About the Contributors

Total Page:16

File Type:pdf, Size:1020Kb

About the Contributors 0 About the Contributors Xiao-Li Li is currently a principal investigator at the Data Mining Department, Institute for Infocomm Re- search, A*Star. He also holds an appointment of adjunct assistant professor at the School of Computer Engineering, Nanyang Technological University. Xiao-Li received his PhD degree in computer science from Chinese Academy of Sciences in 2001. He was with National University of Singapore (School of Computing/Singapore-MIT Alli- ance) as a research fellow from 2001 to 2004 before he joined the Institute for Infocomm Research. His research interests include bioinformatics, data mining and machine learning. He has been serving as the members of edi- torial boards or technical program committees in numerous bioinformatics, data mining and machine learning related conferences and journals. In 2005, he received best paper award in the 16th International Conference on Genome Informatics (GIW 2005). In 2008, he received the best poster award in the 12th Annual International Conference Research in Computational Molecular Biology (RECOMB 2008). Dr. Li is also co-editor-in-chief of the International Journal of Knowledge Discovery in Bioinformatics. See-Kiong Ng is currently the department head of the Data Mining Department at Institute for Infocomm Research. He is also an adjunct associate professor at the School of Computer Engineering, Nanyang Techno- logical University. See-Kiong obtained his PhD in computer science from Carnegie Mellon University. When he was a graduate student at CMU, See-Kiong wrote the TrueAllele software which was used by biotech and pharmaceutical companies to fully automate the analysis of data from large-scale genotyping studies. Since then, See-Kiong has continued his journey into the exciting field of genomics as a computer scientist, publishing award-winning papers and serving on the editorial boards or technical program committees in major bioinfor- matics conferences and journals. See-Kiong’s current research focuses on unraveling the underlying functional mechanisms of protein interaction networks as well as other real-world networks. His continuing and emerging diverse and cross-disciplinary research interests include bioinformatics, text mining, social network mining, and privacy-preserving data mining. Dr. Ng is also co-editor-in-chief of the International Journal of Knowledge Discovery in Bioinformatics. * * * Tero Aittokallio received his PhD in applied mathematics from the University of Turku in 2001. He is Research Fellow of the Academy of Finland at the Department of Mathematics, University of Turku, Finland. He has authored more than 50 articles in international peer-reviewed journals. His main research field is model- based analysis of biological systems, with special focus on developing mathematical and statistical data mining approaches to address concrete biomedical problems. Tatsuya Akutsu received BEng and MEng in aeronautics and DEng in information engineering from Uni- versity of Tokyo, 1984, 1986 and 1989, respectively. From 1989 to 1994, he was with Mechanical Engineering Laboratory, Japan. From 1994 to 1996, he was an associate professor in the Department of Computer Science Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited. About the Contributors at Gunma University. From 1996 to 2001, he was an associate professor in Human Genome Center, Institute of Medical Science, University of Tokyo. Since 2001, he has been a professor in Bioinformatics Center, Institute for Chemical Research, Kyoto University. His research interests include bioinformatics and the design and analysis of algorithms. Doina Caragea is an assistant professor at Kansas State University. Her research interests include artificial intelligence, machine learning, data mining, information integration and information visualization, with applica- tions to bioinformatics. Doina received her PhD in computer science from Iowa State University in August 2004 and was honored with the Iowa State University Research Excellence Award for her work. She has published more than 20 refereed conference and journal articles and contributed to the design and implementation of INDUS (an open source system for Intelligent Data Understanding). Doina is teaching machine learning, data mining and bioinformatics courses. Hon Nian Chua is a research engineer at the Data Mining Department of the Institute for Infocomm Research, A*STAR. He obtained his PhD degree in bioinformatics from the National University of Singapore in 2008, under the support of the A*STAR Graduate Scholarship. His current research interest is in the application of machine learning and graph-based techniques in biological and medical research. Joaquin Dopazo is the head of the Department of Bioinformatics and Genomics at the CIPF (Valencia). In previous appointments he was responsible of Bioinformatics units at the CNIO (Madrid) and at GlaxoWellcome SA (Madrid). He has supervised several large scale projects of software development, as the GEPAS (http://www. gepas.org) or the Babelomics (http://www.Babelomics.org) where more than 1000 microarray experiments are daily analysed. J. Dopazo has a master degree in chemistry (Universidad de Valencia) and a PhD in biology (Uni- versidad de Valencia). He has more than one hundred papers published in international peer reviewed journals and has edited a book on genomic data analysis. His main interests include functional and comparative genomics. Valeria Fionda is currently attending the second year of the “Dottorato in Matematica e Informatica” (Doc- torate in Mathematics and Computer Science) at the Department of Mathematics, Università della Calabria. Her research interests include issues related to bioinformatics, computational biology and graph matching. Sirisha Gollapudi is a PhD student at the University of Nottingham, within the Multidisciplinary Centre for Integrative Biology (MyCIB). She obtained a BSc in computer science from the University of Nottingham, and a postgraduate certificate in bioinformatics from the University of Manchester. Her PhD research focuses on the use of web service technology to expose software for the analysis of biological networks, including holistic models of metabolism and protein-protein interactions. Her main research interest is the combination of such web services into scientific workflows to automate analyses and query heterogeneous data resources. Morihiro Hayashida received BSci and MSci in information science from University of Tokyo, 2000 and 2002, and DInf in informatics from Kyoto University, 2005. Since 2005, he has been an assistant professor in Bioinformatics Center, Institute for Chemical Research, Kyoto University. His research interests include issues related to protein function prediction and bioinformatics. Charlie Hodgman dates his first bioinformatics project to 1980. During the 1980s and 90s, he acquired an international reputation for elucidating biomolecular function using informatics approaches. Since the mid-90s, his attention has turned to interaction networks and dynamic modelling of multi-scale systems. His research career began in ICI Ltd (UK) in the 1970s. Following fifteen years in Cambridge and nine in GlaxoSmithKline, he is now Professor of Bioinformatics and Systems Biology and director of the Multidisciplinary Centre for 0 About the Contributors Integrative Biology in the University of Nottingham (UK). He was also an associate editor of Bioinformatics from 2000 to 2006. William H. Hsu is an associate professor in the Department of Computing and Information Sciences at Kansas State University. He received a BS in mathematical sciences and computer science and an MSEng in computer science from Johns Hopkins University in 1993, and a PhD in computer science from the University of Illinois at Urbana-Champaign in 1998. His research interests include machine learning and probabilistic reasoning, with applications to information extraction, time series prediction, link mining, and bioinformatics (especially computational genomics and proteomics). Lilia M. Iakoucheva is a research assistant professor at the Rockefeller University in New York, NY, USA. She holds a PhD degree in molecular biology and immunology, which she received in Moscow, Russia. Her research interests are focused on understanding how alterations in protein structure, function and interactions contribute to human disease. Dr. Iakoucheva is interested in investigating this question from two different levels, molecular and systems biology. She uses both computational and experimental approaches to investigate these questions. Another aspect of her scientific interests includes investigation of functional properties of intrinsically disordered proteins. Dr. Iakoucheva’s research was published in a number of high-impact journals including Bioinformatics, PLoS Computational Biology, Nucleic Acids Research, Journal of Molecular Biology, Protein Science, Journal of Proteome Research, and Biochemistry. Her research was supported by the National Science Foundation (NSF) and the National Institutes of Health (NIH). Daisuke Kihara PhD is an assistant professor in the Departments of Biological Sciences and Computer Science at Purdue University. He received his PhD degree from Kyoto University in 1999. His research projects include protein function and structure prediction and protein surface shape searching for function prediction and docking. His research projects are funded by the National Institutes
Recommended publications
  • Editorial Computational and Bioinformatics Techniques for Immunology
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 263189, 2 pages http://dx.doi.org/10.1155/2014/263189 Editorial Computational and Bioinformatics Techniques for Immunology Francesco Pappalardo,1 Vladimir Brusic,2 Filippo Castiglione,3 and Christian Schönbach2 1 Department of Drug Sciences, University of Catania, 95125 Catania, Italy 2School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan 3Istituto Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Rome, Italy Correspondence should be addressed to Francesco Pappalardo; [email protected] Received 22 July 2014; Accepted 22 July 2014; Published 31 December 2014 Copyright © 2014 Francesco Pappalardo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Computational immunology and immunological bioinfor- biology spanning different scales: an open challenge”by matics are well-established and rapidly evolving research F. Castiglione et al. fields. Whereas the former aims to develop mathematical Exploring the connections between classical mathemat- and/or computational methods to study the dynamics of ical modeling (at different scales) and bioinformatics pre- cellular and molecular entities during the immune response dictions of omic scope along with specific aspects of the [1–4], the latter targets proposing methods to analyze large immune system in combination with concepts and methods genomic and proteomic immunological-related datasets and like computer simulations, mathematics and statistics for the derive (i.e., predict) new knowledge mainly by statistical discovery, design, and optimization of drugs, vaccines, and inference and machine learning algorithms.
    [Show full text]
  • Toward Computational Modelling on Immune System Function Francesco Pappalardo1*, Marzio Pennisi2, Pedro A
    Pappalardo et al. BMC Bioinformatics 2019, 20(Suppl 6):622 https://doi.org/10.1186/s12859-019-3239-x INTRODUCTION Open Access Toward computational modelling on immune system function Francesco Pappalardo1*, Marzio Pennisi2, Pedro A. Reche3 and Giulia Russo1 From 2nd International Workshop on Computational Methods for the Immune System Function Madrid, Spain. 3–6 December 2018 Abstract The 2nd Computational Methods for the Immune System function Workshop has been held in Madrid in conjunction with the IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018) in Madrid, Spain, from December 3 to 6, 2018. The workshop has been obtained 100% more submissions in respect to the first edition, highlighting a growing interest for the treated topics. The best papers (9) have been selected for extension in this special issue, with themes about immune system and disease simulation, computer-aided design of novel candidate vaccines, methods for the analysis of immune system involved diseases based on statistical methods, meta-heuristics and game theory, and modelling strategies for improving the simulation of the immune system dynamics. Introduction modeling of the Immune system function, along with their The constant and rapid increasing of computing power application in understanding the pathogenesis of specific has favoured the diffusion of computational methods diseases (e.g., infectious diseases, cancers, hypersensitivi- into immunology, giving the birth to computational ties, autoimmune disorders) has been in our minds for
    [Show full text]
  • An Interdisciplinary Perspective on Artificial Immune Systems
    Evol. Intel. (2008) 1:5–26 DOI 10.1007/s12065-007-0004-2 REVIEW ARTICLE An interdisciplinary perspective on artificial immune systems J. Timmis Æ P. Andrews Æ N. Owens Æ E. Clark Received: 7 September 2007 / Accepted: 11 October 2007 / Published online: 10 January 2008 Ó Springer-Verlag 2008 Abstract This review paper attempts to position the area 1 Introduction of Artificial Immune Systems (AIS) in a broader context of interdisciplinary research. We review AIS based on an Artificial Immune Systems (AIS) is a diverse area of established conceptual framework that encapsulates math- research that attempts to bridge the divide between ematical and computational modelling of immunology, immunology and engineering and are developed through abstraction and then development of engineered systems. the application of techniques such as mathematical and We argue that AIS are much more than engineered systems computational modelling of immunology, abstraction from inspired by the immune system and that there is a great those models into algorithm (and system) design and deal for both immunology and engineering to learn from implementation in the context of engineering. Over recent each other through working in an interdisciplinary manner. years there have been a number of review papers written on AIS with the first being [25] followed by a series of others Keywords Artificial immune systems Á that either review AIS in general, for example, [29, 30, 43, Immunological modelling Á Mathematical modelling Á 68, 103], or more specific aspects of AIS such as data Computational modelling Á mining [107], network security [71], applications of AIS Applications of artificial immune systems Á [58], theoretical aspects [103] and modelling in AIS [39].
    [Show full text]
  • Computational Immunology Workshop
    Computational Immunology Workshop On the 16th of November, with the support of the Pole Rabelais, the SIRIC Montpellier Cancer, and the IRCM, we organize a 1-day workshop on the theme Computational Immunology. The meeting will take place at IRCM auditorium. We will discuss computational or bioinformatics aspects of immunology and the cancer microenvironment. Recent developments in DNA sequencing and functional proteomics have made possible remarkably successful data driven research in these fields. It requires bioinformatics and computational abilities to transform data into information. The workshop is a unique opportunity to learn from experts who applied such techniques to conduct meaningful biological and translational research. We will welcome prestigious international and French speakers: • Dr Andreas Pichlmair, Max Plank Institute, Munich, innate immunity ; • Dr Fatima Mechta-Grigoriou, Institut Curie, Paris, tumor microenvironment ; • Pr Zlatko Trajanoski, Biocenter, Innsbruck, oncoimmunology ; • Dr Monsef Benkirane, IGH, Montpellier, immunology ; • Pr Marie-Paule Lefranc, IGH, Montpellier, immunoinformatics. Registration is free but mandatory: Inscription In addition, YOU are invited to submit an abstract for an oral or poster presentation (send to [email protected]) and contribute to the success of this workshop. The organizers: Ula Hibner (IGMM), Sofia Kossida (IGH), Jacques Colinge (IRCM). Preliminary Program 08:45 Registration 09:00 Opening and introductory remarks Session 1 Innate and adaptive immunity 09:00 Keynote
    [Show full text]
  • How Do We Evaluate Artificial Immune Systems?
    How Do We Evaluate Artificial Immune Systems? Simon M. Garrett [email protected] Computational Biology Group, Department of Computer Science, University of Wales, Aberystwyth, Wales, SY23 3DB. UK Abstract The field of Artificial Immune Systems (AIS) concerns the study and development of computationally interesting abstractions of the immune system. This survey tracks the development of AIS since its inception, and then attempts to make an assessment of its usefulness, defined in terms of ‘distinctiveness’ and ‘effectiveness.’ In this paper, the standard types of AIS are examined—Negative Selection, Clonal Selection and Im- mune Networks—as well as a new breed of AIS, based on the immunological ‘danger theory.’ The paper concludes that all types of AIS largely satisfy the criteria outlined for being useful, but only two types of AIS satisfy both criteria with any certainty. Keywords Artificial immune systems, critical evaluation, negative selection, clonal selection, im- mune network models, danger theory. 1 Introduction What is an artificial immune system (AIS)? One answer is that an AIS is a model of the immune system that can be used by immunologists for explanation, experimentation and prediction activities that would be difficult or impossible in ‘wet-lab’ experiments. This is also known as ‘computational immunology.’ Another answer is that an AIS is an abstraction of one or more immunological processes. Since these processes protect us on a daily basis, from the ever-changing onslaught of biological and biochemical entities that seek to prosper at our expense, it is reasoned that they may be computa- tionally useful. It is this form of AIS—methods based on immune abstractions—that will be studied here.
    [Show full text]
  • Quantitative Immunology for Physicists
    bioRxiv preprint doi: https://doi.org/10.1101/696567; this version posted July 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Quantitative Immunology for Physicists Gr´egoireAltan-Bonnet,1, ∗ Thierry Mora,2, ∗ and Aleksandra M. Walczak2, ∗ 1Immunodynamics Section, Cancer & Inflammation Program, National Cancer Institute, Bethesda MD 20892, USA 2Laboratoire de physique de l'Ecole´ normale sup´erieure (PSL University), CNRS, Sorbonne Universit´e,Universit´ede Paris, 75005 Paris, France Abstract. The adaptive immune system is a dynamical, self-organized multiscale system that protects vertebrates from both pathogens and internal irregularities, such as tumours. For these reason it fascinates physicists, yet the multitude of different cells, molecules and sub-systems is often also petrifying. Despite this complexity, as experiments on different scales of the adaptive immune system become more quantitative, many physicists have made both theoretical and experimental contributions that help predict the behaviour of ensembles of cells and molecules that participate in an immune response. Here we review some recent contributions with an emphasis on quantitative questions and methodologies. We also provide a more general methods section that presents some of the wide array of theoretical tools used in the field. CONTENTS A. Cytokine signaling and the JAK-STAT pathway 14 I. Introduction 2 1. Cytokine binding and signaling at equilibrium 15 II. Physical chemistry of ligand-receptor 2. Tunability of cytokine responses. 15 interaction: specificity, sensitivity, kinetics. 4 3. Regulation by cytokine consumption 17 A. Diffusion-limited reaction rates 4 4.
    [Show full text]
  • Immunoinformatics - Computational Immunology Table of Contents
    Immunoinformatics - Computational Immunology Table Of Contents • Immune system presentation • Immunoinformatics • Papers presentation – IMGT, the international ImMunoGeneTics information system – The futur for computational modelling and prediction systems in clinical immunology • Summary Immune System Presentation Immune System • Composed of many interdependent –cell types –organs • Collectively protect the body Self/Non-Self • Every cell display a marker based on the major histocompatibility complex (MHC) • MHC may be of three different classes – MHC I, MHC II, MHC III • Any cell not displaying this marker is treated as non-self and attacked. Main Organs • Bone Marrow – Immune system’s cells production •Thymus – Maturation of T cells • Spleen – Immunologic blood filter and RBC recycle unit •Lymph Nodes – Immunologic filter for the lymph Main Cells • Blood cells ar manufactured by stem cells in the bone marrow • The process is called hematopoiesis • Three different types of blood cells – Erythrocytes (RBC) –Leukocytes (WBC) • Granulocytes • Agranulocytes – Thrombocytes (platelets) Main Cells (2) Main Cells (3) • Lymphocytes –T • TH (CD4+ T) • TK (CD8+ T) –B –NK •Granulocytes • Macrophages •Dendritic Cells Antibody • Antigen: substance that elicits an immune response • Antibody: complex protein secreted by B cells – Tagging: Coat the foreign invaders to make them attractive to the circulating scavenger cells – Complement fixation: Combine with antigens and a circulating protein in the blood that cause lysis – Neutralization: Coat viruses and prevent them from entering cells – Agglutination: massively clump to the antigen – Precipitation: force insolubility and settling out of solution Antibody (2) •IgG-75% •IgA-15% •IgM-7.5% •IgD-1% •IgE-0.002% Activation of WBC Activation of helper T cells Activation of B cells to make Activation of cytotoxix T cells antibody VIRUS IMMUNITY BACTERIA IMMUNITY Cell-mediated/Hummoral Immunity • Cell-mediated immunity – T cells (lymphocytes) bind to the surface of other cells that display the antigen and trigger a response.
    [Show full text]
  • Biochem: a New International and Interdisciplinary Journal
    Editorial BioChem: A New International and Interdisciplinary Journal Buyong Ma School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China; [email protected] The advances of biological science have fundamentally changed our world and our understanding of human beings. All the progress, from a simple biochemical reaction to systems biology, has come from interdisciplinary interactions in a variety of scientific fields. This is especially true and important for the current and future study of a broad range of biochem topics, the core of biological science. BioChem is an international and interdisciplinary open access journal encompassing the fields of molecular biology, cell biology, structural biology, nucleic acid biology, chemical biology, synthetic biology, disease biology, biophysics, and theoretical biochemistry. It publishes reviews, research articles, communications, and letters. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. In order to support scientists in different research fields, we have established a highly reputable Editorial Board with diverse research expertise. We expect that our team will grow to meet increasing demand to reach and serve scientists all over the world. Personally, I will also welcome submissions of carefully-verified negative results as well. With the aim of publishing interdisciplinary studies in great detail in mind, I fully understand the value of negative results from carefully designed experiments and theoretical/computational studies. I truly believe that new ideas, better and more novel methodologies will be inspired by sharing all aspects of scientific endeavors. On behalf of the Editorial Board and editorial office, I am pleased to announce that Citation: Ma, B.
    [Show full text]
  • Editorial Advances in Computational Immunology
    Hindawi Publishing Corporation Journal of Immunology Research Volume 2015, Article ID 170920, 3 pages http://dx.doi.org/10.1155/2015/170920 Editorial Advances in Computational Immunology Francesco Pappalardo,1 Vladimir Brusic,2 Marzio Pennisi,3 and Guanglan Zhang4 1 Department of Drug Sciences, University of Catania, 95100 Catania, Italy 2Nazarbayev University, Astana 010000, Kazakhstan 3Department of Mathematics and Computer Science, University of Catania, 95100 Catania, Italy 4Boston University, Boston, MA 02201-2021, USA Correspondence should be addressed to Francesco Pappalardo; [email protected] Received 13 December 2015; Accepted 13 December 2015 Copyright © 2015 Francesco Pappalardo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Computational immunology and immunological bioinfor- potential is to use a panel of multidisease antibodies that can matics are firm and quickly growing research fields. Whereas be instrumental to know what the infectious agents are in the former aims to develop mathematical and/or computa- circulationinagivenpopulationandtheirputativedynamics. tional methods to study the dynamics of cellular and molec- This idea has not been tested in practice, but definitely ular entities during the immune response [1–4], the latter will require the extension of classical mathematical models focuses on proposing methods to investigate
    [Show full text]
  • Editorial Computational and Bioinformatics Techniques for Immunology
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 263189, 2 pages http://dx.doi.org/10.1155/2014/263189 Editorial Computational and Bioinformatics Techniques for Immunology Francesco Pappalardo,1 Vladimir Brusic,2 Filippo Castiglione,3 and Christian Schönbach2 1 Department of Drug Sciences, University of Catania, 95125 Catania, Italy 2School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan 3Istituto Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Rome, Italy Correspondence should be addressed to Francesco Pappalardo; [email protected] Received 22 July 2014; Accepted 22 July 2014; Published 31 December 2014 Copyright © 2014 Francesco Pappalardo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Computational immunology and immunological bioinfor- biology spanning different scales: an open challenge”by matics are well-established and rapidly evolving research F. Castiglione et al. fields. Whereas the former aims to develop mathematical Exploring the connections between classical mathemat- and/or computational methods to study the dynamics of ical modeling (at different scales) and bioinformatics pre- cellular and molecular entities during the immune response dictions of omic scope along with specific aspects of the [1–4], the latter targets proposing methods to analyze large immune system in combination with concepts and methods genomic and proteomic immunological-related datasets and like computer simulations, mathematics and statistics for the derive (i.e., predict) new knowledge mainly by statistical discovery, design, and optimization of drugs, vaccines, and inference and machine learning algorithms.
    [Show full text]
  • Immunoinformatics
    IMMUNOINFORMATICS AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Editorial Board p.1 • Guide for Authors p.4 ISSN: 2667-1190 DESCRIPTION . ImmunoInformatics is an open access cross-disciplinary journal committed to publishing cutting edge research in all aspects of immunoinformatics and computational immunology; from core methodological approaches to translational applications both for academic and industrial researchers. ImmunoInformatics is an international journal publishing peer reviewed research which sits at the interface between computer science, physics, mathematics, and experimental immunology. The journal welcomes theoretical contributions which provide a deeper understanding of the field while also covering practical aspects with contributions on advances and applications in clinical medicine. ImmunoInformatics invites the following types of papers: Research articles which emphasize original results related to theoretical and practical aspects of computational immunology, in close connection with applications to immunomics, systems immunology, and biomedicine. Literature reviews on immunoinformatics and related fields. Tutorial articles that emphasize the strong interdisciplinary component of immunoinformatics. Research letters that allow for the rapid publication of special short communications. Reports on meetings including but not restricted to conferences, workshops, and seminars. Perspectives that report views on topics of the immunoinformatics field that are important to readers. Commentaries that
    [Show full text]
  • Progress and Challenges in the Quantitative Engineering and Analysis of Adaptive Immune Receptor Repertoires
    Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires Alex J. Brown1,2, Igor Snapkov[,3, Rahmad Akbar[,3, Milena Pavlović3,4, Enkelejda Miho5,6,7, Geir K. Sandve4 Victor Greiff*,3 1 Department of Biomedical Research, National Jewish Health, Denver, CO, USA 2 Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA 3 Department of Immunology, University of Oslo, Oslo, Norway 4 Department of Informatics, University of Oslo, Oslo, Norway 5 Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland 6 aiNET GmbH, Switzerland Innovation Park Basel Area AG, Basel, Switzerland 7 DayOne, BaselArea.swiss, Basel, Switzerland [ Equal Contribution * Correspondence: [email protected] Abstract The adaptive immune system is a natural diagnostic and therapeutic. It recognizes threats earlier than clinical symptoms manifest and neutralizes antigen with exquisite specificity. Recognition specificity and broad reactivity is enabled via adaptive B- and T-cell receptors: the immune receptor repertoire. The human immune system, however, is not omnipotent. Our natural defense system sometimes loses the battle to parasites and microbes and even turns against us in the case of cancer and (autoimmune) inflammatory disease. A long-standing dream of immunoengineers has been, therefore, to mechanistically understand how the immune system “sees”, “reacts” and “remembers” (auto)antigens. Only very recently, experimental and computational methods have achieved sufficient quantitative resolution to start querying and engineering adaptive immunity with great precision. In specific, these innovations have been applied with the greatest fervency and success in immunotherapy, autoimmunity and vaccine design.
    [Show full text]