulletin of Zoological Nomenclature V58 Part01
Original from and digitized by National University of Singapore Libraries Original from and digitized by National University of Singapore Libraries THE BULLETIN OF ZOOLOGICAL NOMENCLATURE The Bulletin is published four times a year for the International Commission on Zoological Nomenclature by the International Trust for Zoological Nomenclature, a charity (no. 211944) registered in England. The annual subscription for 2001 is £115 or $210, postage included. All manuscripts, letters and orders should be sent to: The Executive Secretary, International Commission on Zoological Nomenclature, c/o The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. (Tel. 020 7942 5653) (e-mail: [email protected]) (http://www.iczn.org) INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE Officers President Prof A. Minelli {Italy) Vice-President Dr W. N. Eschmeyer (U.S.A.) Executive Secretary Dr P. K. Tubbs (United Kingdom) Members Dr M. Alonso-Zarazaga Dr V. Mahnert (Spain; Coleoptera) (Switzerland; Ichthyology) Prof W. J. Bock (U.S.A.; Ornithology) Prof U. R. Martins de Souza Prof P. Bouchet (France; Mollusca) (Brazil; Coleoptera) Prof D. J. Brothers Prof S. F. Mawatari (Japan; Bryozoa) (South Africa; Hymenoptera) Prof A. Minelli (Italy; Myriapoda) Dr D. R. Calder (Canada; Cnidaria) Dr P. K. L. Ng (Singapore; DrH.G. Cogger (Australia; Herpetology) Crustacea, Ichthyology) Prof C. Dupuis (France; Heteroptera) Dr C. Nielsen (Denmark; Bryozoa) Dr W. N. Eschmeyer Dr L. Papp (Hungary; Diptera) (U.S.A.; Ichthyology) Prof D. J. Patterson (Australia; Protista) Dr I. M. Kerzhner (Russia; Heteroptera) Prof W. D. L. Ride (Australia; Prof Dr O. Kraus Mammalia) (Germany; Arachnology) Dr G. Rosenberg (U.S.A.; Mollusca) Prof Dr G. -
The IUCN Red List of Threatened Speciestm
Species 2014 Annual ReportSpecies the Species of 2014 Survival Commission and the Global Species Programme Species ISSUE 56 2014 Annual Report of the Species Survival Commission and the Global Species Programme • 2014 Spotlight on High-level Interventions IUCN SSC • IUCN Red List at 50 • Specialist Group Reports Ethiopian Wolf (Canis simensis), Endangered. © Martin Harvey Muhammad Yazid Muhammad © Amazing Species: Bleeding Toad The Bleeding Toad, Leptophryne cruentata, is listed as Critically Endangered on The IUCN Red List of Threatened SpeciesTM. It is endemic to West Java, Indonesia, specifically around Mount Gede, Mount Pangaro and south of Sukabumi. The Bleeding Toad’s scientific name, cruentata, is from the Latin word meaning “bleeding” because of the frog’s overall reddish-purple appearance and blood-red and yellow marbling on its back. Geographical range The population declined drastically after the eruption of Mount Galunggung in 1987. It is Knowledge believed that other declining factors may be habitat alteration, loss, and fragmentation. Experts Although the lethal chytrid fungus, responsible for devastating declines (and possible Get Involved extinctions) in amphibian populations globally, has not been recorded in this area, the sudden decline in a creekside population is reminiscent of declines in similar amphibian species due to the presence of this pathogen. Only one individual Bleeding Toad was sighted from 1990 to 2003. Part of the range of Bleeding Toad is located in Gunung Gede Pangrango National Park. Future conservation actions should include population surveys and possible captive breeding plans. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership. -
Molecular Phylogenetic Analysis of the Paguristes Tortugae Schmitt, 1933 Complex and Selected Other Paguroidea (Crustacea: Decapoda: Anomura)
Zootaxa 4999 (4): 301–324 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4999.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:ACA6BED4-7897-4F95-8FC8-58AC771E172A Molecular phylogenetic analysis of the Paguristes tortugae Schmitt, 1933 complex and selected other Paguroidea (Crustacea: Decapoda: Anomura) CATHERINE W. CRAIG1* & DARRYL L. FELDER1 1Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, P.O. Box 42451, Lafayette, Louisiana, 70504–2451, [email protected]; https://orcid.org/0000-0001-7679-7712 *Corresponding author. [email protected]; https://orcid.org/0000-0002-3479-2654 Abstract Morphological characters, as presently applied to describe members of the Paguristes tortugae Schmitt, 1933 species complex, appear to be of limited value in inferring phylogenetic relationships within the genus, and may have similarly misinformed understanding of relationships between members of this complex and those presently assigned to the related genera Areopaguristes Rahayu & McLaughlin, 2010 and Pseudopaguristes McLaughlin, 2002. Previously undocumented observations of similarities and differences in color patterns among populations additionally suggest genetic divergences within some species, or alternatively seem to support phylogenetic groupings of some species. In the present study, a Maximum Likelihood (ML) phylogenetic analysis was undertaken based on the H3, 12S mtDNA, and 16S mtDNA sequences of 148 individuals, primarily representatives of paguroid species from the western Atlantic. This molecular analysis supported a polyphyletic Diogenidae Ortmann, 1892, although incomplete taxonomic sampling among the genera of Diogenidae limits the utility of this finding for resolving family level relationships. -
The Effects of Isolation on the Behavioral Interactions of Juvelnille Land Hermit Crabs (Coenobitidae) from the Motus of Mo’Orea, French Polynesia
ONE IS THE LONLIEST NUMBER: THE EFFECTS OF ISOLATION ON THE BEHAVIORAL INTERACTIONS OF JUVELNILLE LAND HERMIT CRABS (COENOBITIDAE) FROM THE MOTUS OF MO’OREA, FRENCH POLYNESIA *WITH AN APPENDIX SURVEYING THE HERMIT CRAB SPECIES PRESENT ON SELECT MO’OREAN MOTUS. VANESSA E. VAN ZERR Integrative Biology, University of California, Berkeley, California 94720 USA, [email protected] Abstract. Hermit crabs interact with each other in a variety of ways involving spatial use (aggregations, migrations), housing (shells), mating, recognition of conspecifics, and food. To test if isolation from conspecifics affects the behavioral interactions of hermit crabs, crabs of the species Coenobita rugosus (Milne‐Edwards 1837) of Mo’orea, French Polynesia were isolated from each other for two days, four days, six days, fifteen days, and twenty‐two days. They were kept in individual opaque containers with separate running seawater systems to prevent them from seeing or smelling each other. Afterwards, the hermit crabs were put into a tank two at a time and their behavior was recorded and compared to the behaviors of non‐isolated crabs. Behaviors looked at fell into two categories: 1) “social” interactions, meaning that the crabs reacted to each other’s presence, and 2) “nonsocial” interactions, meaning that the crabs either ignored each other’s presence or actively avoided behavioral interactions with other crabs. Results indicated that although “social” behavior showed a slight decreasing trend over time, it was not significant; however, the amount of “nonsocial” avoidance behavior seen increased significantly the longer crabs were isolated. Key words: hermit crab, Coenobita, Calcinus, Dardanus, isolation, behavior, motu. INTRODUCTION: sex ratios are uneven (Wada S. -
Land Crab Interference with Eradication Projects
Pacific Invasives Initiative LAND CRAB INTERFERENCE WITH ERADICATION PROJECTS PHASE I – COMPENDIUM OF AVAILABLE INFORMATION Citation: Wegmann A, (2008). Land crab interference with eradication projects: Phase I – compendium of available information. Pacific Invasives Initiative, The University of Auckland, New Zealand. Contacts: David Towns | (Science Adviser - Pacific Invasives Initiative) | Department of Conservation | Private Bag 68-908 | Newton, Auckland, New Zealand | Tel: +64 -09- 307-9279 | Email: [email protected] Bill Nagle | Pacific Invasives Initiative – IUCN Invasive Species Specialist Group | University of Auckland - Tamaki Campus | Private Bag 92019 | Auckland, New Zealand | Tel: +64 (0) 9 373 7599 | Email: [email protected] Alex Wegmann | Island Conservation Canada | 680-220 Cambie Street | Vancouver, BC V6B 2M9 Canada | Tel: +1 604 628 0250 | Email: [email protected] TABLE OF CONTENTS TABLE OF CONTENTS ..................................................................................... 2 TABLE OF TABLES............................................................................................ 2 TABLE OF FIGURES.......................................................................................... 2 ABSTRACT........................................................................................................... 3 INTRODUCTION................................................................................................. 3 METHODS ........................................................................................................... -
A Case Study of the Coconut Crab Birgus Latro on Zanzibar Highlights Global Threats and Conservation Solutions
A case study of the coconut crab Birgus latro on Zanzibar highlights global threats and conservation solutions T IM C ARO,HAJI H AMAD,RASHID S ULEIMAN R ASHID,ULRIKE K LOIBER V ICTORIA M. MORGAN,OSSI N OKELAINEN,BARNABAS C ARO,ILARIA P RETELLI N EIL C UMBERLIDGE and M ONIQUE B ORGERHOFF M ULDER Abstract The coconut crab Birgus latro, the largest terrestrial through local communities capitalizing on tourist revenue, decapod, is under threat in most parts of its geographical a conservation solution that could be applied more generally range. Its life cycle involves two biomes (restricted terrestrial across the species’ range. habitats near the coast, and salt water currents of the tropi- Keywords Birgus latro, coconut crab, conservation recom- cal Indian and Pacific Oceans). Its dependence on coastal mendations, IUCN, Pemba, population size, Tanzania habitat means it is highly vulnerable to the habitat destruc- tion that typically accompanies human population expan- sion along coastlines. Additionally, it has a slow reproductive rate and can reach large adult body sizes that, together with Introduction its slow movement when on land, make it highly susceptible to overharvesting. We studied the distribution and popula- he current wave of species extinctions in the tropics tion changes of coconut crabs at island sites in coastal Tis being driven by habitat loss and human exploitation. Tanzania on the western edge of the species’ geographical Species that are particularly susceptible to habitat conver- range. Our aim was to provide the data required for reassess- sion include those that depend on more than one biome ment of the extinction risk status of this species, which, despite to complete their life cycle, rendering them vulnerable to a indications of sharp declines in many places, is currently ca- wide variety of habitat changes or losses.