Editorial Advances in Computational Immunology

Total Page:16

File Type:pdf, Size:1020Kb

Editorial Advances in Computational Immunology Hindawi Publishing Corporation Journal of Immunology Research Volume 2015, Article ID 170920, 3 pages http://dx.doi.org/10.1155/2015/170920 Editorial Advances in Computational Immunology Francesco Pappalardo,1 Vladimir Brusic,2 Marzio Pennisi,3 and Guanglan Zhang4 1 Department of Drug Sciences, University of Catania, 95100 Catania, Italy 2Nazarbayev University, Astana 010000, Kazakhstan 3Department of Mathematics and Computer Science, University of Catania, 95100 Catania, Italy 4Boston University, Boston, MA 02201-2021, USA Correspondence should be addressed to Francesco Pappalardo; [email protected] Received 13 December 2015; Accepted 13 December 2015 Copyright © 2015 Francesco Pappalardo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Computational immunology and immunological bioinfor- potential is to use a panel of multidisease antibodies that can matics are firm and quickly growing research fields. Whereas be instrumental to know what the infectious agents are in the former aims to develop mathematical and/or computa- circulationinagivenpopulationandtheirputativedynamics. tional methods to study the dynamics of cellular and molec- This idea has not been tested in practice, but definitely ular entities during the immune response [1–4], the latter will require the extension of classical mathematical models focuses on proposing methods to investigate big genomic to fully account the immunological interaction between and proteomic immunological-related datasets and predict different diseases. new knowledge mainly by statistical inference and machine In their paper W. Schreiner and colleagues illustrate that learning algorithms. molecular dynamics was used to simulate large molecules of The glut of data produced by high-throughput instru- the immune system (major histocompatibility complexes, T- mentation, notably genomics, transcriptomics, epigenetics, cell receptors, and coreceptors). To characterize the relative and proteomics methods, requires computational tools for orientation and movements of domains local coordinate acquisition, storage, and analysis of immunological data. systems (based on principal component analysis) were gen- The exploitation of such a huge amount of immunological erated and directional cosines and Euler angles computed. data usually requires its conversion into computational prob- As a most interesting result, they found that the presence of lems, their solution using mathematical and computational the coreceptor seems to influence the dynamics within the approaches, and then the translation of the obtained results protein complex, in particular the relative movements of the into immunologically meaningful interpretations. two -helices, G1andG2. In this special issue, we take an interest from mathemati- It is assessed that the application of personalized medicine cians, bioinformaticians, computational scientists, and engi- requires integration of different data to determine each neers together with experimental immunologists to present patient’s unique clinical constitution. The automated analysis and discuss latest developments in different subareas of com- ofmedicaldataisagrowingfieldwheredifferentmachine putational immunology, ranging from databases applications learning techniques are used to minimize the time consuming to computational vaccine design, modelling, and simulation task of manual analysis. and their application to basic and clinical immunology. In the paper contributed by C.-M. Svensson et al., the The review from N. Sepulveda´ et al. calls attention to authors investigate the interobserver variability of image data serology data in conjunction with mathematical modelling comprising fluorescently stained circulating tumor cells and in providing a powerful approach to inform on malaria its effect on the performance of two automated classifiers, transmission intensity and putative changes over time. Their a random forest and a support vector machine. They found conclusions show that an interesting idea with public health that uncertainty in annotation between observers limited 2 Journal of Immunology Research the performance of the automated classifiers, especially when Thereareatpresentfewtoolsavailabletoassistwiththe it was included in the test set on which classifier performance determination and analysis of B-cell lineage trees from next- was measured. generation sequencing data. The paper from W. D Lees and Therapeutic protein products (TPP) have been widely A. J. Shepherd presents two utilities that support automated used to treat a variety of human diseases, including cancer, large-scale analysis and the creation of publication-quality hemophilia, and autoimmune diseases. However, TPP can results. The tools are available on the web and are also induce unwanted immune responses that can impact both available for download so that they can be integrated into an drugefficacyandpatientsafety.Thepresenceofaggregates automated pipeline. These utilities can be used with any suit- isofparticularconcernastheyhavebeenimplicatedin able phylogenetic inference method and with any antibody inducing both T-cell independent and T-cell dependent germline library and hence are species-independent. immune responses. L. Yin and collaborators used mathe- Vaccination is historically one of the most important matical modelling to evaluate several mechanisms through medical interventions for the prevention of infectious disease. which aggregates of TPP could contribute to the development Previously, vaccines were typically made of rather crude mix- of immunogenicity. Their computational analyses suggest tures of inactivated or attenuated causative agents. However, that aggregates are unlikely to induce T-cell independent over the last 10–20 years, several important technological and antibody responses through BCR cross-linking. In contrast, computational advances have enabled major progress in the aggregates could contribute to immunogenicity via the T- discovery and design of potently immunogenic recombinant cell dependent pathway by inducing the presentation of high protein vaccine antigens. L. Liljeroos and colleagues discuss affinity epitopes that may not be present in nonaggregated three key breakthrough approaches that have potentiated TPP and/or by enhancing danger signal to maturate dendritic structural and computational vaccine design. They illustrate cells and activate T-cells. the growing power of combining sequencing, structural, A. K. Irin et al. investigate computational modelling and computational approaches and discuss how this may approaches on epigenetic factors in neurodegenerative and drive the design of novel immunogens suitable for future autoimmune diseases and their mechanistic analysis. The vaccines urgently needed to increase the global prevention of authors examine the major milestones in epigenetics research infectious disease. in the context of diseases and various computational MIrExpress is a new database which takes advantage of approaches developed in the last decades to unravel new the information theory, as well as the Pearson linear corre- epigenetic modifications. However, there are limited studies lation method, to measure the linear correlation, nonlinear that systematically link genetic and epigenetic alterations correlation, and their hybrid of cell-specific gene coexpres- of DNA to the aetiology of diseases, they said. In this sions in immune cells. In the work from J. Wang et al., work,A.K.Irinandcoauthorsshowhowdisease-related the authors describe this database that totally includes 16 epigenetic knowledge can be systematically captured and human cell groups, involving 20,283 human genes. The integrated with heterogeneous information into a functional expression data and the calculated correlation results from context using Biological Expression Language (BEL). This the database are interactively accessible on the web page novel methodology, based on BEL, enables the integration and can be implemented for other related applications and of epigenetic modifications such as DNA methylation or researches. acetylationofhistonesintoaspecificdiseasenetwork. Publicallyavailableinfluenzadataareavaluableresource In the paper by G. Bocharov et al., the authors show how for computational analyses with applications in vaccine the modelling approaches can be implemented to address design. Similarly, existing bioinformatics tools provide the diverse aspects of immune system functioning under normal means for extraction of information and new knowledge. conditions and in response to LCMV and, importantly, However, to utilize the full potential of these resources, data make quantitative predictions of the outcomes of immune preprocessing must be performed and analytical tools must system perturbations. This may highlight that data-driven be carefully combined into well-defined workflows. C. Simon applications of meaningful mathematical models in infection et al. describe FluKB, a knowledge-based system focusing biology remain a challenge. on data and analytical tools for influenza vaccine discovery. MHC -helices form the antigen-binding cleft and are of The main goal of FluKB is to provide access to curated particular interest for immunological reactions. To monitor influenza sequence and epitope data and enhance the analysis these helices in molecular dynamics simulations, the paper
Recommended publications
  • Editorial Computational and Bioinformatics Techniques for Immunology
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 263189, 2 pages http://dx.doi.org/10.1155/2014/263189 Editorial Computational and Bioinformatics Techniques for Immunology Francesco Pappalardo,1 Vladimir Brusic,2 Filippo Castiglione,3 and Christian Schönbach2 1 Department of Drug Sciences, University of Catania, 95125 Catania, Italy 2School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan 3Istituto Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Rome, Italy Correspondence should be addressed to Francesco Pappalardo; [email protected] Received 22 July 2014; Accepted 22 July 2014; Published 31 December 2014 Copyright © 2014 Francesco Pappalardo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Computational immunology and immunological bioinfor- biology spanning different scales: an open challenge”by matics are well-established and rapidly evolving research F. Castiglione et al. fields. Whereas the former aims to develop mathematical Exploring the connections between classical mathemat- and/or computational methods to study the dynamics of ical modeling (at different scales) and bioinformatics pre- cellular and molecular entities during the immune response dictions of omic scope along with specific aspects of the [1–4], the latter targets proposing methods to analyze large immune system in combination with concepts and methods genomic and proteomic immunological-related datasets and like computer simulations, mathematics and statistics for the derive (i.e., predict) new knowledge mainly by statistical discovery, design, and optimization of drugs, vaccines, and inference and machine learning algorithms.
    [Show full text]
  • Toward Computational Modelling on Immune System Function Francesco Pappalardo1*, Marzio Pennisi2, Pedro A
    Pappalardo et al. BMC Bioinformatics 2019, 20(Suppl 6):622 https://doi.org/10.1186/s12859-019-3239-x INTRODUCTION Open Access Toward computational modelling on immune system function Francesco Pappalardo1*, Marzio Pennisi2, Pedro A. Reche3 and Giulia Russo1 From 2nd International Workshop on Computational Methods for the Immune System Function Madrid, Spain. 3–6 December 2018 Abstract The 2nd Computational Methods for the Immune System function Workshop has been held in Madrid in conjunction with the IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018) in Madrid, Spain, from December 3 to 6, 2018. The workshop has been obtained 100% more submissions in respect to the first edition, highlighting a growing interest for the treated topics. The best papers (9) have been selected for extension in this special issue, with themes about immune system and disease simulation, computer-aided design of novel candidate vaccines, methods for the analysis of immune system involved diseases based on statistical methods, meta-heuristics and game theory, and modelling strategies for improving the simulation of the immune system dynamics. Introduction modeling of the Immune system function, along with their The constant and rapid increasing of computing power application in understanding the pathogenesis of specific has favoured the diffusion of computational methods diseases (e.g., infectious diseases, cancers, hypersensitivi- into immunology, giving the birth to computational ties, autoimmune disorders) has been in our minds for
    [Show full text]
  • An Interdisciplinary Perspective on Artificial Immune Systems
    Evol. Intel. (2008) 1:5–26 DOI 10.1007/s12065-007-0004-2 REVIEW ARTICLE An interdisciplinary perspective on artificial immune systems J. Timmis Æ P. Andrews Æ N. Owens Æ E. Clark Received: 7 September 2007 / Accepted: 11 October 2007 / Published online: 10 January 2008 Ó Springer-Verlag 2008 Abstract This review paper attempts to position the area 1 Introduction of Artificial Immune Systems (AIS) in a broader context of interdisciplinary research. We review AIS based on an Artificial Immune Systems (AIS) is a diverse area of established conceptual framework that encapsulates math- research that attempts to bridge the divide between ematical and computational modelling of immunology, immunology and engineering and are developed through abstraction and then development of engineered systems. the application of techniques such as mathematical and We argue that AIS are much more than engineered systems computational modelling of immunology, abstraction from inspired by the immune system and that there is a great those models into algorithm (and system) design and deal for both immunology and engineering to learn from implementation in the context of engineering. Over recent each other through working in an interdisciplinary manner. years there have been a number of review papers written on AIS with the first being [25] followed by a series of others Keywords Artificial immune systems Á that either review AIS in general, for example, [29, 30, 43, Immunological modelling Á Mathematical modelling Á 68, 103], or more specific aspects of AIS such as data Computational modelling Á mining [107], network security [71], applications of AIS Applications of artificial immune systems Á [58], theoretical aspects [103] and modelling in AIS [39].
    [Show full text]
  • Computational Immunology Workshop
    Computational Immunology Workshop On the 16th of November, with the support of the Pole Rabelais, the SIRIC Montpellier Cancer, and the IRCM, we organize a 1-day workshop on the theme Computational Immunology. The meeting will take place at IRCM auditorium. We will discuss computational or bioinformatics aspects of immunology and the cancer microenvironment. Recent developments in DNA sequencing and functional proteomics have made possible remarkably successful data driven research in these fields. It requires bioinformatics and computational abilities to transform data into information. The workshop is a unique opportunity to learn from experts who applied such techniques to conduct meaningful biological and translational research. We will welcome prestigious international and French speakers: • Dr Andreas Pichlmair, Max Plank Institute, Munich, innate immunity ; • Dr Fatima Mechta-Grigoriou, Institut Curie, Paris, tumor microenvironment ; • Pr Zlatko Trajanoski, Biocenter, Innsbruck, oncoimmunology ; • Dr Monsef Benkirane, IGH, Montpellier, immunology ; • Pr Marie-Paule Lefranc, IGH, Montpellier, immunoinformatics. Registration is free but mandatory: Inscription In addition, YOU are invited to submit an abstract for an oral or poster presentation (send to [email protected]) and contribute to the success of this workshop. The organizers: Ula Hibner (IGMM), Sofia Kossida (IGH), Jacques Colinge (IRCM). Preliminary Program 08:45 Registration 09:00 Opening and introductory remarks Session 1 Innate and adaptive immunity 09:00 Keynote
    [Show full text]
  • How Do We Evaluate Artificial Immune Systems?
    How Do We Evaluate Artificial Immune Systems? Simon M. Garrett [email protected] Computational Biology Group, Department of Computer Science, University of Wales, Aberystwyth, Wales, SY23 3DB. UK Abstract The field of Artificial Immune Systems (AIS) concerns the study and development of computationally interesting abstractions of the immune system. This survey tracks the development of AIS since its inception, and then attempts to make an assessment of its usefulness, defined in terms of ‘distinctiveness’ and ‘effectiveness.’ In this paper, the standard types of AIS are examined—Negative Selection, Clonal Selection and Im- mune Networks—as well as a new breed of AIS, based on the immunological ‘danger theory.’ The paper concludes that all types of AIS largely satisfy the criteria outlined for being useful, but only two types of AIS satisfy both criteria with any certainty. Keywords Artificial immune systems, critical evaluation, negative selection, clonal selection, im- mune network models, danger theory. 1 Introduction What is an artificial immune system (AIS)? One answer is that an AIS is a model of the immune system that can be used by immunologists for explanation, experimentation and prediction activities that would be difficult or impossible in ‘wet-lab’ experiments. This is also known as ‘computational immunology.’ Another answer is that an AIS is an abstraction of one or more immunological processes. Since these processes protect us on a daily basis, from the ever-changing onslaught of biological and biochemical entities that seek to prosper at our expense, it is reasoned that they may be computa- tionally useful. It is this form of AIS—methods based on immune abstractions—that will be studied here.
    [Show full text]
  • Quantitative Immunology for Physicists
    bioRxiv preprint doi: https://doi.org/10.1101/696567; this version posted July 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Quantitative Immunology for Physicists Gr´egoireAltan-Bonnet,1, ∗ Thierry Mora,2, ∗ and Aleksandra M. Walczak2, ∗ 1Immunodynamics Section, Cancer & Inflammation Program, National Cancer Institute, Bethesda MD 20892, USA 2Laboratoire de physique de l'Ecole´ normale sup´erieure (PSL University), CNRS, Sorbonne Universit´e,Universit´ede Paris, 75005 Paris, France Abstract. The adaptive immune system is a dynamical, self-organized multiscale system that protects vertebrates from both pathogens and internal irregularities, such as tumours. For these reason it fascinates physicists, yet the multitude of different cells, molecules and sub-systems is often also petrifying. Despite this complexity, as experiments on different scales of the adaptive immune system become more quantitative, many physicists have made both theoretical and experimental contributions that help predict the behaviour of ensembles of cells and molecules that participate in an immune response. Here we review some recent contributions with an emphasis on quantitative questions and methodologies. We also provide a more general methods section that presents some of the wide array of theoretical tools used in the field. CONTENTS A. Cytokine signaling and the JAK-STAT pathway 14 I. Introduction 2 1. Cytokine binding and signaling at equilibrium 15 II. Physical chemistry of ligand-receptor 2. Tunability of cytokine responses. 15 interaction: specificity, sensitivity, kinetics. 4 3. Regulation by cytokine consumption 17 A. Diffusion-limited reaction rates 4 4.
    [Show full text]
  • Immunoinformatics - Computational Immunology Table of Contents
    Immunoinformatics - Computational Immunology Table Of Contents • Immune system presentation • Immunoinformatics • Papers presentation – IMGT, the international ImMunoGeneTics information system – The futur for computational modelling and prediction systems in clinical immunology • Summary Immune System Presentation Immune System • Composed of many interdependent –cell types –organs • Collectively protect the body Self/Non-Self • Every cell display a marker based on the major histocompatibility complex (MHC) • MHC may be of three different classes – MHC I, MHC II, MHC III • Any cell not displaying this marker is treated as non-self and attacked. Main Organs • Bone Marrow – Immune system’s cells production •Thymus – Maturation of T cells • Spleen – Immunologic blood filter and RBC recycle unit •Lymph Nodes – Immunologic filter for the lymph Main Cells • Blood cells ar manufactured by stem cells in the bone marrow • The process is called hematopoiesis • Three different types of blood cells – Erythrocytes (RBC) –Leukocytes (WBC) • Granulocytes • Agranulocytes – Thrombocytes (platelets) Main Cells (2) Main Cells (3) • Lymphocytes –T • TH (CD4+ T) • TK (CD8+ T) –B –NK •Granulocytes • Macrophages •Dendritic Cells Antibody • Antigen: substance that elicits an immune response • Antibody: complex protein secreted by B cells – Tagging: Coat the foreign invaders to make them attractive to the circulating scavenger cells – Complement fixation: Combine with antigens and a circulating protein in the blood that cause lysis – Neutralization: Coat viruses and prevent them from entering cells – Agglutination: massively clump to the antigen – Precipitation: force insolubility and settling out of solution Antibody (2) •IgG-75% •IgA-15% •IgM-7.5% •IgD-1% •IgE-0.002% Activation of WBC Activation of helper T cells Activation of B cells to make Activation of cytotoxix T cells antibody VIRUS IMMUNITY BACTERIA IMMUNITY Cell-mediated/Hummoral Immunity • Cell-mediated immunity – T cells (lymphocytes) bind to the surface of other cells that display the antigen and trigger a response.
    [Show full text]
  • Biochem: a New International and Interdisciplinary Journal
    Editorial BioChem: A New International and Interdisciplinary Journal Buyong Ma School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China; [email protected] The advances of biological science have fundamentally changed our world and our understanding of human beings. All the progress, from a simple biochemical reaction to systems biology, has come from interdisciplinary interactions in a variety of scientific fields. This is especially true and important for the current and future study of a broad range of biochem topics, the core of biological science. BioChem is an international and interdisciplinary open access journal encompassing the fields of molecular biology, cell biology, structural biology, nucleic acid biology, chemical biology, synthetic biology, disease biology, biophysics, and theoretical biochemistry. It publishes reviews, research articles, communications, and letters. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. In order to support scientists in different research fields, we have established a highly reputable Editorial Board with diverse research expertise. We expect that our team will grow to meet increasing demand to reach and serve scientists all over the world. Personally, I will also welcome submissions of carefully-verified negative results as well. With the aim of publishing interdisciplinary studies in great detail in mind, I fully understand the value of negative results from carefully designed experiments and theoretical/computational studies. I truly believe that new ideas, better and more novel methodologies will be inspired by sharing all aspects of scientific endeavors. On behalf of the Editorial Board and editorial office, I am pleased to announce that Citation: Ma, B.
    [Show full text]
  • Editorial Computational and Bioinformatics Techniques for Immunology
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 263189, 2 pages http://dx.doi.org/10.1155/2014/263189 Editorial Computational and Bioinformatics Techniques for Immunology Francesco Pappalardo,1 Vladimir Brusic,2 Filippo Castiglione,3 and Christian Schönbach2 1 Department of Drug Sciences, University of Catania, 95125 Catania, Italy 2School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan 3Istituto Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Rome, Italy Correspondence should be addressed to Francesco Pappalardo; [email protected] Received 22 July 2014; Accepted 22 July 2014; Published 31 December 2014 Copyright © 2014 Francesco Pappalardo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Computational immunology and immunological bioinfor- biology spanning different scales: an open challenge”by matics are well-established and rapidly evolving research F. Castiglione et al. fields. Whereas the former aims to develop mathematical Exploring the connections between classical mathemat- and/or computational methods to study the dynamics of ical modeling (at different scales) and bioinformatics pre- cellular and molecular entities during the immune response dictions of omic scope along with specific aspects of the [1–4], the latter targets proposing methods to analyze large immune system in combination with concepts and methods genomic and proteomic immunological-related datasets and like computer simulations, mathematics and statistics for the derive (i.e., predict) new knowledge mainly by statistical discovery, design, and optimization of drugs, vaccines, and inference and machine learning algorithms.
    [Show full text]
  • Immunoinformatics
    IMMUNOINFORMATICS AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Editorial Board p.1 • Guide for Authors p.4 ISSN: 2667-1190 DESCRIPTION . ImmunoInformatics is an open access cross-disciplinary journal committed to publishing cutting edge research in all aspects of immunoinformatics and computational immunology; from core methodological approaches to translational applications both for academic and industrial researchers. ImmunoInformatics is an international journal publishing peer reviewed research which sits at the interface between computer science, physics, mathematics, and experimental immunology. The journal welcomes theoretical contributions which provide a deeper understanding of the field while also covering practical aspects with contributions on advances and applications in clinical medicine. ImmunoInformatics invites the following types of papers: Research articles which emphasize original results related to theoretical and practical aspects of computational immunology, in close connection with applications to immunomics, systems immunology, and biomedicine. Literature reviews on immunoinformatics and related fields. Tutorial articles that emphasize the strong interdisciplinary component of immunoinformatics. Research letters that allow for the rapid publication of special short communications. Reports on meetings including but not restricted to conferences, workshops, and seminars. Perspectives that report views on topics of the immunoinformatics field that are important to readers. Commentaries that
    [Show full text]
  • Progress and Challenges in the Quantitative Engineering and Analysis of Adaptive Immune Receptor Repertoires
    Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires Alex J. Brown1,2, Igor Snapkov[,3, Rahmad Akbar[,3, Milena Pavlović3,4, Enkelejda Miho5,6,7, Geir K. Sandve4 Victor Greiff*,3 1 Department of Biomedical Research, National Jewish Health, Denver, CO, USA 2 Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA 3 Department of Immunology, University of Oslo, Oslo, Norway 4 Department of Informatics, University of Oslo, Oslo, Norway 5 Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland 6 aiNET GmbH, Switzerland Innovation Park Basel Area AG, Basel, Switzerland 7 DayOne, BaselArea.swiss, Basel, Switzerland [ Equal Contribution * Correspondence: [email protected] Abstract The adaptive immune system is a natural diagnostic and therapeutic. It recognizes threats earlier than clinical symptoms manifest and neutralizes antigen with exquisite specificity. Recognition specificity and broad reactivity is enabled via adaptive B- and T-cell receptors: the immune receptor repertoire. The human immune system, however, is not omnipotent. Our natural defense system sometimes loses the battle to parasites and microbes and even turns against us in the case of cancer and (autoimmune) inflammatory disease. A long-standing dream of immunoengineers has been, therefore, to mechanistically understand how the immune system “sees”, “reacts” and “remembers” (auto)antigens. Only very recently, experimental and computational methods have achieved sufficient quantitative resolution to start querying and engineering adaptive immunity with great precision. In specific, these innovations have been applied with the greatest fervency and success in immunotherapy, autoimmunity and vaccine design.
    [Show full text]
  • Fellowship in Computational Immunology
    Fellowship in Computational Immunology Italian Institute for Genomic Medicine Immune Regulation Lab, Dr. Luigia Pace The Giovanni Armenise-Harvard laboratory of Immune Regulation, at the Italian Institute for Genomic Medicine (IIGM), in Turin, Italy, is seeking for a highly motivated Fellow in Computational and Systems Immunology. Research: The lab addresses fundamental aspects of immune responses, related to memory T cell differentiation and long-term protective immunity. Our research aims to understand how T lymphocytes integrate complex environmental stimuli into specific epigenetic and differentiation programs, which specify cell fate commitment and function. The research’s goal is to use this knowledge to develop novel molecular targets and strategies for the prevention and treatment of cancer, in the new field of cancer immunotherapy. To achieve these goals, we combine a variety of high throughput approaches, including next generation sequencing of RNA and epigenetics marks, and single cell transcriptomic analysis. Qualifications and requirements: • Master or PhD degree in Bioinformatics, Biostatistics or Applied Mathematics • Experience in computational data analysis (RNA-seq, ChIP-seq) • Strong programming skills (R, Python, Bash) • Mastering bioinformatics and biostatistics tools (R, Bioconductor) • Experience in high-throughput data analysis and multivariate statistics • Publications in peer-reviewed journals are preferred • Good communication skills and self-motivation • Fluent in spoken and written English IIGM (http://www.hugef-torino.org/site/index.php) is located at the Molecular Biotecnology Center (https://www.mbc.unito.it/en). The main goal of IIGM is to foster and develop excellence in human genomic research and education, with special reference to genomic variability in multifactorial diseases, with a strong focus on cancer.
    [Show full text]