Application to the Flight
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
08/31/88 Delta
NextPage LivePublish Page 1 of 1 08/31/88 Delta http://hfskyway.faa.gov/NTSB/lpext.dll/NTSB/1328?fn=document-frame.htm&f=templ... 2/7/2005 NextPage LivePublish Page 1 of 1 Official Accident Report Index Page Report Number NTSB/AAR-89/04 Access Number PB89-910406 Report Title Delta Air Lines, Inc. Boeing 727-232, N473DA, Dallas- Fort Worth International Airport, Texas August 31, 1988 Report Date September 26, 1989 Organization Name National Transportation Safety Board Bureau of Accident Investigation Washington, D.C. 20594 WUN 4965A Sponsor Name NATIONAL TRANSPORTATION SAFETY BOARD Washington, D.C. 20594 Report Type Highway Accident Report August 17, 1988 Distribution Status This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 Report Class UNCLASSIFIED Pg Class UNCLASSIFIED Pages 135 Abstract This report examines the crash of Delta flight 1141 while taking off at the Dallas-Forth Worth, Texas on August 31, 1988. The safety issues discussed in the report include flightcrew procedures; wake vortices; engine performance; airplane flaps and slats; takeoff warning system; cockpit discipline; aircraft rescue and firefighting; emergency evacuation; and survival factors. Recommendations addressing these issues were made to the Federal Aviation Administration, the American Association of Airport Executives, the Airport Operations Council International, and the National Fire Protection Association. http://hfskyway.faa.gov/NTSB/lpext.dll/NTSB/1328/1329?f=templates&fn=document-fr.. -
[4910-13-P] DEPARTMENT of TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No
This document is scheduled to be published in the Federal Register on 09/29/2016 and available online at https://federalregister.gov/d/2016-23088, and on FDsys.gov [4910-13-P] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2016-9112; Directorate Identifier 2016-NM-091-AD] RIN 2120-AA64 Airworthiness Directives; The Boeing Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for certain The Boeing Company Model 737-600, -700, -700C, -800, -900, and -900ER series airplanes. This proposed AD was prompted by reports of the Krueger flap bullnose departing an airplane during taxi, which caused damage to the wing structure and thrust reverser. This proposed AD would require a one-time detailed visual inspection for discrepancies in the Krueger flap bullnose attachment hardware, and related investigative and corrective actions if necessary. We are proposing this AD to detect and correct missing Krueger flap bullnose hardware. Such missing hardware could result in the Krueger flap bullnose departing the airplane during flight, which could damage empennage structure and lead to the inability to maintain continued safe flight and landing. DATES: We must receive comments on this proposed AD by [INSERT DATE 45 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. ADDRESSES: You may send comments, using the procedures found in 14 CFR 11.43 and 11.45, by any of the following methods: • Federal eRulemaking Portal: Go to http://www.regulations.gov. Follow the instructions for submitting comments. -
Setting up Ailerons and Flaperons on a DLG (Discus Launch Glider) by Andy Kunz
Setting up Ailerons and Flaperons on a DLG (Discus Launch Glider) by Andy Kunz Originally Posted by kgantz: While waiting for parts to be delivered I am still reading a lot about how to initially set up ailerons / flaperons. One of the best descriptions I've found is this post in the DLG forum. After reading this post, I understand that flaperon trim and aileron trim are handled separately by the radio. This is not obvious to people who have not done this before but, I guess because you are working with 1 moving surface but it has 2 jobs, trimming has to work a little differently for each job! So now my question is, on the Spektrum radios-- DX 9 in my case, is the aileron portion of the adjustment done with Dual Rates as suggested by the poster or is there a different way. Reply by AndyKunz: The logic is that one is a roll trim, the other is a camber trim. You'll find that we're pretty consistent with that sort of thing throughout the radio. Use the Dual Rates to adjust travel based on a switch, for instance in launch mode vs. thermal mode vs. landing mode. If it doesn't need to change based on a switch, do it with Servo Travel instead of Dual Rates. If you are working on a V-Tail or Elevon model, then you would use Dual Rates to adjust the ratio between pitch and roll/yaw. Use Servo Travel to adjust the maximum amount in the highest position of the Dual Rates switch. -
An Investigation of the Effects of Flaperon Actuator Failure on Flight Maneuvers of a Supersonic Aircraft
Research Paper ISSN 2383-4986 International Journal of Aerospace System Engineering http://dx.doi.org/10.20910/IJASE.2016.3.2.1 Vo l . 3, No.2, pp.1-8 (2016) An Investigation of the Effects of Flaperon Actuator Failure on Flight Maneuvers of a Supersonic Aircraft Seyool Oh1†, Inje Cho1, Craig McLaughlin2 1Aircraft Research & Development Division, Korea Aerospace Industries, ltd, KOREA 2Dept. of Aerospace Engineering, The University of Kansas U.S.A. †E-mail:[email protected] Abstract The improvements in high performance and agility of modern fighter aircraft have led to improvements in survivability as well. Related to these performance increases are rapid response and adequate deflection of the control surfaces. Most control surface failures result from the failure of the actuator. Therefore, the failure and behavior of the actuators are essential to both combat aircraft survivability and maneuverability. In this study, we investigate the effects of flaperon actuator failure on flight maneuvers of a supersonic aircraft. The flight maneuvers were analyzed using six degrees of freedom (6DOF) simulations. This research will contribute to improvements in the reconfiguration of control surfaces and control allocation in flight control algorithms. This paper compares the results of these 6DOF simulations with the horizontal tail actuator failures analyzed previously. Key Words : Flaperon, Actuator failure, Flight maneuver, Supersonic aircraft , Combat aircraft only for specific flight phases. Primary control 1. Introduction surfaces are generally built into the aircraft wings In the past, combat aircraft were designed using the and empennage. Typical primary controls include concept of static stability for safety. However, as the elevators on the horizontal tail, rudder on the technologies of aircraft developed and the vertical tail, and ailerons on the wings [3]. -
Recreational Flyer January - February 2010 Elevated: Angus Watt’S Ch-750
January - February 2010 Recreational Aircraft Association Canada www.raa.ca The Voice of Canadian Amateur Aircraft Builders $6.95 Elevated: Angus Watt's CH-750 Elevated: The original Zenith 701 was designed as an Angus Watt’s Ch-750 ultralight go-anywhere all metal bush plane that could be plans built by anyone with a 4 ft tabletop bending brake and a pair of snips. It was rarely described as a thing of beauty but so well does it fulfill its mission that these planes are found all over the world. They are inexpensive to construct, and because of their leading edge slats they can get in and out of extremely short patches of clear ground. 22 Recreational Flyer January - February 2010 Elevated: Angus Watt’s Ch-750 WITH THE ADVENT of the Light Sport category in and the only part interchangeable with the 701 is the US, Chris Heintz saw the need for an updated the signature Zenith all-flying rudder. Formerly the version, something with a larger cabin, greater skins were all .016” and they are now .020 to handle payload, and the ability to use an array of four the greater mass of the range of possible four stroke stroke engines. The CH 750 was the result and its engines and the 1320 pound gross weight on wheels, lineage is visually apparent but while the new plane 1430 on floats. resembles the 701 it is almost completely different in Chris Heintz correctly surmised that the US construction. CNC fabrication methods have made Light Sport category would be attractive to aging it possible to simplify the design, speed up the con- American pilots who wanted to bargain down to struction, and end up with a larger and faster plane their Sport Pilot category that allows a valid driver’s at only a slight weight penalty. -
What's New in AAA?
Design Analysis Research What’s New in AAA? Version 3.5 February 2013 AAA 3.5 contains various enhancements and revisions to version 3.4 as well as bug fixes. Section 1 shows the enhancements and modifications made to AAA. Major enhancements include new modules and calculations. The second section contains bug fixes. The AAA Manual describes the installation procedure and all modules. The manual is available in pdf format on the installation CD. What’s New in AAA 3.5? 1 1. Enhancements and Modifications Differences between AAA 3.5 and AAA 3.4 are: 1. Multiple segmented high lift devices can now be entered. 2. There is new option for Flap or Slat definition in the configuration dialog window 3. There is an additional Payload Reload mission segment option in weight sizing. 4. The 2D c is calculated at the flap mid span station. l 5. is renamed as . h ho f f 6. Drooped aileron selection is now combined with the Flap/Slat dialog window. 7. Drooped aileron, slat and krueger flap deflections are shown in the “Angles” module under geometry. 8. Class II Inertias are calculated for structural components like wings, empennage, nacelles, fuselage etc. 9. Cranked wing geometry has a new module where the equivalent wing is based on the cranked wing mean geometric chord. 10. Wind tunnel scaling of stability & control derivatives is included in the stability and control module. 11. Multiple flap segments with different flap types can now be defined. 12. Change in wing maximum lift coefficient due to slats and Krueger flaps are now accounted for. -
10CAG/10CHG/10CG-2.4Ghz 10-CHANNEL RADIO CONTROL SYSTEM
10CAG/10CHG/10CG-2.4GHz 10-CHANNEL RADIO CONTROL SYSTEM INSTRUCTION MANUAL Technical updates and additional programming examples available at: http://www.futaba-rc.com/faq Entire Contents ©Copyright 2009 1M23N21007 TABLE OF CONTENTS INTRODUCTION ........................................................... 3 Curve, Prog. mixes 5-8 ............................................. 71 Additional Technical Help, Support and Service ........ 3 GYA gyro mixing (GYRO SENSE) ............................... 73 $SSOLFDWLRQ([SRUWDQG0RGL¿FDWLRQ ........................ 4 Other Equipment ....................................................... 74 Meaning of Special Markings ..................................... 5 Safety Precautions (do not operate without reading) .. 5 Introduction to the 10CG ............................................ 7 GLIDER (GLID(1A+1F)(2A+1F)(2A+2F)) FUNCTIONS . 75 &RQWHQWVDQG7HFKQLFDO6SHFL¿FDWLRQV........................ 9 Table of contents........................................................ 75 Accessories ............................................................... 10 Getting Started with a Basic 4-CH Glider ................ 76 Transmitter Controls & GLIDER-SPECIFIC BASIC MENU FUNCTIONS ........ 78 6ZLWFK,GHQWL¿FDWLRQ$VVLJQPHQWV ............................. 11 Model type (PARAMETER submenu) ........................... 78 Charging the Ni-Cd Batteries ................................... 15 MOTOR CUT ................................................................ 79 Stick Adjustments .................................................... -
DESIGN and ANALYSIS of PERFORMANCE PARAMETERS of WING with FLAPERONS Debanjali Dey, R.Aasha #Department of Aeronautical Engineering , KCG College of Technology
International Journal of Scientific Research and Review ISSN NO: 2279-543X DESIGN AND ANALYSIS OF PERFORMANCE PARAMETERS OF WING WITH FLAPERONS Debanjali Dey, R.Aasha #Department of Aeronautical Engineering , KCG College Of Technology. 1. [email protected] 2. [email protected] ABSTRACT- The main objective of this project is to design a flaperon for a wing and compare the performance characteristic of this flaperon-wing combination with that of conventional wing design that makes use of separate flap and aileron. Theoretical analysis and comparison is performed following which the computational analysis is carried out to validate the results. Further aim is to give a clarity on the fact that the use of this high lift device aids in improvising the aerodynamic characteristics of a wing by experimental testing of the wing design incorporated with flaperon, which is designed using a special methodology. Then, modification of wing design can be done to overcome the drawbacks of flaperons if any. INTRODUCTION - When looking at an aircraft, it is easy to observe that they have a number of common features: wings, a tail with vertical and horizontal wing sections, engines to propel them through the air, and a fuselage to carry passengers or cargo. If, however, you take a more critical look beyond the gross features, you also can see subtle, and sometimes not so subtle, differences. The reasons for these differences, why the designers configured them this way, is quite an intriguing study. Today, 100,000 flights will safely crisscross the planet. At no time in history have our lives been so global and full of possibility. -
Designing and Development of Unmanned Aerial Vehicle
ICAS 2002 CONGRESS DESIGNING AND DEVELOPMENT OF UNMANNED AERIAL VEHICLE MUHAMMAD ASIM Engineering Wing PAF Base Minhas PAKISTAN,43175 [email protected] DR ABID ALI KHAN Aerospace Engg Dept College of Aeronautical Engg Risalpur,24090 National University of Science and Technology [email protected] Keywords: UAV-Ip Abstract in direct combat. Even current high-tech UAV’s such as the Darkstar are limited to non- With the advancement in science and combative missions. In an age when the technology, the aviation industry is increasingly physiological tolerances and physical concentrating on the development of Remotely capabilities of the crew restrain the limits of Piloted Vehicles (RPVs), Unmanned Aerial performance of a modern fighter, the use of a Vehicles (UAVs) and Unmanned Combat Aerial UAV in a combat role deserves some Vehicles (UCAVs). The Unmanned Aerial consideration. Vehicle (UAV) are being used for many years for a variety of different tasks like reconnaissance, bomb damage assessment 2.0 Design Philosophy and Goals (BDA), scientific research, escort EW, decoying guiding SAMs and AAMs, and target practice. The principle goal in the UAV-Ip (Unmanned These UAVs will replace the conventional Aerial Vehicle - Interceptor) design process was aircraft in several roles and even perform novel to create an interceptor, which could super assignments. The hostile battlefield cruise to intercept a target in a minimal time at a environments and difficult access areas can be maximum possible range. The application of monitored without endangering human life. This this aircraft would be defensive in nature, when paper elaborate the designing of UAV that can conventional aircraft are immediately be used as interceptor and can perform unavailable or unable to deploy. -
KOKU-KAN-SANJI-504 Date: 09/18/20 No: KOKU-KAN-SANJI-449 Date: 08/17/21 No: KOKU-KAN-SANJI-276
(Unofficial Translation) Date: 09/27/18 No: KOKU-KAN-SANJI-614 Date: 08/23/19 No: KOKU-KAN-SANJI-504 Date: 09/18/20 No: KOKU-KAN-SANJI-449 Date: 08/17/21 No: KOKU-KAN-SANJI-276 Director of Air Transport Safety Unit Aviation Safety and Security Department Civil Aviation Bureau of Japan Ministry of Land, Infrastructure, Transport and Tourism Subject: The Detailed Regulations of the Technical Standard to Prevent Objects Falling off Airplanes 1. Purpose. Based on the provisions of the Technical Standard to Prevent Objects Falling off Airplanes (hereinafter referred to as “the Standard”) and in order to bring it into effect, the Detailed Regulations of the Technical Standard to Prevent Objects Falling off Airplanes (hereinafter referred to as “the Detailed Regulations”) is established as follows. 2. Applicability. The applicability of the Detailed Regulations is the same as the Standard. 3. Application for Licenses or Authorization. The application under the provisions of the Standard shall meet the following requirements. However, the operation manual or the maintenance manual of domestic air carriers may contain the following matters in lieu of the application matters. 3-1 Engineering management. 3-1-1 The operators must have a system to collect the information of falling objects, analyze and assess from the engineering aspect, and based on these results, develop countermeasures (inspection, maintenance and others) and implement them under 3-1 of the Standard. 3-1-2 The operators must nominate a person who is to be the supervisor of the system as referred to in the preceding paragraph, and take corrective actions properly under the supervision of the person. -
Section 1 Introduction
INSTRUCTION MANUAL FOR AIRPLANE AND HELICOPTER XP6102 6-CHANNEL COMPUTER RADIO SYSTEM TABLE OF CONTENTS TABLE OF CONTENTS TABLE OF CONTENTS ......................2 CHAPTER 1: SOFTWARE FUNCTIONS – AIRPLANE ................11 Transmitter Callouts ..................12 CHAPTER 1: USING THIS MANUAL • INTRODUCTION ..............6 Transmitter Rear ......................13 Using this Manual ....................6 Direct Servo Control (DSC) ........14 R770 Receiver ..........................6 Control Stick Tension Adjustment ..14 Control Stick Length Adjustment ..14 Frequency Notes/ CHAPTER 2: FEATURES ....................6 Aircraft Only Frequencies ..........15 X-6102 Transmitter ....................6 Base Loaded Antenna ..............15 Transmitter Specifications ..........7 Neck Strap Attachment ..............15 System Specifications ................7 CHAPTER 2: CONNECTIONS • CHAPTER 3: COMPONENT AIRPLANE ..................16 SPECIFICATIONS ............7 Installation Requirements ..........16 S537 Ball Bearing Servo ..............7 Connections ..........................17 Airborne Battery Pack ................8 Backup Error Display ................18 Charger Specifications ................8 Receiver Specifications ..............8 CHAPTER 3: INPUT MODE AND Servo Specifications ..................8 FUNCTION • AIRPLANE ....18 Charger ..................................9 Key Input and Display ..............18 Transmitter/Receiver ..................9 System Mode ..........................19 Normal Mode ..........................19 CHAPTER 4: BATTERY -
Bird Strike Analysis for Impact-Resistant Design of Aircraft Wing Krueger Flap
Bird Strike Analysis for Impact-Resistant Design of Aircraft Wing Krueger Flap Sebastian Heimbs 1, Wolfgang Machunze 1, Gerrit Brand 1, Bernhard Schlipf 2 1 Airbus Group Innovations, 81663 Munich, Germany 2 Airbus Operations GmbH, 28199 Bremen, Germany Abstract: Bird strike is a severe high velocity impact load case for all forward-facing aircraft components and a major design driver due to the high energies and the strict safety requirements involved. This paper summarises an experimental and numerical study to design a bird strike- proof lightweight metallic Krueger flap as a high-lift device concept for a laminar wing leading edge of a single aisle short range aircraft. The whole design process was based on numerical optimisations for static load cases in combination with high velocity bird impact simulations, with the focus on accurate modelling of the fluid-like bird projectile, the plasticity of the aluminium material and the failure behaviour of the structural hinges and fastened joints. Finally, a full-scale Krueger flap prototype was manufactured and tested under bird impact loading, validating the numerical predictions and impact resistance. Keywords: Bird strike, impact simulation, aircraft Krueger flap, gas gun test. 1. Introduction Much research effort in aeronautics is currently dedicated to achieve a laminar flow wing for transport aircraft, which significantly reduces air drag and hence fuel consumption. Laminar flow requires the avoidance of any unevenness of the wing surface that could cause flow turbulences. Since aircraft wings need high-lift devices to increase lift during low speeds of flight, extendible slats are the most common leading edge high-lift devices, which involve a flow-disturbing step at their trailing edge (Fig.