APPENDIX C2 Biotope Information 2009

Total Page:16

File Type:pdf, Size:1020Kb

APPENDIX C2 Biotope Information 2009 0 0 e 0 0 0 *0 0 0 APPENDIX C2 0 0 Biotope Information 2009 0 For inspection purposes only. Consent of copyright owner required for any other use. 0 e 0 0 0 0 a 0 0 0 EPA Export 26-07-2013:19:32:33 For inspection purposes only. Consent of copyright owner required for any other use. EPA Export 26-07-2013:19:32:33 1- a.aMu.wmviu.LKorrpei seis koreni and Phaxas oellueidus in circalittoral sandw mud hll Hierarchv >> U Habitat (physical) description Dlstrlbutlor ialinity Full (30-35 ppt) Vave exposure: Exposed, Moderately exposed Tidal streams: Strong (3-6 kn), Moderately strong (1- 3 kn), Weak (>1 kn), Very weak (negligible) iubstratun Sandy mud !one: - Circalittoral Jepth Band: 10-20 m, 20-30 m, 30-50 m, 50-10( m Ither Features: Download comDarative Dhvsical and bioloaical data. The comparative tables enable a rapid comparison of the species composition and principal physical characteristics between a given set of biotopes. listribution of habitat SS.SMu.CSaMu.LkorPpe For inspection purposes only. agis koreni and Phaxas pellucidus in circalittoral Consent of copyright owner required for any other use. andy mud, based on records on the JNCC iarine database. Red dots represent records on rhich the biotope is based. Blue dots show orther ertain records, black dots show records I mtativelv assianed to this biotope. Biotope description In stable circalittoral sandy mud dense populations of the tube building polychaete Lagis koreni may occur. Other species found in this habitat typically include bivalves such as Phaxas pellucidus, Mysella bidentata and Abra alba and polychaetes such as Mediomastus fragilis, Spiophanes bombyx, Owenia fusiformis and Scalibregma inflatum. At the sediment surface easily visible fauna include Lagis koreni and Ophiura ophiura. Lagis koreni is an important source of food for commercially important demersal fish, especially dab and plaice (Macer, 1967; Lockwood, 1980 and Basimi & Grove, 1985). Situation No situation data available. Temporal variation In some areas e.g. Liverpool Bay, AalbNuc and LkorPpel have exhibited cyclical behaviour with the community periodically switching from one biotope to another - possibly in relation to dredge spoil disposal (Rees et al. 1992) along with other environmental and biological factors. Both Lagis koreni and Phaxas pellucidus, are capable of EPA Export 26-07-2013:19:32:33 0 0 tolerating sudden increases in the deposition of sediment and often dominate such areas following such an event. 0 Indeed it is likely that the two biotopes are merely different aspects of the same community as Lagis koreniis often recorded with high densities of Abra alba (Eagle 1975; Rees and Walker 1983). Densities of mature populations of L. kareni may exceed 1000m-2 0 Similar biotopes SS.SSa.CMuSa.AalbNuc The current biotope is closely related to AalbNuc but tends to occur in muddier substratum Characterising Species Contribution tc Abr TEYE X 0 I I Typica similarity Cerianthus lloydii 2 Nemertea 5 214 Nereiphylla lutea 2 86 Lumbrineris gracilis 2 115 Prionospio ehlersi 1 149 spio 2 70 Spiophanes bombyx 7 636 Chaetoptenrs 1 variopedatus Chaetozone 1 Mediomastus fragiris 5 Scalibregma in flatum 3 174 Owenia fusiformis 3 95 Amphictene auricoma 1 323 Lagis koreni 22 Lagis koreni 8 882 Lanice conchilega 8 Pariambus typicus For inspection purposes only. 2 94 Consent of copyright owner required for any other use. Pseudmuma Iongimrnis 1 84 Pagurus bernhardus 4 Macropodia rostrata R 1 Corystes cassivelaunus R 1 Liocarcinus depurator R 1 Buccinum undatum 0 3 Nucula nitidosa 1 44 Mysella bidentata C 6 1225 Phaxas pellucidus A 6 639 Abra alba C 4 441 Phoronis C 2 114 Asterias rubens 0 6 Ophiuroidea 2 175 Amphiura filiformis 1 120 Ophiura albida C 6 EPA Export 26-07-2013:19:32:33 Ophiura ophiura 20 Psammechinus miliaris ...@@ 1 Echinocardium cordatum 4 Callionymus lyra 2 Pomatoschistus .. I)rl, 13 Pleuronectidae ea 3 ;S.SMx.CMx 3rcalittoral mixed sediment Salinity: Full (30-35 ppt) Nave exposure: Moderately exposed, Sheltered, Very sheltered - ridal8treams: Moderately strong (1-3 knl, Weak (>I Very weak (negligible) Substratum: Mixed sediment (with sta and 11s) - !one: Circalittoral hpth Bena: 5-10 m, 10-20 m, 20-au m, 80-50 m Download comparative physical and bioloaical data. The comparative tables enable a rapid comparison of the species composition and principa' I physical characteristics between a given set of biotopes. Previous code For inspection purposes only. Consent of copyright owner required for any other use. This biotope occurred in previous versions of the classification as: CMX - Version: 97.06 I Nstribution of habltat SS.SMx.CMx Clrcallttoral mixed ddlment, based on records on the JNCC marine databass. Red dots represent records on which the biotope is based. Wedots show orther certaln records, black dots show record sntatively assigned to this biotope. Biotope description Mixed (heterogeneous) sediment habitats in the circalittoral zone (generally below 15-20m) Including well mixed muddy gravelly sands a very poorly sorted mosaics of shell, cobbles and pebbles embedded in or lying upon mud, sand or gravel. Due to the variable nature of the seabed a variety of communities can develop which are often very diverse. A wide range of Infaunal polychaetes, bivalves, echinoderms and burrowing anemones such as Cerianthus lloydil are often present in such habitat and the presence of hard substrata EPA Export 26-07-2013:19:32:33 e 0 shells and stones) on the surface enables epifaunal species to become established, particularly nyaroids such as Nemertesia spp and 0 Yydrallmania falcata. The combination of epifauna and infauna can lead to species rich communities. Coarser mlxed sediment :ommunities may show a strong resemblance, in terms of infauna, to blotopes within the SCS complex. However, infaunal data for this )iotope complex is limited to that described under the biotope MysThyMx, and so are not representative of the infaunal component of this 0 )lotope complex. Situation Jo situation data available. e remporal variation 40 temporal data available. 0 Similar biotopes Jot applicable or unknown. Characterising Species 0 rn TrypicelAbundance b Contribution to similarity Hydrallmania falcata 0 0 Nemertesia antennina 0 Nemertesia ramosa 0 Alcyonium digitatum 0 0 Cerianthus lloydii F Urticina felina 0 0 Nemertea C 2 31 Nematoda F 3 480 Pholoe inornata F 2 103 0 Glycera alba A 1 23 Gonieda maculate C 2 27 0 Nephtys C 1 38 Nephtys hombeaii C 2 38 Lumbrineris gracilis C 4 155 e Scoloplos arrniger A 3 90 Levinsenia gracilis ForC inspection purposes only. 1 67 Consent of copyright owner required for any other use. Prionospio fallax A 8 492 e Spiophanes bombyx F 2 75 Chaetozone setosa C 4 141 0 Mediomastus fragilis C 2 147 Scalibmgma inflatum C 2 65 Galathowenia oculata F 1 74 0 Owenia fusiformis C 2 29 Terebellides stroemi A 2 32 0 Terebellidae 0 Lanice conchilega 0 Pomatoceros triqueter 0 e Ampelkca tenuicomis F 2 111 Eudorelk truncatula A 1 37 Pagurus bernhardus 0 a Liocarcinus depurator 0 Buccinum undatm 0 a Modiolus modiolus 0 0 EPA Export 26-07-2013:19:32:33 0 0 Pecten maximus am 0 Thyasira flexuosa ma... C 375 e Mysella bidentata mmm F 249 Phaxas pellucidus mm. C 28 Abra alba ma. C 191 0 Chamelea gallina mm.. C 44 Flustra foliacea * 0 0 Phoronis am. C 2 149 Crossaster pappus ma R Asterias rubens WO 0 0 Ophiothrix fragilis ma C Ophiocomina nigra F Amphiura filiformis ..ma. A 1 0 Ophiura albida I)rl) F Echinus esculentus ma 0 a Psolus phantapus ma 0 Thyone fusus m 0 0 Corallinaceae ma 0 For inspection purposes only. Consent of copyright owner required for any other use. EPA Export 26-07-2013:19:32:33 For inspection purposes only. Consent of copyright owner required for any other use. EPA Export 26-07-2013:19:32:33.
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Response to Oxygen Deficiency (Depletion): Bivalve Assemblages As an Indicator of Ecosystem Instability in the Northern Adriatic Sea
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Response to oxygen deficiency (depletion): Bivalve assemblages as an indicator of ecosystem instability in the northern Adriatic Sea Vedrana NERLOVIĆ1, Alper DOĞAN2 & Mirjana HRS-BRENKO1 1Ruđer Bošković Institute, Centre for Marine Research, Giordano Paliaga 5, HR-52210 Rovinj, Croatia e-mail: [email protected] 2 Department of Hydrobiology, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir, Turkey e-mail: [email protected] Abstract: Benthic communities represent a powerful tool for the detection of natural and anthropogenic disturbances, as well as for the assessment of marine ecosystem stability. This paper shows that Bivalve assemblages could serve as excellent indicators of disturbance and ecosystem instability. The goal of this study was to compare two sets of data in order to determine the differences between two different periods belonging to Bivalve assemblage in the muddy detritic bottom of the northern Adriatic Sea in the post-anoxic period during December 1989, 1990, 1991 and quite a while later, during 2003, 2004 and 2005. Abundances of some indicator species such as Corbula gibba, Modiolarca subpicta, and Timoclea ovata were detected during the post-anoxic period. Recruitment in the quality of Bivalve assemblages was proved by the ecologic and biotic indexes during 2003, 2004 and 2005, during a period of relatively stable ecological conditions. Fluctuation in Bivalve diversity due to the ecological quality of the marine ecosystem in the eastern part of the northern Adriatic Sea is also discussed. Key words: hypoxia; Bivalve assemblages; indicator species; soft bottoms; northern Adriatic Sea Introduction Recent reviews and summaries have provided good introductions on how hypoxia and anoxia came to be such a large and serious problem in the aquatic ecosystem (Gray et al.
    [Show full text]
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • Marine Aquaculture Site – Grey Horse Channel Outer Video Survey June 2018
    Marine Aquaculture Site – Grey Horse Channel Outer Video Survey June 2018 MARINE HARVEST ( SCOTLAND) LIMITED SEPTEMBER 2018 Registered in Scotland No. 138843 Stob Ban House 01397 715084 - Registered Office, Glen Nevis Business Park 1st Floor, Admiralty Park Fort William, PH33 6RX Kate. Stronach@marineharvest. com Admiralty Road, Rosyth, Fife Stob Ban House KY11 2YW Glen Nevis Business Park http:// marineharvest. com Fort William, PH33 6RX Grey Horse Channel Outer 2018 Baseline Video Survey Report 2 | 14 Video Survey Assessment for: Marine Harvest ( Scotland) Ltd. proposed Grey Horse Channel Outer Farm Requirement for survey: Baseline Date of survey: 26/06/2018 Surveyed by: Marine Harvest (Scotland) Ltd. Equipment used: Towed Sledge with HD camera A video survey was undertaken at Grey Horse Channel Outer to examine the epifauna on the seabed and the baseline assessment will be submitted as part of applications for licences at the proposed site. Marine Harvest (Scotland) Ltd. propose to install a new site north west of Greineam Island which will operate to a biomass of 2500t. The site will consist of 14 circular pens each 120m in circumferen ce and held in 75m matrix squares in a 2 x 7 grid. Modelling has been completed using AutoDEPOMOD and a predicted deposition footprint generated. The Grey Horse Channel Outer video survey provides seabed footage on transects through the area of seabed within the predicted footprint. Grey Horse Channel Outer Biotope Assessment The footage for the transects has been viewed to identify occurring species, habitat types and zonation using the Marine Habitat Classification Hierarchy and SACFOR abundance scale from the JNCC website ( 2017).
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • The National Marine Biological Analytical Quality Control Scheme
    The National Marine Biological Analytical Quality Control Scheme Macrobenthic Exercise Results – MB19 Jessica Taylor & David Hall [email protected] June 2012 Thomson Unicomarine Ltd. 7 Diamond Centre Works Road Letchworth Hertfordshire SG6 1LW www.unicomarine.com EXERCISE DETAILS Macrobenthos #19 Type/Contents – Natural marine sample from southern North Sea; approx. 0.5 litres of shell debris; 1 mm sieve mesh processing. Circulated – 05/09/2011 Completion Date – 02/12/2011 Number of Participating Laboratories – 9 Number of Results Received – 7 ______________________________________________________________________________ Contents Results Sheets 1 - 7. NMBAQC Scheme Interim Results – Macrobenthic exercise (MB19). Tables Table 1. Results from the analysis of Macrobenthic sample MB19 by the participating laboratories. Table 2. Comparison of the efficiency of extraction of fauna by the participating laboratories for the major taxonomic groups present in sample MB19. Table 3. Comparison of the estimates of biomass made by the participating laboratories with those made by Thomson Unicomarine Ltd. for the major taxonomic groups present in sample MB19. Table 5. Variation in faunal content reported for the artificial replicate samples distributed as MB19. Figures Figure 1. MB19 data from participating laboratories (raw - untransformed). Cluster dendrogram showing plotted data from participating laboratories as supplied. Figure 2. MB19 data reanalysed by Thomson Unicomarine Ltd. Cluster dendrogram showing plotted data from participating laboratories following reanalysis by Thomson Unicomarine Ltd. (untransformed). All residues and fauna have been reanalysed. No data truncation – all faunal groups included. Appendices Appendix 1 MB19 Instructions for participation. NMBAQC Scheme Interim Results LabCode LB1802 Summary Data SampleCode MB19 Diff. In No. Taxa -6 Sample Received 16/01/2012 Diff.
    [Show full text]
  • An Enriched Chaetopterus Tube Mat Biotope in the Eastern English Channel
    J. Mar. Biol. Ass. U.K. (2005), 85, 323^326 Printed in the United Kingdom An enriched Chaetopterus tube mat biotope in the eastern English Channel E.I.S.Rees*, M. Bergmann, M. Galanidi, H. Hinz, R. Shucksmith and M.J. Kaiser School of Ocean Sciences, University of Wales Bangor, Menai Bridge, Anglesey,Wales, LL59 5AB, UK. *Corresponding author, e-mail: [email protected] Patches of a very dense tube mat biotope were found during ¢sh habitat studies in the eastern English Channel. At three locations in the lows between linear sand banks o¡ the French coast an un-described small Chaetopterus sp. occurred with small Lanice conchilega as an enriched sediment stabilizing biotope. This biotope was distinct though having similarities to other tide swept sub-tidal biotopes dominated by L. conchilega. Using cameras and side-scan sonar it was seen to overlay heterogeneous cobbles and shell hash with intermittent rippled sand veneer. The patchiness of this enriching biogenic feature contributed to the variability in trawl catches of ¢sh. INTRODUCTION form of Chaetopterus has an easily collapsed muddy tube and is distinct from the widespread large parchment tube Classi¢cations of sub-tidal sedimentary biotopes from building species (Mary E. Petersen, personal communica- north-west European shelf seas (Connor et al., 1997, tion). Similar specimens of a small Chaetopterus, collected 2003) include several categories wherein tube worms are o¡ Brittany had previously been sent to Dr Petersen by so abundant that they form biogenic mats. Such mats have important ecological functions in trapping ¢ne sedi- Professor M. Glemarec. Taxonomic descriptions of the new species are in preparation by Dr Petersen.
    [Show full text]
  • Base Line Monitoring for Salmon Farming Site in Eyrarhlíð, Dyrafjörður
    Base line monitoring for salmon farming site in Eyrarhlíð, Dyrafjörður Worked for Arctic Sea Farm Cristian Gallo July 2019 NV nr. 13-19 Náttúrustofa Vestfjarða Sími: 456-7005 Kennitala: 610397-2209 Aðalstræti 12 Netfang: [email protected] 415 Bolungarvík Heimasíða: http://www.nave.is Base line monitoring Eyrarhlíð, Dyrafjörður CG NV nr. 13-19 Date month/year: July 2019 Distribution: Open Report nr: Work number: Close until: NV nr. 13-19 516 With permission of the client Title: Number pages: 19 Base line monitoring for salmon farming site in Number of figures: 4 Number of tables: 8 Eyrarhlíð, Dyrafjörður Author: Cristian Gallo Number appendixces: 2 Sampling date: 5.6.2018 Client´s contact: Steinunn Guðný Einarsdóttir Site: Eyrarhlíð (Dýrafjördur) Worked for: Arctic Sea Farm hf. Dýrafirði Operative licence: 2.000 ton Sveitarfélaginu Ísafirði Lögheimili Suðurgötu 12, Ísafirði Kt.: 700807-0450 Abstract: Base line monitoring was conducted at mariculture site in Eyrarhlíð according to ISO12878 standard. Sea bottom was found muddy with high similarity in animal community between stations. Animal community found at Eyrarhlíð was predominantly made of common species found in fjord ecosystems in the Westfjords. Polychaetes were the predominant species with Levinsenia gracilis most abundant and good presence of species from the Maldanidae family (Euchone sp. and Galathowenia oculata). Shannon-Wiener diversity index (loge) resulted under 3 for all stations. AMBI classified the site as slightly disturbed. Considering farming was never done in proximity to this site we assume other natural conditions affect the diversity in this area. Visual and chemical parameters did not show any signs of organic impact.
    [Show full text]
  • Taxonomy and Distribution of Pectinariidae (Annelida) from Iceland with a Comparative Analysis of Uncinal Morphology
    European Journal of Taxonomy 666: 1–32 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.666 www.europeanjournaloftaxonomy.eu 2020 · Parapar J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:2E0FAA1D-DA9A-4486-805F-9DA3DF928539 Taxonomy and distribution of Pectinariidae (Annelida) from Iceland with a comparative analysis of uncinal morphology Julio PARAPAR 1,*, Verónica PALOMANES 2, Gudmundur V. HELGASON 3 & Juan MOREIRA 4 1,2 Departamento de Bioloxía, Universidade da Coruña, 15008 A Coruña, Spain. 3 Deceased 9 May 2020. Former addresss: RORUM ehf., Brynjólfsgötu 5, 107 Reykjavík, Iceland. 4 Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. 4 Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain. * Corresponding author: [email protected] 2 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:CE188F30-C9B0-44B1-8098-402D2A2F9BA5 2 urn:lsid:zoobank.org:author:6C644341-D35B-42B6-9857-5F119457A424 3 urn:lsid:zoobank.org:author:32B3520E-1D49-4B77-BF81-2AAE3FE76363 4 urn:lsid:zoobank.org:author:B1E38B9B-7751-46E0-BEFD-7C77F7BBBEF0 This paper is dedicated to Guðmundur Vidir Helgason who passed away on 9 May 2020, just before publication of this paper. Project Manager at RORUM, an environmental research and consulting company, he was previously a Project Coordinator for the BIOICE program (Benthic Invertebrates of Icelandic Waters) and Director of the Sandgerði Marine Centre from 1992 to 2013, being one of the organizers of the 7th International Polychaete Conference (Reykjavík, July 2001).
    [Show full text]
  • Spatial Patterns of Macrozoobenthos Assemblages in a Sentinel Coastal Lagoon: Biodiversity and Environmental Drivers
    Journal of Marine Science and Engineering Article Spatial Patterns of Macrozoobenthos Assemblages in a Sentinel Coastal Lagoon: Biodiversity and Environmental Drivers Soilam Boutoumit 1,2,* , Oussama Bououarour 1 , Reda El Kamcha 1 , Pierre Pouzet 2 , Bendahhou Zourarah 3, Abdelaziz Benhoussa 1, Mohamed Maanan 2 and Hocein Bazairi 1,4 1 BioBio Research Center, BioEcoGen Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Rabat 10106, Morocco; [email protected] (O.B.); [email protected] (R.E.K.); [email protected] (A.B.); [email protected] (H.B.) 2 LETG UMR CNRS 6554, University of Nantes, CEDEX 3, 44312 Nantes, France; [email protected] (P.P.); [email protected] (M.M.) 3 Marine Geosciences and Soil Sciences Laboratory, Associated Unit URAC 45, Faculty of Sciences, Chouaib Doukkali University, El Jadida 24000, Morocco; [email protected] 4 Institute of Life and Earth Sciences, Europa Point Campus, University of Gibraltar, Gibraltar GX11 1AA, Gibraltar * Correspondence: [email protected] Abstract: This study presents an assessment of the diversity and spatial distribution of benthic macrofauna communities along the Moulay Bousselham lagoon and discusses the environmental factors contributing to observed patterns. In the autumn of 2018, 68 stations were sampled with three replicates per station in subtidal and intertidal areas. Environmental conditions showed that the range of water temperature was from 25.0 ◦C to 12.3 ◦C, the salinity varied between 38.7 and 3.7, Citation: Boutoumit, S.; Bououarour, while the average of pH values fluctuated between 7.3 and 8.0.
    [Show full text]
  • Linnaeus, 1758) (Ophiuroidea, Echinodermata)
    Journal of Experimental Marine Biology and Ecology 393 (2010) 176–181 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Sediment preference and burrowing behaviour in the sympatric brittlestars Ophiura albida Forbes, 1839 and Ophiura ophiura (Linnaeus, 1758) (Ophiuroidea, Echinodermata) Karin Boos a,⁎, Lars Gutow b, Roger Mundry c, Heinz-Dieter Franke a a Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research, PO Box 180, 27483 Helgoland, Germany b Alfred Wegener Institute for Polar and Marine Research, PO Box 12 01 61, 27515 Bremerhaven, Germany c Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany article info abstract Article history: Ophiura albida and Ophiura ophiura are widespread and highly abundant brittlestar species occurring Received 11 May 2010 sympatrically on soft bottoms along the western European coasts. Laboratory choice experiments revealed Received in revised form 23 July 2010 that O. albida preferred staying on fine rather than on coarse sediments, whereas O. ophiura did not Accepted 26 July 2010 distinguish between these types of sediment. Sediment-specific burrowing behaviour of the two species was investigated under different stress and food conditions in order to evaluate relations of predator avoidance Keywords: and feeding strategies with the observed sediment preference. In the presence of a predator, O. albida Brittlestars fi Burrowing burrowed preferentially in ne sediment while coarse sediment did not seem to support quick burrowing for Feeding behaviour efficient escape. Conversely, O. ophiura tended to escape the predator by fleeing across the sediment surface Predation rather than by burrowing, reflecting its unselectivity towards different sediment types.
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    National monitoring program for biodiversity and non-indigenous species in Egypt January 2016 1 TABLE OF CONTENTS page Acknowledgements 3 Preamble 4 Chapter 1: Introduction 8 Overview of Egypt Biodiversity 37 Chapter 2: Institutional and regulatory aspects 39 National Legislations 39 Regional and International conventions and agreements 46 Chapter 3: Scientific Aspects 48 Summary of Egyptian Marine Biodiversity Knowledge 48 The Current Situation in Egypt 56 Present state of Biodiversity knowledge 57 Chapter 4: Development of monitoring program 58 Introduction 58 Conclusions 103 Suggested Monitoring Program Suggested monitoring program for habitat mapping 104 Suggested marine MAMMALS monitoring program 109 Suggested Marine Turtles Monitoring Program 115 Suggested Monitoring Program for Seabirds 117 Suggested Non-Indigenous Species Monitoring Program 121 Chapter 5: Implementation / Operational Plan 128 Selected References 130 Annexes 141 2 AKNOWLEGEMENTS 3 Preamble The Ecosystem Approach (EcAp) is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way, as stated by the Convention of Biological Diversity. This process aims to achieve the Good Environmental Status (GES) through the elaborated 11 Ecological Objectives and their respective common indicators. Since 2008, Contracting Parties to the Barcelona Convention have adopted the EcAp and agreed on a roadmap for its implementation. First phases of the EcAp process led to the accomplishment of 5 steps of the scheduled 7-steps process such as: 1) Definition of an Ecological Vision for the Mediterranean; 2) Setting common Mediterranean strategic goals; 3) Identification of an important ecosystem properties and assessment of ecological status and pressures; 4) Development of a set of ecological objectives corresponding to the Vision and strategic goals; and 5) Derivation of operational objectives with indicators and target levels.
    [Show full text]