THE EFFECT of OXIDATION PHENOTYPE Department St. Mary's London, W2 on the DISPOSITION of CERTAIN ENDOGENOUS STEROIDS HIKMAT HAMD

Total Page:16

File Type:pdf, Size:1020Kb

THE EFFECT of OXIDATION PHENOTYPE Department St. Mary's London, W2 on the DISPOSITION of CERTAIN ENDOGENOUS STEROIDS HIKMAT HAMD THE EFFECT OF OXIDATION PHENOTYPE ON THE DISPOSITION OF CERTAIN ENDOGENOUS STEROIDS HIKMAT HAMDI NADIR A Thesis Submitted For The Degree Of DOCTOR OF PHILOSOPHY In The UNIVERSITY OF LONDON Department of Pharmacology, St. Mary's Hospital Medical School, London, W2 IPG. March 1985 To My Wife and In Memory ot My Father » -3 ABSTRACT 1. This thesis addresses the question as to whether or not the allelomorphic gene which governs the oxidative metabolism of a number of drugs including debrisoquine, influences the oxidative metabolism of certain steroids in both man and rat. ft 2. Human subjects, both male and female, of known oxidation phenotype were investigated for urinary excretion of seven individual 17- oxosteroids and three progesterone metabolites by gas-liquid chromatography. Persons of the recessive poor metaboliser phenotype excreted only half the pregnanetriolone of extensive metabolisers. 3. Urinary oestrogen excretion did not differ between phenotypes, including for E^, E^, Eg and their 2- and 16-oxygenatea metabolites. 4. Serum cholesterol concentration in extensive and poor metaboliser volunteers did not differ. In patients with excessively high or low serum cholesterol concentrations, there was no association with oxidation phenotype. 5. It was concluded that, in man, no simple determinant of endogenous I steroid disposition had been found that could be used as a non- invasive phenotyping test. 6. Similar investigations were also carried out in rats of known oxidation phenotype. No differences between female DA (phenotypically poor metaboliser) and Lewis (phenotypically extensive metaboliser) rats were found for urinary 17-oxosteroid and progesterone metabolite excretion. » * -4 7. DA rats given [i^C]-oestrone (20 mg i.p.) recovered four-fold more 14 C in the first day urine than Lewis rats. However, Lewis rats excreted 50% more water, Na+ and K+ in the first day than DA rats. l Whether or not this finding has a metabolic origin is not known. Biliary cannulated Lewis rats excreted 2-3-fold more 2-hydroxy- oestrone than DA rats in the 0-1 h bile after a dose of 16 pg 14 [ C]-oestrone. 8. Additionally, serum cholesterol of DA rats was 50% greater than Lewis rats and a number of other extensive metabolising rat strains. Neither K nor V for cholesterol 7ci-hydroxyl ase showed an m max interphenotype difference in rats. However, 3-methylcholanthrene treatment increased the K and V approximately twice as much in m max J DA than Lewis rats. 9. It is concluded that no non-invasive phenotyping test was uncovered during the course of this work. However, a number of clues emerged which may lead to such a test in the future. * » CONTENTS Abstract List of Tables i List of Figures Acknowledgements CHAPTER ONE INTRODUCTION 1. Introduction 1.1 Drug absorption 1.2 Drug distribution 1.3 Drug excretion 1.4 Drug metabolism 1.4.1 Involvement of different forms of cytochrome P-450 1.4.2 Steroid metabolism 1.5 Pharmacogenetics 1.6 Regulation of drug oxidation by the debrisoquine hydroxylation locus I 1.7 Animal model for drug oxidation 1.8 Aims of the present study ... CHAPTER TWO EFFECT OF POLYMORPHIC OXIDATION ON URINARY STEROID PROFILES IN MAN AND RAT ... 2.1 Introduction ... f -6- Contents, continued Page 2.1.1 Urinary 17-oxosteroids 42 2.1.1.1 Androsterone 45 2.1.1.2 Aetiocholanolone 45 2.1.1.3 Dehydroepiandrosterone 46 2.1.1.4 The 11-oxo- and 118-hydroxy- 17-oxosteroids 46 2.1.2 Urinary progesterone metabolites 47 2.1.3 The involvement of cytochrome P-450 in steroid hydroxylations 49 2.1.4 The genetic abnormalities of steroid hydroxylation 54 2.1.5 Aims of the investigation 55 4 2.2 Materials and Methods 58 2.2.1 Materials 58 2.2.2 Animals 59 2.2.3 Human subjects 59 2.2.4 Methods 60 2.2.4.1 Determination of oxidation phenotype ... 60 t 2.2.4.2 Determination of individual 17-oxosteroids, pregnanediol, pregnanetriol and pregnanetriolone in urine 62 2.2.4.3 The colorimetric quantitative determination of creatinine in urine 70 2.2.4.4 Determination of total urinary 17-oxosteroids 71 ¥ Contents, continued Page 2.3 Results 74 2.3.1 Population study 74 2.3.2 Steroid profiles in man 74 2.3.2.1 The effect of sex 74 2.3.2.2 The effect of phenotype 87 2.3.3 Steroid profiles in rats 87 2.3.4 Total 17-oxosteroids in a panel of subjects arid two different phenotyped strains of rats 88 2.3.5 Analysis of the 5$/5a and DEA/A + Ae ratios 88 2.3.6 Comparison of urinary 17-oxosteroid concentration determined by colorimetry and by summation of individual 17-oxosteroids determined by gas chromatography 94 2.4 Discussion 98 CHAPTER THREE EFFECT OF POLYMORPHIC OXIDATION ON URINARY OESTROGEN EXCRETION IN MAN AND RAT 103 3.1 Introduction 104 3.2 Materials and Methods 113 3.2.1 Materials 113 3.2.2 Animals 113 3.2.3 Human subjects 114 3.2.4 Dosing of animals and collection of excreta 114 -8- Contents, continued Page 3.2.5 Preparation of faeces for g.c. analysis 114 14 3.2.6 Preparation of faeces for C analysis 114 » 3.2.7 Counting of [14C]-oestrone 116 3.2.8 Analytical procedures 116 3.2.8.1 Determination of oestrogens and metabolites in urine employing gas-liquid chromatography ... 116 3.2.8.2 Determination of biliary, faecal and urinary metabolites of labelled oestrone in rats by HPLC 120 3.2.8.3 Collection of bile from rats.. 128 3.2.8.4 Determination of sodium and potassium excretion in rat urine 128 3.3 Results ... ... ... 131 3.3.1 Human urinary oestrogen profiles - effect of phenotype ... 131 3.3.2 Faecal and urinary oestrogen metabolite profiles after administration of labelled oestrone to DA and Lewis rats 134 3.3.3 Oestrogen profiles in bile of DA and Lewis rats after an intramesenteric venous dose of labelled oestrone 139 3.3.4 Sodium and potassium excretion and urine volume in Lewis and DA rats after oestrone administration 142 - 9 - Contents, continued Page 3.3.5 Administration of 2-hydroxyoestrone and 16oi-hydroxyoestrone to Lewis and DA rats 146 3.4 Discussion ... 147 ► CHAPTER FOUR EFFECT OF POLYMORPHIC OXIDATION ON SERUM CHOLESTEROL IN MAN AND RAT AND CHOLESTEROL 7a-HYDROXYLATION IN THE RAT ... 156 4.1 Introduction 157 4.1.1 Cholesterol biosynthesis 157 4.1.2 Metabolism of cholesterol in vivo 159 4.1.3 Metabolism of cholesterol in vitro 161 4.1.4 The involvement of cytochrome P-450 in cholesterol 7a-hydroxylation 164 4.1.5 Deficiency of the LDL receptor leads to hypercholesterolaemia and premature atherosclerosis 165 4.1.6 Aims of the study 167 4.2 Materials and Methods 168 4.2.1 Materials 168 4.2.2 Animals ... 168 4.2.3 Human subjects 169 4.2.3.1 Healthy subjects 169 4.2.3.2 Volunteers with "high" or "low" serum cholesterol 169 - 10- Contents, continued Page 4.2.4 Methods ... ... ... 170 4.2.4.1 Determination of human/rat cholesterol by colorimetry ... 170 4.2.4.2 Determination of the activity of cholesterol 7a-hydroxylase in the liver t of DA and Lewis rats ... 171 4.2.4.2.1 Preparation of liver cell fractions and incubations ... 171 4.2.4.2.2 Determination of protein ... 172 4.2.4.2.3 Isolation of radioactive products by thin layer chromatography ... 172 4.2.4.2.4 Radiochromatogram scanning ... 173 4.2.4.2.5 Quantitation of radioactive peaks 173 4.3 Results ... ... ... 176 4.3.1 Serum cholesterol levels of different strains of rats ... ... 176 4.3.2 Effect of 3-methylcholanthrene induction on the serum cholesterol in the rat ... 180 4.3.3 Relationship between oxidation phenotype and serum cholesterol in human ... 180 4.3.4 Determination of cholesterol 7a-hydroxylase I activity in rat liver fraction ... 183 4.3.5 Derivation of Km and Vmax of the cholesterol 7a-hydroxylase system ... ... 187 4.3.6 The effect of 3-methylcholanthrene induction on the activity of cholesterol 7ot-hydroxylase 189 4.4 Discussion ... ... ... 196 Contents, continued Page CHAPTER FIVE GENERAL DISCUSSION AND CONCLUDING REMARKS ... 200 5.1 General Discussion ... ... 201 BIBLIOGRAPHY 208 APPENDIX 252 % - 12- LIST OF TABLES Table Page 1.1 Polymorphic drug oxidation ... ... 34 1.2 Regulation/inf1uence of the debrisoquine i hydroxylation locus on various metabolic pathways ... ... ... 36 2.1 Urinary excretion (ranges, pg/24h) of individual 17-oxosteroids in male and female children and adults ... ... ... 44 2.2 Spectral dissociation constants (Ks) for compounds interacting with human foetal adrenal microsomes ... ... ... 53 2.3 Classification of the adrenal hyperplasias ... 56 2.4 Different methods used for determination of steroids ... ... ... 63 2.5 Gas chromatographic characteristics of derivatized 17-oxosteroids, pregnanediol, pregnanetriol and prenanetriolone on 3% OV-17 ... ... 66 2.6 Mean (+ S.D.) of 17-oxosteroids, pregnanediol, pregnanetriol and pregnanetriolone/creatinine i ratios (pM/mM) in human urine. The effect of sex ... ... ... 85 2.7 Mean (+S.D.) of 17-oxosteroids, pregnanediol, pregnanetriol and pregnanetriolone/creatinine ratios (pM/mM) in human urine. The effect of phenotype ... ... ... 86 Table Page 2.8 Mean (+S.D.) values of individual 17-oxosteroids/ creatinine in rats 89 2.9 Urinary excretion of total 17-oxosteroids (mg/24h) in human 90 2.10 Urinary excretion of total 17-oxosteroids (mg/48h) in rats 91 2.11 Mean (+ S.D.) of Ae/A and DEA/A + Ae ratios in human. The effect of sex 92 2.12 Mean (+ S.D.) of Ae/A and DEA/Ae + A ratios in human.
Recommended publications
  • 400 We Have Studied Six Infants and Young Children with Hyper
    400 ABSTRACTS We have studied six infants and young children with hyper- ml plasma sample has been evaluated for the rapid (4—6 hr) diag- thyroidism whose clinical course differs from the few reports of nosis of CAH. Pet ether, benzene and methylene chloride extracts others. Neonatal and early childhood hyperthyroidism are usually of plasma are quantitated by competitive protein binding using thought of as separate, rare, and transient disorders seldom re- 17-hydroxyprogesterone (17-OHP), 11-deoxycortisol (cmpd S), quiring long term treatment. 1) Our cases have not been tran- and cortisol standards, respectively, for comparison. The observed sient: 2) they have occurred in families with a high incidence of plasma steroid concentrations are expressed as a ratio of adult Graves disease. "17-OHP" + "cmpd S" to "cortisol" since comparison of ratios, Four were born with Graves disease. Three continue to be rather than absolute values, has been found to differentiate nor- hyperthyroid at ages 1, 5, and 6 years. Two developed Graves mals from patients more clearly. disease at ages 3 and 8 years and continue on anti-thyroid medi- Plasma samples have been obtained from six normal children cation. Graves disease occurred in five of the six mothers and aged 4 days-7 yrs following administration of ACTH, from six was apparent during gestation in four. The sixth mother, mother adults with 11-hydroxylation impaired by the administration of of a neonatal case, has never had overt Graves disease, but female metyrapone, and from three children aged 11 mos, 6 yrs and 8 members of four generations have had Graves disease.
    [Show full text]
  • Endocrinology Test List Endocrinology Test List
    For Endocrinologists Endocrinology Test List Endocrinology Test List Extensive Capabilities Managing patients with endocrine disorders is complex. Having access to the right test for the right patient is key. With a legacy of expertise in endocrine laboratory diagnostics, Quest Diagnostics offers an extensive menu of laboratory tests across the spectrum of endocrine disorders. This test list highlights the extensive menu of laboratory diagnostic tests we offer, including highly specialized tests and those performed using highly specific and sensitive mass spectrometry detection. It is conveniently organized by glandular function or common endocrine disorder, making it easy for you to identify the tests you need to care for the patients you treat. Comprehensive Care Quest Diagnostics Nichols Institute has been pioneering state-of-the-art endocrine testing for over four decades. Our commitment to innovative diagnostics and our dedication to quality and service means we deliver solutions that enable you to make informed clinical decisions for comprehensive patient management. We strive to remain at the forefront of innovation in endocrine testing so you can deliver the highest level of patient care. Abbreviations and Footnotes NDM, neonatal diabetes mellitus; MODY, maturity-onset diabetes of the young; CH, congenital hyperinsulinism; MSUD, maple syrup urine disease; IHH, idiopathic hypogonadotropic hypogonadism; BBS, Bardet-Biedl syndrome; OI, osteogenesis imperfecta; PKD, polycystic kidney disease; OPPG, osteoporosis-pseudoglioma syndrome; CPHD, combined pituitary hormone deficiency; GHD, growth hormone deficiency. The tests highlighted in green are performed using highly specific and sensitive mass spectrometry detection. Panels that include a test(s) performed using mass spectrometry are highlighted in yellow. For tests highlighted in blue, refer to the Athena Diagnostics website (athenadiagnostics.com/content/test-catalog) for test information.
    [Show full text]
  • Four Clinical Variants of Congenital Adrenal Hyperplasia
    Arch Dis Child: first published as 10.1136/adc.39.203.66 on 1 February 1964. Downloaded from Arch. Dis. Childh., 1964, 39, 66. FOUR CLINICAL VARIANTS OF CONGENITAL ADRENAL HYPERPLASIA BY W. HAMILTON and M. G. BRUSH From the University Department of Child Health and the Royal Hospitalfor Sick Children, Glasgow, and the University Department of Steroid Biochemistry and the Royal Infirmary, Glasgow (RECEIVED FOR PUBLICATION AUGUST 26, 1963) Three clinical types of congenital adrenogenital Case Reports virilism due to adrenal hyperplasia have now been Case 1. This child, born January 27, 1954, was of well defined. These are simple virilization, viriliza- ambiguous sex having a curved phallus with an opening tion with excessive sodium loss and danger to life at the tip. Both this and another opening on the peri- and virilization combined with hypertension. Clini- neum admitted a probe to a depth of 1 cm. The scrotum cal subvariants have also been described in asso- was bifid and the testes were not palpated. ciation with hypoglycaemia (White and Sutton, When 5 weeks of age, a skin biopsy and buccal smear examined for sex chromatin indicated that the child was 1951; Wilkins, Crigler, Silverman, Gardner and female. The urinary 17-oxosteroids were reported as Migeon, 1952), with periodic fever (Gonzales and 0 4 mg. per day. When 2 years of age the perineum Gardner, 1956; Gardner and Migeon, 1959) and with was opened up in the midline and the urethral and the late onset of sodium loss (Cara and Gardner, vaginal orifices were found to open on to a small vestibule.
    [Show full text]
  • CA SKLAR and RA ULSTROM, University of Minnesota
    C.A. SKLAR and R.A. ULSTROM, University of Minnesota U. Vetter, J. Homoki, W.M. Teller 130 Hospitals, Minneapolis, Minnesota 133 Department of Pediatrics, University of Ulm, FRG Growth Hormone and Adrenal Androgen Secretion The effect of growth hormone (GH) on adrenal androgen secretion 17a-Hydroxylase-deficiency with unimpaired aldosterone formation was assessed in 7 patients (5 males, 2 females) with GH deficiency in a male but normal ACTH-cortisol function. Patients ranged in age from Case report: This is the first report of a male neonate with 9 3/12-14 8/12 years. Plasma concentrations of dehydroep!androst­ 17a-hydroxylase deficiency with micropenis, hypospadia and normal erone (OHEA), its sulfate (OHEA-S) and androstenedione A), as aldosterone secretion. Diagnosis was based on elevated excretion well as urinary 17-ketosteroids and free cortisol were determined of PD, DOC, TH-DOC, THB, allo-THB and decreased excretion of before, during short-term (2U/dx3) and after long-term (6 months) Cortisol, 11-desoxy-cortisol, THF, THE and testosterone. Serum treatment with GH. The baseline, pretreatment plasma levels of levels of ACTH, LH, FSH, DOC were elevated whereas cortisol, OHEA-S were appropriate for the indiv!duals' degree of skeletal testosterone and PRA were decreased. Serum levels and urinary maturation, whereas plasma OHEA and Awere undetectable «42ng/dl excretion of aldosterone were normal. and< 27ng/dl, respectively) in 5/7 subjects. No significant Discussion: 17a-hydroxylase deficiency is a rare disorder of change was noted in the plasma androgen values or in the urinary steroid metabolism. The clinical pattern in adults presents 17-ketosteroid and free cortisol concentrations during the short­ with hypokalaemic hypertension associated with metabolic term administration of GH.
    [Show full text]
  • Exchangeable Sodium and Aldosterone Secretion in Children with Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency
    Pediat. Res. 4: 145-156 (1970) Aldosterone 21-hydroxylase congenital 11-ketopregnanetriol adrenal pregnanetriol hyperplasia sodium metabolism Exchangeable Sodium and Aldosterone Secretion in Children with Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency B. LORAS, F. HAOUR and J. BERTRAND[34] I.N.S.E.R.M., Unitt de Recherches Endocriniemes et Mttaboliques chez l'Enfant, HGpital Debrousse, Lyon, France Extract Aldosterone secretion rates (ASR) and exchangeable body sodium (Na,) have been measured simul- taneously in 25 cases of congenital adrenal hyperplasia (CAH) with and without salt loss, both during normal and during low salt intake. The degree of 21 -hydroxylase deficiency was assessed from the cortisol secretion rate (CSR) and urinary excretion of pregnanetriol and 11-ketopregnanetriol. In cases with salt loss, the sodium equilibrium was unstable, even with optimum treatment and increased dietary salt intake. Clinical evidence of salt-losing crisis appeared when 15-25% of Na, was lost. In these subjects, a parallel decrease in ASR and CSR usually occurred. The ASR were somewhat elevated in the nonsalt-losing form. Speculation A salt-excreting factor is probably present in CAH, even in the nonsalt-losing form, since the ASR is raised, while the Na, remains normal. Salt loss due to 21-hydroxylase deficiency decreases with age. This appears to be due to modifica- tions in the distribution of body sodium and to an absolute increase in the dietary salt intake rather than to modifications in adrenal secretion. Introduction between aldosterone production and disordered so- dium balance. Sodium levels in plasma and sodium About one-third of all cases of congenital adrenal excretion in urine, as well as the values for exchange- hyperplasia (CAH) due to 21-hydroxylase deficiency able sodium, have been measured in different situa- present with a salt-losing syndrome 1321.
    [Show full text]
  • Non-Classic Disorder of Adrenal Steroidogenesis and Clinical Dilemmas in 21-Hydroxylase Deficiency Combined with Backdoor Androg
    International Journal of Molecular Sciences Review Non-Classic Disorder of Adrenal Steroidogenesis and Clinical Dilemmas in 21-Hydroxylase Deficiency Combined with Backdoor Androgen Pathway. Mini-Review and Case Report Marta Sumi ´nska 1,* , Klaudia Bogusz-Górna 1, Dominika Wegner 1 and Marta Fichna 2 1 Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, 60-527 Poznan, Poland; [email protected] (K.B.-G.); [email protected] (D.W.) 2 Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-653 Poznan, Poland; mfi[email protected] * Correspondence: [email protected] Received: 3 June 2020; Accepted: 28 June 2020; Published: 29 June 2020 Abstract: Congenital adrenal hyperplasia (CAH) is the most common cause of primary adrenal insufficiency in children and adolescents. It comprises several clinical entities associated with mutations in genes, encoding enzymes involved in cortisol biosynthesis. The mutations lead to considerable (non-classic form) to almost complete (classic form) inhibition of enzymatic activity, reflected by different phenotypes and relevant biochemical alterations. Up to 95% cases of CAH are due to mutations in CYP21A2 gene and subsequent 21α-hydroxylase deficiency, characterized by impaired cortisol synthesis and adrenal androgen excess. In the past two decades an alternative (“backdoor”) pathway of androgens’ synthesis in which 5α-androstanediol, a precursor of the 5α-dihydrotestosterone, is produced from 17α-hydroxyprogesterone, with intermediate products 3α,5α-17OHP and androsterone, in the sequence and with roundabout of testosterone as an intermediate, was reported in some studies. This pathway is not always considered in the clinical assessment of patients with hyperandrogenism.
    [Show full text]
  • Endocrine Test Selection and Interpretation
    The Quest Diagnostics Manual Endocrinology Test Selection and Interpretation Fourth Edition The Quest Diagnostics Manual Endocrinology Test Selection and Interpretation Fourth Edition Edited by: Delbert A. Fisher, MD Senior Science Officer Quest Diagnostics Nichols Institute Professor Emeritus, Pediatrics and Medicine UCLA School of Medicine Consulting Editors: Wael Salameh, MD, FACP Medical Director, Endocrinology/Metabolism Quest Diagnostics Nichols Institute San Juan Capistrano, CA Associate Clinical Professor of Medicine, David Geffen School of Medicine at UCLA Richard W. Furlanetto, MD, PhD Medical Director, Endocrinology/Metabolism Quest Diagnostics Nichols Institute Chantilly, VA ©2007 Quest Diagnostics Incorporated. All rights reserved. Fourth Edition Printed in the United States of America Quest, Quest Diagnostics, the associated logo, Nichols Institute, and all associated Quest Diagnostics marks are the trademarks of Quest Diagnostics. All third party marks − ®' and ™' − are the property of their respective owners. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, and information storage and retrieval system, without permission in writing from the publisher. Address inquiries to the Medical Information Department, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690-6130. Previous editions copyrighted in 1996, 1998, and 2004. Re-order # IG1984 Forward Quest Diagnostics Nichols Institute has been
    [Show full text]
  • United States Patent (19) 11 Patent Number: 6,068,830 Diamandis Et Al
    US00606883OA United States Patent (19) 11 Patent Number: 6,068,830 Diamandis et al. (45) Date of Patent: May 30, 2000 54) LOCALIZATION AND THERAPY OF FOREIGN PATENT DOCUMENTS NON-PROSTATIC ENDOCRINE CANCER 0217577 4/1987 European Pat. Off.. WITH AGENTS DIRECTED AGAINST 0453082 10/1991 European Pat. Off.. PROSTATE SPECIFIC ANTIGEN WO 92/O1936 2/1992 European Pat. Off.. WO 93/O1831 2/1993 European Pat. Off.. 75 Inventors: Eleftherios P. Diamandis, Toronto; Russell Redshaw, Nepean, both of OTHER PUBLICATIONS Canada Clinical BioChemistry vol. 27, No. 2, (Yu, He et al), pp. 73 Assignee: Nordion International Inc., Canada 75-79, dated Apr. 27, 1994. Database Biosis BioSciences Information Service, AN 21 Appl. No.: 08/569,206 94:393008 & Journal of Clinical Laboratory Analysis, vol. 8, No. 4, (Yu, He et al), pp. 251-253, dated 1994. 22 PCT Filed: Jul. 14, 1994 Bas. Appl. Histochem, Vol. 33, No. 1, (Papotti, M. et al), 86 PCT No.: PCT/CA94/00392 Pavia pp. 25–29 dated 1989. S371 Date: Apr. 11, 1996 Primary Examiner Yvonne Eyler S 102(e) Date: Apr. 11, 1996 Attorney, Agent, or Firm-Banner & Witcoff, Ltd. 87 PCT Pub. No.: WO95/02424 57 ABSTRACT It was discovered that prostate-specific antigen is produced PCT Pub. Date:Jan. 26, 1995 by non-proStatic endocrine cancers. It was further discov 30 Foreign Application Priority Data ered that non-prostatic endocrine cancers with Steroid recep tors can be stimulated with Steroids to cause them to produce Jul. 14, 1993 GB United Kingdom ................... 93.14623 PSA either initially or at increased levels.
    [Show full text]
  • Human Steroid Biosynthesis, Metabolism and Excretion Are
    Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes Schiffer, Lina; Barnard, Lise; Baranowski, Elizabeth; Gilligan, Lorna; Taylor, Angela; Arlt, Wiebke; Shackleton, Cedric; Storbeck, Karl-Heinz License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): Schiffer, L, Barnard, L, Baranowski, E, Gilligan, L, Taylor, A, Arlt, W, Shackleton, C & Storbeck, K-H 2019, 'Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: a comprehensive review', The Journal of Steroid Biochemistry and Molecular Biology. Link to publication on Research at Birmingham portal Publisher Rights Statement: This is the accepted manuscript for a forthcoming publication in Journal of Steroid Biochemistry and Molecular Biology. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Non-Classical Congenital Adrenal Hyperplasia in Childhood
    REVIEW DO I: 10.4274/jcrpe.3378 J Clin Res Pediatr Endocrinol 2017;9(1):1-7 Non-Classical Congenital Adrenal Hyperplasia in Childhood Selim Kurtoğlu, Nihal Hatipoğlu Erciyes University Faculty of Medicine, Department of Pediatric Endocrinology, Kayseri, Turkey Abstract Congenital adrenal hyperplasia (CAH) is classified as classical CAH and non-classical CAH (NCCAH). In the classical type, the most severe form comprises both salt-wasting and simple virilizing forms. In the non-classical form, diagnosis can be more confusing because the patient may remain asymptomatic or the condition may be associated with signs of androgen excess in the postnatal period or in the later stages of life. This review paper will include information on clinical findings, symptoms, diagnostic approaches, and treatment modules of NCCAH. Keywords: Non-classical congenital adrenal hyperplasia, congenital adrenal hyperplasia, virilization, hirsutism Introduction prevalence is reported as 1/1000 (6). However, the disease is observed in higher rates among Jewish, Mediterranean, Congenital adrenal hyperplasia (CAH) is a group of diseases Middle Eastern, and Indian societies (7). which develop as a result of deficiency of enzymes Findings of genital virilization are not observed at birth or cofactor proteins required for cortisol biosynthesis in NCCAH patients. Although premature pubarche was (1,2,3,4,5). Due to cortisol deficiency, feedback control detected in a 6-month-old infant as the earliest example, mechanism at hypothalamic and hypophyseal levels clinical findings and symptoms in NCCAH cases usually remains unsatisfactory, a defect which leads to an increase start from the age of 5 and usually emerge in late childhood, in adrenocorticotropic hormone (ACTH) production and adolescence, and adulthood (8,9).
    [Show full text]
  • Pregnanetriolone in Paper-Borne Urine for Neonatal Screening for 21-Hydroxylase Deficiency: the Place of Urine in Neonatal Screening
    Molecular Genetics and Metabolism Reports 8 (2016) 99–102 Contents lists available at ScienceDirect Molecular Genetics and Metabolism Reports journal homepage: www.elsevier.com/locate/ymgmr Pregnanetriolone in paper-borne urine for neonatal screening for 21-hydroxylase deficiency: The place of urine in neonatal screening José Ramón Alonso-Fernández 1,2 Laboratorio de Tría Neonatal en Galicia, Laboratorio de Metabolopatías, Departamento de Pediatria, Hospital Clínico (CHUS) e Universidade de Santiago de Compostela, Galicia. Spain article info abstract Article history: The standard method of primary neonatal screening for congenital adrenal hyperlasia (CAH), determination of Received 7 August 2016 17-hydroxyprogesterone (17OHP) in heelprick blood, is the object of recurrent controversy because of its poor Accepted 8 August 2016 diagnostic and economic efficiency. The superior ability of urinary pregnanetriolone levels to discriminate be- Available online 18 August 2016 tween infants with and without classical CAH has been known for some time, but has not hitherto been exploited for primary screening. Here we propose an economical neonatal CAH-screening system based on fluorimetric de- Keywords: Newborn screening termination of the product of reaction between urinary pregnanetriolone and phosphoric acid. Congenital adrenal hyperplasia (CAH) © 2016 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license Urine sample on paper (http://creativecommons.org/licenses/by-nc-nd/4.0/). Pregnanetriolone 1. Introduction Because of its high frequency and life-threatening potential, and be- cause it can be treated effectively by corticoid replacement therapy, CAH Congenital adrenal hyperplasia (CAH) is an inherited metabolic dis- is in many countries included among the inherited metabolic disorders order caused by autosomal recessive defects in the genes encoding en- screened for at birth.
    [Show full text]
  • Human Steroid Biosynthesis, Metabolism and Excretion Are
    University of Birmingham Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes Schiffer, Lina; Barnard, Lise; Baranowski, Elizabeth; Gilligan, Lorna; Taylor, Angela; Arlt, Wiebke; Shackleton, Cedric; Storbeck, Karl-Heinz DOI: 10.1016/j.jsbmb.2019.105439 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Schiffer, L, Barnard, L, Baranowski, E, Gilligan, L, Taylor, A, Arlt, W, Shackleton, C & Storbeck, K-H 2019, 'Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: a comprehensive review', The Journal of Steroid Biochemistry and Molecular Biology, vol. 194, 105439. https://doi.org/10.1016/j.jsbmb.2019.105439 Link to publication on Research at Birmingham portal Publisher Rights Statement: Schiffer, L, Barnard, L, Baranowski, E, Gilligan, L, Taylor, A, Arlt, W, Shackleton, C & Storbeck, K-H. (2019) 'Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: a comprehensive review', The Journal of Steroid Biochemistry and Molecular Biology, vol. 194, 105439, pp. 1-25. https://doi.org/10.1016/j.jsbmb.2019.105439 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
    [Show full text]