Human Cytomegalovirus Induces and Exploits Roquin to Counteract the IRF1-Mediated Antiviral State

Total Page:16

File Type:pdf, Size:1020Kb

Human Cytomegalovirus Induces and Exploits Roquin to Counteract the IRF1-Mediated Antiviral State Human cytomegalovirus induces and exploits Roquin to counteract the IRF1-mediated antiviral state Jaewon Songa,b,1, Sanghyun Leea,b,1, Dong-Yeon Choa,b, Sungwon Leea,b, Hyewon Kima,b, Namhee Yuc,d, Sanghyuk Leec,d, and Kwangseog Ahna,b,2 aSchool of Biological Sciences, Seoul National University, 08826 Seoul, Republic of Korea; bCenter for RNA Research, Institute for Basic Science, 08826 Seoul, Republic of Korea; cDepartment of Life Science, Ewha Womans University, 03760 Seoul, Republic of Korea; and dEwha Research Center for Systems Biology, Ewha Womans University, 03760 Seoul, Republic of Korea Edited by Peter A. Barry, University of California, Davis, CA, and accepted by Editorial Board Member Carl F. Nathan August 3, 2019 (received for review June 3, 2019) RNA represents a pivotal component of host–pathogen interac- mRNAs of cellular chemokines and cytokines and posttranscrip- tions. Human cytomegalovirus (HCMV) infection causes extensive tionally repress their expression. We previously reported that the alteration in host RNA metabolism, but the functional relationship HCMV-encoded miRNA miR-UL148D down-regulates the between the virus and cellular RNA processing remains largely cellular chemokine RANTES (20). Comprehensive studies of viral unknown. Through loss-of-function screening, we show that miRNAs revealed that they inhibit cytokine signaling, trafficking, HCMV requires multiple RNA-processing machineries for efficient and release, which strongly suppresses the host immune response viral lytic production. In particular, the cellular RNA-binding pro- (21, 22). tein Roquin, whose expression is actively stimulated by HCMV, During HCMV lytic infection, host cells are influenced by plays an essential role in inhibiting the innate immune response. certain unique features associated with RNA processing. In Transcriptome profiling revealed Roquin-dependent global down- contrast to other viruses that induce shutdown of host mRNA regulation of proinflammatory cytokines and antiviral genes in translation, HCMV stimulates this activity by blocking protein HCMV-infected cells. Furthermore, using cross-linking immunopre- kinase R activation (23) and modulates cellular RNA-processing cipitation (CLIP)-sequencing (seq), we identified IFN regulatory fac- machinery to accelerate viral gene translation (24–26). Addition- IRF1 tor 1 ( ), a master transcriptional activator of immune responses, ally, viral mRNAs undergo extensive posttranscriptional modifi- MICROBIOLOGY as a Roquin target gene. Roquin reduces IRF1 expression by directly cations, such as alternative splicing and polyadenylation (27, 28), binding to its mRNA, thereby enabling suppression of a variety of with elevated expressions of proteins regulating such modifications antiviral genes. This study demonstrates how HCMV exploits host during HCMV infection (29, 30). Although these reports reveal RNA-binding protein to prevent a cellular antiviral response and that HCMV might require cellular RNA-processing machinery for offers mechanistic insight into the potential development of CMV efficient replication at multiple steps, how these RNA-binding pro- therapeutics. teins regulate host mRNAs and cellular functions remains largely unexplored. human cytomegalovirus | RNA-binding protein | immune evasion | In this study, we examined the role of cellular RNA-processing proinflammatory cytokine proteins in immune regulation during HCMV lytic production by employing loss-of-function screening. We found that 19 genes uman cytomegalovirus (HCMV) is a member of the Hβ-herpesvirus family and a ubiquitous pathogen that estab- Significance lishes lifelong latency in large populations worldwide (1). During primary infection of HCMV, which rarely exhibits pathogenic Human cytomegalovirus (HCMV) is a major cause of birth de- symptoms in healthy humans, the virus overcomes innate and fects and diseases in immune-compromised patients. HCMV is adaptive immune responses in the host and establishes permanent able to infect and establish latency in large populations by latency. Reactivation from latency can be dangerous in immune- employing multiple strategies to evading the host immune compromised hosts, with HCMV congenital infection being a response. Here, we report that HCMV suppresses cytokine- leading cause of neurological defects in infants (2–4). Currently, mediated antiviral responses by increasing the expression of there is no therapeutic intervention capable of curing chronic cellular RNA-binding protein, Roquin. We show that Roquin HCMV infection, and no vaccines are available to prevent HCMV inhibits cytokine production by directly binding to cytokine infection. This is largely because of the multiple strategies employed mRNAs and by repressing the expression of their transcription by HCMV to evade innate and adaptive immunity. Thus, having a activator. This study highlights that cellular RNA metabolism, thorough understanding of how the virus evades the host immune which is controlled by HCMV for immune evasion, can be the system is necessary for the development of anti-HCMV vaccines target for developing anti-HCMV therapeutics. and therapeutics. Primary HCMV infection provokes a robust innate immune Author contributions: J.S., Sanghyun Lee, and K.A. designed research; J.S., Sanghyun Lee, Sungwon Lee, and H.K. performed research; J.S., Sanghyun Lee, D.-Y.C., N.Y., and response in terms of rapid induction of nuclear factor kappaB Sanghyuk Lee analyzed data; and J.S., Sanghyun Lee, and K.A. wrote the paper. κ (NF- B)- and IFN regulatory factor (IRF)3-signaling pathways The authors declare no conflict of interest. – in cells (5 7). Proinflammatory cytokines, type I interferons, and This article is a PNAS Direct Submission. P.A.B. is a guest editor invited by the IFN-stimulated genes (ISGs) are produced and confer antiviral Editorial Board. effects by targeting various steps of HCMV replication (8, 9). Published under the PNAS license. However, HCMV has evolved strategies of regulating cellular Data deposition: The data reported in this paper have been deposited in the Gene Ex- cytokines in order to counteract the host immune system. First, pression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE132081). HCMV encodes cellular cytokine mimics and decoy receptors in 1J.S. and Sanghyun Lee contributed equally to this work. order to modulate cytokine activity and restrict cell migration 2To whom correspondence may be addressed. Email: [email protected]. – and differentiation (10 15). Second, HCMV inhibits production This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. of cytokines by blocking the activation of transcription factors 1073/pnas.1909314116/-/DCSupplemental. (16–19). Third, viral microRNAs (miRNAs) directly target the Published online August 26, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1909314116 PNAS | September 10, 2019 | vol. 116 | no. 37 | 18619–18628 Downloaded by guest on September 27, 2021 are required for HCMV lytic production, among which Roquin Results was critical for viral gene expression. HCMV-induced Roquin HCMV Requires Multiple Cellular RNA-Processing Activities for Its played a dominant role in the suppression of cytokine production. Efficient Lytic Production. HCMV harbors multiple viral genes During viral infection, Roquin directly bound to and regulated that modulate cellular mRNA processing, with some host cell expression of cellular RNA transcripts including those of cytokine genes capable of positively or negatively regulating viral infec- genes and IRF1, which was crucial for increased cytokine sup- tion. To identify genes essential for HCMV lytic production, an pression and enhanced viral replication. These results demon- RNA interference (RNAi)-screening experiment was performed strated areas of HCMV evolution to exploit host RNA-binding using 687 genes involved in cellular RNA processing. The small- proteins in order to modulate the cellular environment in its favor. interfering RNA (siRNA) library contained three gene categories: RNA-Binding protein A 409 genes Total 687 genes 366 siRNA HCMV infection 41 1 1 C. elegans 213 6 59 48 h 48 h Measure RNA level ortholog RNase of viral genes 67 genes 245 genes Primary HFFs B IE1 (Immediate early) C 4 IE1 UL44UL99 2 CCT8 RC3H1 1 SNRPF 0 CSDC2 ZC3H4 -1 YTHDC1 -2 RBM23 HCMV mRNA 2 -3 RBM4 Log (siTarget/siControl) KIAA0391 -4 ZCCHC16 -5 RNASE13 GPKOW UL44 (Early) EIF3B 2 HNRNPC TRA2A 1 HNRNPM 0 PSMA3 SUPT6H -1 URI1 RBM43 -2 YBEY HCMV mRNA 2 -3 PABPC3 RBM46 Log (siTarget/siControl) -4 MBNL3 RPL21 -5 YTHDF1 UL99 (Late) ASMTL 2 EIF3G SNRPC 1 CSE1L RBMX 0 PSMB6 -1 SPINT2 PSMB3 -2 PSMC2 HCMV mRNA 2 -3 POLR2G log2(Fold Change) Log (siTarget/siControl) -4 -5 −440 D HCMV HSV-1 108 107 106 105 104 103 Titer (PFU/mL) 102 101 100 siRNA URI1 CCT8 YBEY RBM4 EIF3B EIF3G ZC3H4 CSE1L Control TRA2A RC3H1 ASMTL RBM46 RBM23 MBNL3 RBM43 SNRPF CSDC2 PSMB3 PSMA3 PSMB6 PSMC2 SNRPC GPKOW PABPC3 POLR2G HNRNPC HNRNPM KIAA0391 RNASE13 ZCCHC16 Fig. 1. Identification of RNA-binding proteins that regulate HCMV lytic infection through siRNA screening. (A) Experimental scheme of siRNA screening. RNases, RNA-binding proteins, and orthologous genes in the small-RNA pathway from C. elegans were collected for screening. HFF cells underwent two rounds of siRNA transfection, with infection with HCMV (MOI = 2). Viral gene expression was measured by qRT-PCR at 48 hpi and normalized against GAPDH mRNA levels. (B) Summarized results of RNAi screening. IE1, UL44, and UL99 mRNA levels were quantified.
Recommended publications
  • Large-Scale Analysis of Genome and Transcriptome Alterations in Multiple Tumors Unveils Novel Cancer-Relevant Splicing Networks
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Research Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks Endre Sebestyén,1,5 Babita Singh,1,5 Belén Miñana,1,2 Amadís Pagès,1 Francesca Mateo,3 Miguel Angel Pujana,3 Juan Valcárcel,1,2,4 and Eduardo Eyras1,4 1Universitat Pompeu Fabra, E08003 Barcelona, Spain; 2Centre for Genomic Regulation, E08003 Barcelona, Spain; 3Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L’Hospitalet del Llobregat, Spain; 4Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We system- atically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alter- natively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferen- tiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1. We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome am- plification in nontumorigenic mammary epithelial cells.
    [Show full text]
  • View of HER2: Human Epidermal Growth Factor Receptor 2; TNBC: Triple-Negative Breast Resistance to Systemic Therapy in Patients with Breast Cancer
    Wen et al. Cancer Cell Int (2018) 18:128 https://doi.org/10.1186/s12935-018-0625-9 Cancer Cell International PRIMARY RESEARCH Open Access Sulbactam‑enhanced cytotoxicity of doxorubicin in breast cancer cells Shao‑hsuan Wen1†, Shey‑chiang Su2†, Bo‑huang Liou3, Cheng‑hao Lin1 and Kuan‑rong Lee1* Abstract Background: Multidrug resistance (MDR) is a major obstacle in breast cancer treatment. The predominant mecha‑ nism underlying MDR is an increase in the activity of adenosine triphosphate (ATP)-dependent drug efux trans‑ porters. Sulbactam, a β-lactamase inhibitor, is generally combined with β-lactam antibiotics for treating bacterial infections. However, sulbactam alone can be used to treat Acinetobacter baumannii infections because it inhibits the expression of ATP-binding cassette (ABC) transporter proteins. This is the frst study to report the efects of sulbactam on mammalian cells. Methods: We used the breast cancer cell lines as a model system to determine whether sulbactam afects cancer cells. The cell viabilities in the present of doxorubicin with or without sulbactam were measured by MTT assay. Protein identities and the changes in protein expression levels in the cells after sulbactam and doxorubicin treatment were determined using LC–MS/MS. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) was used to analyze the change in mRNA expression levels of ABC transporters after treatment of doxorubicin with or without sulbactam. The efux of doxorubicin was measures by the doxorubicin efux assay. Results: MTT assay revealed that sulbactam enhanced the cytotoxicity of doxorubicin in breast cancer cells. The results of proteomics showed that ABC transporter proteins and proteins associated with the process of transcription and initiation of translation were reduced.
    [Show full text]
  • Inhibition of the Nrf2 Transcription Factor by the Alkaloid
    Oncogene (2013) 32, 4825–4835 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity A Arlt1,4, S Sebens2,4, S Krebs1, C Geismann1, M Grossmann1, M-L Kruse1, S Schreiber1,3 and H Scha¨fer1 Evidence accumulates that the transcription factor nuclear factor E2-related factor 2 (Nrf2) has an essential role in cancer development and chemoresistance, thus pointing to its potential as an anticancer target and undermining its suitability in chemoprevention. Through the induction of cytoprotective and proteasomal genes, Nrf2 confers apoptosis protection in tumor cells, and inhibiting Nrf2 would therefore be an efficient strategy in anticancer therapy. In the present study, pancreatic carcinoma cell lines (Panc1, Colo357 and MiaPaca2) and H6c7 pancreatic duct cells were analyzed for the Nrf2-inhibitory effect of the coffee alkaloid trigonelline (trig), as well as for its impact on Nrf2-dependent proteasome activity and resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and anticancer drug-induced apoptosis. Chemoresistant Panc1 and Colo357 cells exhibit high constitutive Nrf2 activity, whereas chemosensitive MiaPaca2 and H6c7 cells display little basal but strong tert-butylhydroquinone (tBHQ)-inducible Nrf2 activity and drug resistance. Trig efficiently decreased basal and tBHQ-induced Nrf2 activity in all cell lines, an effect relying on a reduced nuclear accumulation of the Nrf2 protein. Along with Nrf2 inhibition, trig blocked the Nrf2-dependent expression of proteasomal genes (for example, s5a/psmd4 and a5/psma5) and reduced proteasome activity in all cell lines tested.
    [Show full text]
  • Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections
    viruses Review Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections Zamaneh Hajikhezri 1, Mahmoud Darweesh 1,2, Göran Akusjärvi 1 and Tanel Punga 1,* 1 Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; [email protected] (Z.H.); [email protected] (M.D.); [email protected] (G.A.) 2 Department of Microbiology and Immunology, Al-Azhr University, Assiut 11651, Egypt * Correspondence: [email protected]; Tel.: +46-733-203-095 Received: 28 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: The zinc finger proteins make up a significant part of the proteome and perform a huge variety of functions in the cell. The CCCH-type zinc finger proteins have gained attention due to their unusual ability to interact with RNA and thereby control different steps of RNA metabolism. Since virus infections interfere with RNA metabolism, dynamic changes in the CCCH-type zinc finger proteins and virus replication are expected to happen. In the present review, we will discuss how three CCCH-type zinc finger proteins, ZC3H11A, MKRN1, and U2AF1, interfere with human adenovirus replication. We will summarize the functions of these three cellular proteins and focus on their potential pro- or anti-viral activities during a lytic human adenovirus infection. Keywords: human adenovirus; zinc finger protein; CCCH-type; ZC3H11A; MKRN1; U2AF1 1. Zinc Finger Proteins Zinc finger proteins are a big family of proteins with characteristic zinc finger (ZnF) domains present in the protein sequence. The ZnF domains consists of various ZnF motifs, which are short 30–100 amino acid sequences, coordinating zinc ions (Zn2+).
    [Show full text]
  • Downloaded from the TCGA Data Portal ( Data.Nci.Nih.Gov/Tcga/) (Supplemental Table S1)
    bioRxiv preprint doi: https://doi.org/10.1101/023010; this version posted February 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks Endre Sebestyén1,*, Babita Singh1,*, Belén Miñana1,2, Amadís Pagès1, Francesca Mateo3, Miguel Angel Pujana3, Juan Valcárcel1,2,4, Eduardo Eyras1,4,5 1Universitat Pompeu Fabra, Dr. Aiguader 88, E08003 Barcelona, Spain 2Centre for Genomic Regulation, Dr. Aiguader 88, E08003 Barcelona, Spain 3Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L’Hospitalet del Llobregat, Spain. 4Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, E08010 Barcelona, Spain *Equal contribution 5Correspondence to: [email protected] Keywords: alternative splicing, RNA binding proteins, splicing networks, cancer 1 bioRxiv preprint doi: https://doi.org/10.1101/023010; this version posted February 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
    Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2.
    [Show full text]
  • 1 Title 1 Loss of PABPC1 Is Compensated by Elevated PABPC4
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430165; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 Title 2 Loss of PABPC1 is compensated by elevated PABPC4 and correlates with transcriptome 3 changes 4 5 Jingwei Xie1, 2, Xiaoyu Wei1, Yu Chen1 6 7 1 Department of Biochemistry and Groupe de recherche axé sur la structure des 8 protéines, McGill University, Montreal, Quebec H3G 0B1, Canada 9 10 2 To whom correspondence should be addressed: Dept. of Biochemistry, McGill 11 University, Montreal, QC H3G 0B1, Canada. E-mail: [email protected]. 12 13 14 15 Abstract 16 Cytoplasmic poly(A) binding protein (PABP) is an essential translation factor that binds to 17 the 3' tail of mRNAs to promote translation and regulate mRNA stability. PABPC1 is the 18 most abundant of several PABP isoforms that exist in mammals. Here, we used the 19 CRISPR/Cas genome editing system to shift the isoform composition in HEK293 cells. 20 Disruption of PABPC1 elevated PABPC4 levels. Transcriptome analysis revealed that the 21 shift in the dominant PABP isoform was correlated with changes in key transcriptional 22 regulators. This study provides insight into understanding the role of PABP isoforms in 23 development and differentiation. 24 Keywords 25 PABPC1, PABPC4, c-Myc 26 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430165; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Binding Specificities of Human RNA Binding Proteins Towards Structured
    bioRxiv preprint doi: https://doi.org/10.1101/317909; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Binding specificities of human RNA binding proteins towards structured and linear 2 RNA sequences 3 4 Arttu Jolma1,#, Jilin Zhang1,#, Estefania Mondragón4,#, Teemu Kivioja2, Yimeng Yin1, 5 Fangjie Zhu1, Quaid Morris5,6,7,8, Timothy R. Hughes5,6, Louis James Maher III4 and Jussi 6 Taipale1,2,3,* 7 8 9 AUTHOR AFFILIATIONS 10 11 1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden 12 2Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland 13 3Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 14 4Department of Biochemistry and Molecular Biology and Mayo Clinic Graduate School of 15 Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, USA 16 5Department of Molecular Genetics, University of Toronto, Toronto, Canada 17 6Donnelly Centre, University of Toronto, Toronto, Canada 18 7Edward S Rogers Sr Department of Electrical and Computer Engineering, University of 19 Toronto, Toronto, Canada 20 8Department of Computer Science, University of Toronto, Toronto, Canada 21 #Authors contributed equally 22 *Correspondence: [email protected] 23 24 25 SUMMARY 26 27 Sequence specific RNA-binding proteins (RBPs) control many important 28 processes affecting gene expression. They regulate RNA metabolism at multiple 29 levels, by affecting splicing of nascent transcripts, RNA folding, base modification, 30 transport, localization, translation and stability. Despite their central role in most 31 aspects of RNA metabolism and function, most RBP binding specificities remain 32 unknown or incompletely defined.
    [Show full text]
  • Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins
    Biomolecules 2015, 5, 1441-1466; doi:10.3390/biom5031441 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Article Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins Rebecca Bish 1,†, Nerea Cuevas-Polo 1,†, Zhe Cheng 1, Dolores Hambardzumyan 2, Mathias Munschauer 3, Markus Landthaler 3 and Christine Vogel 1,* 1 Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA; E-Mails: [email protected] (R.B.); [email protected] (N.C.-P.); [email protected] (Z.C.) 2 The Cleveland Clinic, Department of Neurosciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; E-Mail: [email protected] 3 RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany; E-Mails: [email protected] (M.M.); [email protected] (M.L.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-212-998-3976; Fax: +1-212-995-4015. Academic Editor: André P. Gerber Received: 10 May 2015 / Accepted: 15 June 2015 / Published: 15 July 2015 Abstract: DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins.
    [Show full text]
  • Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes
    International Journal of Environmental Research and Public Health Article Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes Yueh-Han Hsu 1,2, Peng-Hui Wang 1,2,3,4,5 and Chia-Ming Chang 1,2,* 1 Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; [email protected] (Y.-H.H.); [email protected] (P.-H.W.) 2 School of Medicine, National Yang-Ming University, Taipei 112, Taiwan 3 Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan 4 Department of Medical Research, China Medical University Hospital, Taichung 440, Taiwan 5 Female Cancer Foundation, Taipei 104, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2875-7826; Fax: +886-2-5570-2788 Received: 27 April 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: Clear cell carcinoma of the ovary (ovarian clear cell carcinoma (OCCC)) is one epithelial ovarian carcinoma that is known to have a poor prognosis and a tendency for being refractory to treatment due to unclear pathogenesis. Published investigations of OCCC have mainly focused only on individual genes and lack of systematic integrated research to analyze the pathogenesis of OCCC in a genome-wide perspective. Thus, we conducted an integrated analysis using transcriptome datasets from a public domain database to determine genes that may be implicated in the pathogenesis involved in OCCC carcinogenesis. We used the data obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) DataSets. We found six interactive functional gene clusters in the pathogenesis network of OCCC, including ribosomal protein, eukaryotic translation initiation factors, lactate, prostaglandin, proteasome, and insulin-like growth factor.
    [Show full text]
  • RC3H1 Antibody (C-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap14162b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 RC3H1 Antibody (C-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14162b Specification RC3H1 Antibody (C-term) - Product Information Application WB, IHC-P,E Primary Accession Q5TC82 Other Accession Q6NUC6, Q4VGL6, NP_742068.1 Reactivity Human Predicted Mouse, Xenopus Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 125736 Antigen Region 1015-1043 RC3H1 Antibody (C-term) - Additional Information RC3H1 Antibody (C-term) (Cat. #AP14162b) western blot analysis in NCI-H460 cell line Gene ID 149041 lysates (35ug/lane).This demonstrates the RC3H1 antibody detected the RC3H1 protein Other Names (arrow). Roquin-1, Roquin, RING finger and C3H zinc finger protein 1, RING finger and CCCH-type zinc finger domain-containing protein 1, RING finger protein 198, RC3H1, KIAA2025, RNF198 Target/Specificity This RC3H1 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 1015-1043 amino acids from the C-terminal region of human RC3H1. Dilution WB~~1:1000 IHC-P~~1:10~50 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This RC3H1 Antibody (C-term) antibody is purified through a protein A (AP14162b)immunohistochemistry analysis in column, followed by peptide affinity formalin fixed and paraffin embedded human purification. kidney tissue followed by peroxidase conjugation of the secondary antibody and Storage DAB staining.This data demonstrates the use Maintain refrigerated at 2-8°C for up to 2 of RC3H1 Antibody (C-term) for weeks. For long term storage store at -20°C immunohistochemistry.
    [Show full text]