Miocene Relative Sea Level on the New Jersey Shallow Continental Shelf and Coastal Plain Derived from One-Dimensional GEOSPHERE; V

Total Page:16

File Type:pdf, Size:1020Kb

Miocene Relative Sea Level on the New Jersey Shallow Continental Shelf and Coastal Plain Derived from One-Dimensional GEOSPHERE; V Research Paper THEMED ISSUE: Results of IODP Expedition 313: The History and Impact of Sea-Level Change Offshore New Jersey GEOSPHERE Miocene relative sea level on the New Jersey shallow continental shelf and coastal plain derived from one-dimensional GEOSPHERE; v. 12, no. 5 backstripping: A case for both eustasy and epeirogeny doi:10.1130/GES01241.1 M.A. Kominz1, K.G. Miller2, J.V. Browning3, M.E. Katz4, and G.S. Mountain2 8 figures; 3 tables; 5 supplemental files 1Department of Geosciences, Western Michigan University, 1186 Rood Hall, 1903 West Michigan Avenue, Kalamazoo, Michigan 49008, USA 2Department of Earth and Planetary Sciences, and the Institute of Earth, Oceans, and Atmospheric Sciences, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8066, USA CORRESPONDENCE: michelle .kominz@ wmich .edu 3Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8066, USA 4Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA CITATION: Kominz, M.A., Miller, K.G., Browning, J.V., Katz, M.E., and Mountain, G.S., 2016, Miocene relative sea level on the New Jersey shallow conti­ nental shelf and coastal plain derived from one-­ ABSTRACT et al., 1988). We use the term relative sea-level change to include changes in dimensional backstripping: A case for both eustasy eustasy coupled with epeirogenic (broad regional uplift; Grabau, 1936) and and epeirogeny: Geosphere, v. 12, no. 5, p. 1– 20, doi:10.1130/GES01241.1. Onshore drilling by Ocean Drilling Program (ODP) Legs 150X and 174AX local changes in the height of lithosphere relative to the center of the Earth. and offshore drilling by Integrated Ocean Drilling Program (IODP) Expedition That is, relative sea-level change is measured relative to a fixed point on the Received 31 July 2015 313 provides continuous cores and logs of seismically imaged Lower to Middle crust (Posamentier et al., 1988). Eustasy is of particular importance because Revision received 9 May 2016 Miocene sequences. We input ages and paleodepths of these sequences into it serves as the datum against which Earth’s tectonic and climate history can Accepted 3 August 2016 one-dimensional backstripping equations, progressively accounting for the be measured (e.g., Miller et al., 2005). In this paper, we attempt to untangle effects of compaction, Airy loading, and thermal subsidence. The resulting thermal subsidence and epeirogeny from eustasy. difference between observed subsidence and theoretical thermal subsidence The timing and magnitude of relative sea level has been studied in detail provide relative sea-level curves that reflect both global average sea level and at the Late Cretaceous to Miocene of the New Jersey margin. Onshore New non-thermal subsidence. In contrast with expectations, backstripping sug- Jersey drilling by Ocean Drilling Program (ODP) Legs 150X and 174AX in con- gests that the relative sea-level maxima in proximal onshore sites were lower cert with Legs 150 and 174A outer shelf and continental slope drilling (Fig. 1; than correlative maxima on the shelf. This requires that the onshore New Jer- e.g., Miller et al., 1997, 1998a; Mountain et al., 2010) has shown that the timing sey coastal plain has subsided relative to the shelf, which is consistent with of sequence boundaries (erosional surfaces recognized in cores and seismic models of relative epeirogeny due to subduction of the Farallon plate. These profiles), is consistent withd 18O increases from deep-sea records (Miller et al., models predict subsidence of the coastal plain relative to the shelf. Although 1991, 1996a, 2005, 2011; Browning et al., 2008). This suggests that relative sea- onshore and offshore sea-level estimates are offset by epeirogeny, the ampli- level changes observed on the New Jersey margin were caused, at least in tude of million-year–scale Early to Middle Miocene sea-level changes seen at part, by eustatic variations due to ice growth and decay. the New Jersey margin is generally 5–20 m and occasionally as great as 50 m. Backstripping is a modeling technique that accounts for the effects of sedi- These events are interpreted to represent eustatic variations, because they oc- ment compaction, sediment loading, and, in this case, thermal subsidence. cur on a shorter time frame than epeirogenic influences. Correction for epeiro- Applied to the onshore coreholes, backstripping provides a relative sea-level genic effects largely reconciles differences between onshore and offshore rela- record for the New Jersey margin that in the absence of other tectonic effects tive sea-level estimates and suggests that backstripping provides a testable yields a testable estimate of eustatic change (Miller et al., 2005; Kominz et al., eustatic model for the Early to Middle Miocene. 2008). However, mantle tomographic studies coupled with models of litho- spheric epeirogeny suggest that the New Jersey margin has undergone broad tectonic subsidence over the past 50 million years (e.g., Conrad et al., 2004; INTRODUCTION Moucha et al., 2008; Spasojević et al., 2008). Thus, more work is required to separate eustatic and epeirogenic effects in this region. One of the outstanding challenges in studying Earth history is document- Several processes must be accounted for to untangle eustasy from epeirog- ing the timing and magnitude of global sea-level change (e.g., Haq et al., 1987, eny. Most backstripping estimates of the magnitude of sea-level change in this For permission to copy, contact Copyright 1988; Miller et al., 2005). Here we use eustasy to mean the global change in region have used a one-dimensional approach that assumes an Airy response Permissions, GSA, or [email protected]. sea level relative to a fixed point, e.g., the center of the Earth (Posamentier to sediment loads (Kominz et al., 1998; Miller et al., 1998a, 2005; Van Sickel © 2016 Geological Society of America GEOSPHERE | Volume 12 | Number 5 Kominz et al. | Miocene relative sea level: IODP 313 New Jersey Margin 1 Research Paper –75° –74° –73° –72° P L F O H E R S C A L T N T U N E O T I N C S O I U C O O Z E C E O A N Sea Figure 1. Location map. Sites used in this E T E L E C Girt work are indicated as large red circles for A R O P C I 40° M M27 Integrated Ocean Drilling Program (IODP) M28 Expedition 313 sites and as large green cir- Island M29 Beach cles for the onshore coreholes with lower Ancora to middle Miocene strata. Seismic profiles Ft. Mott Bass River 1071 are from three different data acquisition New cruises (R/V Ewing cruise Ew9009, R/V Jersey Atlantic 1072 1073 Oceanus cruise Oc270, and R/V Cape Hatteras cruise CH0698; Monteverde et al., City Millville 2008; Mountain et al., 2010; Miller et al., Ocean View 2013a). The seismic section Oc270 line Cape 529 (red line passing through Exp 313 drill May sites) is shown in Figure 2. The Anchor Zoo Anchor 906 Dickinson well (gray filled dot; Poag, 1985; 00 39° Dickinson * 20 well Seismic Profiles Sugarman et al., 2011) was drilled as a gas a Cape 902 exploration well between the Cape May CH0698 Oc270 903 May 0 904 and Cape May Zoo sites. AMCOR—Atlan- ula 10 0 Ew9009 Figure 2 0 10 tic Margin Coring Project; DSDP—Deep Sea Drilling Program. DrillDrillsites Sites 905 Bethany Beach IODP Expedition 313 offshore ODP onshore ODP 200 DSDP AMCOR 00 N oil exploration 30 et al., 2004; Kominz et al., 2008). Only one model, of Upper Eocene to lower- ing of glaciers (glacial isostatic adjustment [GIA]) has been shown to vary most Miocene strata, used a two-dimensional backstripping approach that in- globally (e.g., Peltier, 1998) with impact in this region (e.g., Raymo et al., 2011). corporates flexural rigidity of the lithosphere to account for subsidence caused This effect is most pronounced during the large Northern Hemisphere ice ages by sediment loads at a distance (Kominz and Pekar, 2001). There are several of the past 2.7 m.y., but GIA influences the reference frame of older records as complications inherent in estimates of New Jersey margin relative sea level. well (e.g., Raymo et al., 2011). One issue is the fact that coastal plain sediments rarely contain a complete Drilling data provided by IODP Expedition 313 (hereafter “Exp 313”) on record of sea-level change. They generally preserve only the transgressive the New Jersey shallow continental shelf focused on Lower to Middle Mio- and highstand systems tracts, leaving lowstand sediments farther seaward cene strata (Mountain et al., 2010). This data set presents an opportunity to beneath what is now the continental shelf (Miller et al., 1998a). As discussed estimate amplitudes of offshore relative sea-level change based on cores, above, other tectonic effects have been postulated in this region so that tec- logs, and seismic profiles that can be compared to the onshore results. By tonic subsidence may not be entirely thermal. In particular, the arrival of the providing estimates of the magnitude of relative sea-level change, we can Farallon slab beneath the North American east coast ca. 75 Ma requires that begin to address the magnitude and timing of both eustasy and more regional New Jersey subsided beyond the predicted thermal subsidence (Conrad et al., epeirogeny. 2004; Kominz et al., 2008; Moucha et al., 2008; Müller et al., 2008; Spasojević Exp 313 drilled three coreholes (sites M27, M28, and M29; Fig. 1) in ~30 m et al., 2008). This means that the stratigraphic succession in this region has of water, targeting Miocene sequences that also were cored in multiple loca- been imprinted by eustatic, thermal, and epeirogenic processes.
Recommended publications
  • Chapter 30. Latest Oligocene Through Early Miocene Isotopic Stratigraphy
    Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), 1997 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154 30. LATEST OLIGOCENE THROUGH EARLY MIOCENE ISOTOPIC STRATIGRAPHY AND DEEP-WATER PALEOCEANOGRAPHY OF THE WESTERN EQUATORIAL ATLANTIC: SITES 926 AND 9291 B.P. Flower,2 J.C. Zachos,2 and E. Martin3 ABSTRACT Stable isotopic (d18O and d13C) and strontium isotopic (87Sr/86Sr) data generated from Ocean Drilling Program (ODP) Sites 926 and 929 on Ceara Rise provide a detailed chemostratigraphy for the latest Oligocene through early Miocene of the western Equatorial Atlantic. Oxygen isotopic data based on the benthic foraminifer Cibicidoides mundulus exhibit four distinct d18O excursions of more than 0.5ä, including event Mi1 near the Oligocene/Miocene boundary from 23.9 to 22.9 Ma and increases at about 21.5, 18 and 16.5 Ma, probably reßecting episodes of early Miocene Antarctic glaciation events (Mi1a, Mi1b, and Mi2). Carbon isotopic data exhibit well-known d13C increases near the Oligocene/Miocene boundary (~23.8 to 22.6 Ma) and near the early/middle Miocene boundary (~17.5 to 16 Ma). Strontium isotopic data reveal an unconformity in the Hole 926A sequence at about 304 meters below sea ßoor (mbsf); no such unconformity is observed at Site 929. The age of the unconfor- mity is estimated as 17.9 to 16.3 Ma based on a magnetostratigraphic calibration of the 87Sr/86Sr seawater curve, and as 17.4 to 15.8 Ma based on a biostratigraphic calibration. Shipboard biostratigraphic data are more consistent with the biostratigraphic calibration.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • 21. BRYOZOA from SITE 282 WEST of TASMANIA Robin E
    21. BRYOZOA FROM SITE 282 WEST OF TASMANIA Robin E. Wass and J. J. Yoo, Department of Geology and Geophysics, University of Sydney, Australia ABSTRACT More than 15,000 bryozoan fragments have been identified from 17 samples in the late Miocene and late Pleistocene sediments at Site 282, Leg 29, Deep Sea Drilling Project, off the west coast of Tas- mania (lat 42°14.76'S, long 143°29.18'E). Bryozoa are referable to the Orders Cyclostomata and Cheilostomata and represent 79 species belonging to 48 genera. Both late Miocene and late Pleisto- cene assemblages are closely related to assemblages found in the Tertiary of southern Australia, and the Recent of the southern Aus- tralian continental shelf. INTRODUCTION The bryozoan fauna is small relative to that found in the late Pleistocene sediments and relative to records of Recent and Tertiary bryozoan faunas from southern late Miocene Bryozoa from southeastern Australia. The Australia have been documented for more than a late Miocene Bryozoa in the Tertiary of southeastern century. The dominant works have been by MacGilli- Australia are also greatly diminished when compared vray (1879, 1895), Maplestone (1898), Stach (1933), and with the middle Miocene faunas. Few studies have been Brown (1958). Brown's monograph (1952) on the New made of Pliocene bryozoa in southeastern Australia, but Zealand Tertiary Bryozoa, recorded genera and species apparently bryozoans are fewer in number than in the from the Recent and Tertiary of southern Australia. late Miocene. While a great deal of work has been done, there are still The fauna observed at Site 282 is composed almost a large number of studies which have to be completed entirely of four zoarial types—catenicelliform, cellari- before the bryozoan faunas are properly understood.
    [Show full text]
  • Mammal Footprints from the Miocene-Pliocene Ogallala
    Mammalfootprints from the Miocene-Pliocene Ogallala Formation, easternNew Mexico by ThomasE. Williamsonand SpencerG. Lucas, New Mexico Museum of Natural History and Science,1801 Mountain Road NW Albuquerque, New Mexico 87104-7375 Abstract well-develooed mudcracks. The track- ways are diveloped on the mudstone Mammal trackways preserved in the drape but are preserved as infillings at the Miocene-Pliocene Ogallala Formation of base of the overlying conglomerate (Figs. eastern New Mexico represent the first 2-4). Most tracks are preserved on the report of mammal fossils-from this unit in underside of a single, thick conglomerate New Mexico. These trackwavs are Dre- block (Fig. 3). A few isolated mammal served as infillings in a conglomerate near the base of the Ogallala Formation. At least prints were also observed on the under- four mammalian ichnotaxa are represented, side of adjacent blocks.he depth of the including a single trackway of a large camel infillings suggest that tracks were made in (Gambapessp. A), several prints of an uncer- a relatively soft substrate. Some prints are tain family of artiodactyl (Gambapessp B), a accompanied by marks indicating slip- single trackway of a large feloid carnivoran page on a slick, wet substrate (Fig. 5C). (Bestiopeda sp.), and several indistinct im- Infillings of mudcracks and narrow, cylin- pressions, probably representing more than drical burrows and raindrop impressions one trackway of a small canid carnivoran are Dreserved over some areas of the (Chelipus sp ). The footprints are preserved in a channel-margin facies of an Ogallala tracliway slab. Mammal trackways repre- braided stream. sent at least four ichnotaxa.
    [Show full text]
  • Late Neogene Chronology: New Perspectives in High-Resolution Stratigraphy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Columbia University Academic Commons Late Neogene chronology: New perspectives in high-resolution stratigraphy W. A. Berggren Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 F. J. Hilgen Institute of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands C. G. Langereis } D. V. Kent Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964 J. D. Obradovich Isotope Geology Branch, U.S. Geological Survey, Denver, Colorado 80225 Isabella Raffi Facolta di Scienze MM.FF.NN, Universita ‘‘G. D’Annunzio’’, ‘‘Chieti’’, Italy M. E. Raymo Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 N. J. Shackleton Godwin Laboratory of Quaternary Research, Free School Lane, Cambridge University, Cambridge CB2 3RS, United Kingdom ABSTRACT (Calabria, Italy), is located near the top of working group with the task of investigat- the Olduvai (C2n) Magnetic Polarity Sub- ing and resolving the age disagreements in We present an integrated geochronology chronozone with an estimated age of 1.81 the then-nascent late Neogene chronologic for late Neogene time (Pliocene, Pleisto- Ma. The 13 calcareous nannoplankton schemes being developed by means of as- cene, and Holocene Epochs) based on an and 48 planktonic foraminiferal datum tronomical/climatic proxies (Hilgen, 1987; analysis of data from stable isotopes, mag- events for the Pliocene, and 12 calcareous Hilgen and Langereis, 1988, 1989; Shackle- netostratigraphy, radiochronology, and cal- nannoplankton and 10 planktonic foram- ton et al., 1990) and the classical radiometric careous plankton biostratigraphy.
    [Show full text]
  • A Case for Formalizing Subseries (Subepochs) of the Cenozoic Era(A)
    22 by Martin J. Head1, Marie-Pierre Aubry2, Mike Walker3,4, Kenneth G. Miller2, and Brian R. Pratt5 A case for formalizing subseries (subepochs) of the Cenozoic Era(a) 1 Department of Earth Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada. Corresponding author, E-mail: [email protected] 2 Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA. E-mail: [email protected]; [email protected] gers.edu 3 School of Archaeology, History and Anthropology, Trinity Saint David, University of Wales, Lampeter, Wales, SA48 7ED, UK. E-mail: m. [email protected] 4 Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Wales, SY23 3DB, UK 5 Department of Geological Sciences, University of Saskatchewan, Saskatoon SK7N 5E2, Canada. E-mail: [email protected] (Received: December 17, 2015; Revised accepted: August 12, 2016) http://dx.doi.org/10.18814/epiiugs/2017/v40i1/017004 Subseries/subepochs (e.g., Lower/Early Eocene, Upper/ into the Cenozoic time scale only in the 1970s, with the boundaries of Late Pleistocene) have yet to be formally defined despite stages adjusted to fit subseries, not the other way around. Aubry (2016) their wide use in the Cenozoic literature. This has led to provides a comprehensive history of the subdivision of series for the concerns about the stability of their definition and uncer- Cenozoic and their relationship to stages, the broader history of chro- tainty over their status that has led to inconsistencies in nostratigraphy having been outlined by Aubry et al. (1999) and Vai capitalization.
    [Show full text]
  • 2. the Miocene/Pliocene Boundary in the Eastern Mediterranean: Results from Sites 967 and 9691
    Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), 1998 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 160 2. THE MIOCENE/PLIOCENE BOUNDARY IN THE EASTERN MEDITERRANEAN: RESULTS FROM SITES 967 AND 9691 Silvia Spezzaferri,2 Maria B. Cita,3 and Judith A. McKenzie2 ABSTRACT Continuous sequences developed across the Miocene/Pliocene boundary were cored during Ocean Drilling Project (ODP) Leg 160 at Hole 967A, located on the base of the northern slope of the Eratosthenes Seamount, and at Hole 969B, some 700 km to the west of the previous location, on the inner plateau of the Mediterranean Ridge south of Crete. Multidisciplinary investiga- tions, including quantitative and/or qualitative study of planktonic and benthic foraminifers and ostracodes and oxygen and car- bon isotope analyses of these microfossils, provide new information on the paleoceanographic conditions during the latest Miocene (Messinian) and the re-establishment of deep marine conditions after the Messinian Salinity Crisis with the re-coloni- zation of the Eastern Mediterranean Sea in the earliest Pliocene (Zanclean). At Hole 967A, Zanclean pelagic oozes and/or hemipelagic marls overlie an upper Messinian brecciated carbonate sequence. At this site, the identification of the Miocene/Pliocene boundary between 119.1 and 119.4 mbsf, coincides with the lower boundary of the lithostratigraphic Unit II, where there is a shift from a high content of inorganic and non-marine calcite to a high content of biogenic calcite typical of a marine pelagic ooze. The presence of Cyprideis pannonica associated upward with Paratethyan ostracodes reveals that the upper Messinian sequence is complete.
    [Show full text]
  • A Middle Eocene Lowland Humid Subtropical “Shangri-La” Ecosystem in Central Tibet
    A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet Tao Sua,b,c,1, Robert A. Spicera,d, Fei-Xiang Wue,f, Alexander Farnsworthg, Jian Huanga,b, Cédric Del Rioa, Tao Dengc,e,f, Lin Dingh,i, Wei-Yu-Dong Denga,c, Yong-Jiang Huangj, Alice Hughesk, Lin-Bo Jiaj, Jian-Hua Jinl, Shu-Feng Lia,b, Shui-Qing Liangm, Jia Liua,b, Xiao-Yan Liun, Sarah Sherlockd, Teresa Spicera, Gaurav Srivastavao, He Tanga,c, Paul Valdesg, Teng-Xiang Wanga,c, Mike Widdowsonp, Meng-Xiao Wua,c, Yao-Wu Xinga,b, Cong-Li Xua, Jian Yangq, Cong Zhangr, Shi-Tao Zhangs, Xin-Wen Zhanga,c, Fan Zhaoa, and Zhe-Kun Zhoua,b,j,1 aCAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; bCenter of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China; cUniversity of Chinese Academy of Sciences, 100049 Beijing, China; dSchool of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom; eKey Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China; fCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100101 Beijing, China; gSchool of Geographical Sciences and Cabot Institute, University of Bristol, Bristol, BS8 1TH, United Kingdom; hCAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100101 Beijing, China; iKey Laboratory of
    [Show full text]
  • Oligocene and Miocene Arc Volcanism in Northeastern California: Evidence for Post-Eocene Segmentation of the Subducting Farallon Plate
    Origin and Evolution of the Sierra Nevada themed issue Oligocene and Miocene arc volcanism in northeastern California: Evidence for post­Eocene segmentation of the subducting Farallon plate Joseph P. Colgan1,*, Anne E. Egger2, David A. John1, Brian Cousens3, Robert J. Fleck1, and Christopher D. Henry4 1U.S. Geological Survey, 345 Middlefield Road, Mail Stop 973, Menlo Park, California 94025, USA 2Geological and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, California 94305, USA 3Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S5B6 4Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA ABSTRACT sitionally similar to Oligocene rocks in the Unlike the western Cascades, however, vol­ Warner Range. They are distinctly different canic rocks of the ancestral Cascades are a subset The Warner Range in northeastern Cali- from younger (Late Miocene to Pliocene) of a diverse and widespread suite of Cenozoic fornia exposes a section of Tertiary rocks over high-Al, low-K olivine tholeiites, which are volcanic rocks erupted across the Basin and 3 km thick, offering a unique opportunity to more mafic (46%–49% SiO2), did not build Range Province since the Eocene. The ancestral study the long-term history of Cascade arc large edifices, and are thought to be related Cascades samples plotted in Figure 1 are those volcanism in an area otherwise covered by to backarc extension. The Warner Range is considered by du Bray et al. (2009) to be plausi­ younger volcanic rocks. The oldest locally
    [Show full text]
  • Eocene, Oligocene, and Miocene Rocks and \Fertebrate Fossils at the Emerald Lake Locality, 3 Miles South of Ifellowstone National Park,Wyoming
    Eocene, Oligocene, and Miocene Rocks and \fertebrate Fossils at the Emerald Lake Locality, 3 Miles South of Ifellowstone National Park,Wyoming GEOLOGICAL SURVEY PROFESSIONAL PAPER 932-A Prepared in cooperation with the Geological Survey of Wyoming, the Department of Geology of the University of Wyoming, the American Museum of Natural History, and the Carnegie Museum Eocene, Oligocene, and Miocene Rocks and \fertebrate Fossils at the Emerald Lake Locality 3 Miles South of Ifellowstone National Park,Wyoming By J. D. LOVE, MALCOLM C. McKENNA, and MARY R. DAWSON GEOLOGY OF THE TETON-JACKSON HOLE REGION, NORTHWESTERN WYOMING GEOLOGICAL SURVEY PROFESSIONAL PAPER 932-A Prepared in cooperation with the Geological Survey of Wyoming, the Department of Geology of the University of Wyoming, the American Museum of Natural History, and the Carnegie Museum UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Love, John David, 1913- Eocene, Oligocene, and Miocene rocks and vertebrate fossils at the Emerald Lake locality, 3 miles south of Yellowstone National Park, Wyoming. (Geology of the Teton-Jackson Hole region, northwestern Wyoming) (Geological Survey Professional Paper 932-A) Bibliography: p. Includes index. 1. Geology, Stratigraphic Tertiary. 2. Vertebrates, Fossil. 3. Geology Wyoming Teton Co. I. McKenna, Malcolm C., joint author. II. Dawson, Mary R., joint author. III. Wyoming Geological Survey. IV. Title: Eocene, Oligocene, and Miocene rocks and vertebrate fossils at the Emerald Lake locality ... V. Series. VI. Series: United States Geological Survey Professional Paper 932-A. QE691.L79 551.?'8 76-8159 For sale by the Superintendent of Documents, U.S.
    [Show full text]
  • The Oligo–Miocene Closure of the Tethys Ocean and Evolution of the Proto‑Mediterranean Sea Adi Torfstein1,2* & Josh Steinberg3
    www.nature.com/scientificreports OPEN The Oligo–Miocene closure of the Tethys Ocean and evolution of the proto‑Mediterranean Sea Adi Torfstein1,2* & Josh Steinberg3 The tectonically driven Cenozoic closure of the Tethys Ocean invoked a signifcant reorganization of oceanic circulation and climate patterns on a global scale. This process culminated between the Mid Oligocene and Late Miocene, although its exact timing has remained so far elusive, as does the subsequent evolution of the proto-Mediterranean, primarily due to a lack of reliable, continuous deep-sea records. Here, we present for the frst time the framework of the Oligo–Miocene evolution of the deep Levant Basin, based on the chrono-, chemo- and bio- stratigraphy of two deep boreholes from the Eastern Mediterranean. The results reveal a major pulse in terrigeneous mass accumulation rates (MARs) during 24–21 Ma, refecting the erosional products of the Red Sea rifting and subsequent uplift that drove the collision between the Arabian and Eurasian plates and the efective closure of the Indian Ocean-Mediterranean Seaway. Subsequently, the proto-Mediterranean experienced an increase in primary productivity that peaked during the Mid‑Miocene Climate Optimum. A region‑ wide hiatus across the Serravallian (13.8–11.6 Ma) and a crash in carbonate MARs during the lower Tortonian refect a dissolution episode that potentially marks the earliest onset of the global middle to late Miocene carbonate crash. Global climate oscillations during the Miocene refect major events in the Earth’s history such as the closure of the Indian Ocean-Mediterranean Seaway (IOMS), Mid-Miocene Climate Optimum (MMCO), and the glacia- tion of Antarctica1.
    [Show full text]
  • The Neogene: Origin, Adoption, Evolution, and Controversy
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Earth-Science Reviews 89 (2008) 42–72 www.elsevier.com/locate/earscirev The Neogene: Origin, adoption, evolution, and controversy Stephen L. Walsh 1 Department of Paleontology, San Diego Natural History Museum, PO Box 121390, San Diego, CA 92112, USA Received 4 October 2007; accepted 3 December 2007 Available online 14 December 2007 Abstract Some stratigraphers have recently insisted that for historical reasons, the Neogene (Miocene+Pliocene) should be extended to the present. However, despite some ambiguity in its application by Moriz Hörnes in the 1850s, the “Neogene” was widely adopted by European geologists to refer to the Miocene and Pliocene of Lyell, but excluding the “Diluvium” (later to become the Pleistocene) and “Alluvium” (later to become the Holocene). During the late 19th and early 20th centuries, the ends of the Neogene, Tertiary and Pliocene evolved in response to the progressive lowering of the beginnings of the Quaternary and Pleistocene.
    [Show full text]