Whole Grain Cookbook : Wheat, Barley, Oats, Rye, Amaranth, Spelt, Corn, Millet, Quinoa, and More Pdf, Epub, Ebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt
fermentation Article Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt Alice Fujita, Senay Simsek and Paul B. Schwarz * Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; [email protected] (A.F.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-701-231-7732 Received: 25 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: There have been tremendous marketing efforts and consumer interest in the so-called ancient grains. Einkorn, emmer and spelt, which are sometimes referred to as ancient wheats, are frequently included in this category, and have gained some attention among brewers. The objective of the current study was to compare the malting behavior and quality of einkorn, emmer and spelt cultivars obtained from the same growing environment. Aside from standard malt quality traits, the levels of β-amylase, protease, xylanase, wort arabinoxylans and wort phenolic acids were measured. While protein levels of the samples were higher (11.4–14.0%) than normally selected for wheat malt, the results indicated that malts of acceptable quality in terms of extract and amylolytic activity can be prepared from the three grain types. However, the ideal malting protocol will likely differ between the grains. The kernels of einkorn are significantly smaller, and steep hydration and malt modification are quicker. In terms of potential health benefits from antioxidant capacity and dietary fiber, wort from einkorn trended to higher levels of free and conjugated ferulic acid, as well as high-molecular-weight arabinoxylan. Keywords: arabinoxylan; brewing; einkorn; enzyme activity; emmer; malt; phenolic acid; spelt; and sprouting 1. -
The Probable Use of Genus Amaranthus As Feed Material for Monogastric Animals
animals Review The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals Tlou Grace Manyelo 1,2 , Nthabiseng Amenda Sebola 1 , Elsabe Janse van Rensburg 1 and Monnye Mabelebele 1,* 1 Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida 1710, South Africa; [email protected] (T.G.M.); [email protected] (N.A.S.); [email protected] (E.J.v.R.) 2 Department of Agricultural Economics and Animal Production, University of Limpopo, Sovenga 0727, South Africa * Correspondence: [email protected]; Tel.: +27-11-471-3983 Received: 13 July 2020; Accepted: 5 August 2020; Published: 26 August 2020 Simple Summary: In monogastric production, feeds account for about 50–70% of the total costs. Protein ingredients are one of the most expensive inputs even though they are not included in large quantities as compared to cereals. Monogastric animal industries are faced with a major problem of limited protein sources, moreover, the competition for plant materials is expected to further increase feed prices. Therefore, to tackle this problem, interventions are required to find alternative and cost-effective protein sources. One identified crop that meets these requirements is amaranth. Studies have shown the potential and contribution that amaranth has as an alternative ingredient in diets for monogastric animals. Therefore, the main purpose of this review is to provide a detailed understanding of the potential use of amaranth as feed for monogastric animals, and further indicate processing techniques are suitable to improve the utilization of grain amaranth and leaves. -
Small Millets in Global Agriculture
SMALL MILLETS IN GLOBAL AGRICULTURE Proceedings of the First International Small Millets Workshop Bangalore, India, October 29-November 2, 1986 Editors: A. Seetharam K. W. Riley G. Harinarayana 41- OXFORD & IBH PUBLISHING CO. PVT. LTD. New Delhi Bombay Calcutta © 1989 INTERNATIONAL DEVELOPMENT RESEARCH CENTRE ISBN 81-204-0434-3 Published in India by Mohan Primlani for Oxford & IBH Publishing Co. Pvt. Ltd., 66 Janpath, New Delhi 110 001, typeset by Composers and printed at Pauls Press, Okhla Industrial Area, New Delhi 110 020. 1-S9-11 L CONTENTS Editor's Preface vii Inaugural Address : M. V. Rao ix Workshop Participants and Authors I : OVERVIEW AND TAXONOMY 1. Small Millets-A Selective Overview 3 Hugh Doggett 2. Origin, Evolution and Systematics of Minor Cereals 19 J.M.J. de Wet 11 : IMPORTANCE, GERMPLASM AND VARIETAL IMPROVEMENT IN ASIA 3. Small Millets in Indian Agriculture 33 T. V. Sampath, S.M. Razvi, D. N. Singh and K. V. Bondale 4. Genetic Resources of Small Millets in India 45 A. Seetharam 5. Breeding and Varietal Improvement of Small Millets in India 59 G. Harinarayana 6. Importance, Genetic Resources and Breeding of Small 71 Millets in Bangladesh M.A. Majid, M.A. Hamid and Mannujan 7. Importance, Genetic Resources and Breeding of Small 77 Millets in Sri Lanka S. Ponnuthurai 8. Importance, Genetic Resources and Varietal Improvement 85 of Finger Millet in Nepal Kishor Sherchan 9. Importance and Genetic Resources of Small Millets with 93 Emphasis on Foxtail Millet (Setaria italica) in China Chen Jiaju iv 10. Breeding and Varietal Improvement of Foxtail Millet in 101 China Chen Jiaju 11. -
The Story of Millets
The Story of Millets Millets were the first crops Millets are the future crops Published by: Karnataka State Department of Agriculture, Bengaluru, India with ICAR-Indian Institute of Millets Research, Hyderabad, India This document is for educational and awareness purpose only and not for profit or business publicity purposes 2018 Compiled and edited by: B Venkatesh Bhat, B Dayakar Rao and Vilas A Tonapi ICAR-Indian Institute of Millets Research, Hyderabad Inputs from: Prabhakar, B.Boraiah and Prabhu C. Ganiger (All Indian Coordinated Research Project on Small Millets, University of Agricultural Sciences, Bengaluru, India) Disclaimer The document is a compilation of information from reputed and some popular sources for educational purposes only. The authors do not claim ownership or credit for any content which may be a part of copyrighted material or otherwise. In many cases the sources of content have not been quoted for the sake of lucid reading for educational purposes, but that does not imply authors have claim to the same. Sources of illustrations and photographs have been cited where available and authors do not claim credit for any of the copy righted or third party material. G. Sathish, IFS, Commissioner for Agriculture, Department of Agriculture Government of Karnataka Foreword Millets are the ancient crops of the mankind and are important for rainfed agriculture. They are nutritionally rich and provide number of health benefits to the consumers. With Karnataka being a leading state in millets production and promotion, the government is keen on supporting the farmers and consumers to realize the full potential of these crops. On the occasion of International Organics and Millets Fair, 2018, we are planning before you a story on millets to provide a complete historic global perspective of journey of millets, their health benefits, utilization, current status and future prospects, in association with our knowledge partner ICAR - Indian Institute of Millets Research, with specific inputs from the University of Agricultural Sciences, Bengaluru. -
Northwestern Ontario Specialty Crop Market Report
2013 Northwestern Ontario Specialty Crop Market Report 3/31/2013 Acknowledgements Funded By: NRC-IRAP Prepared By: The Northwestern Ontario Innovation Centre Inc With assistance from: Dr. Tarlok Singh Satoka, Thunder Bay Agriculture Research Station Wayne Vanderwees, Freight Managers Inc. Paul Tulonen, IRAP Allan Mitchell, AgraTactics Agronomy Marlene Boersch, Merchantile Consulting Venture Inc. iii Table of Contents Executive Summary ........................................................................................................ 1 Agriculture Market Research Report ............................................................................... 3 Project Overview.......................................................................................................... 3 Section 1: Crop Analysis and Profile of Economically Viable Crops ................................ 5 Chickpeas .................................................................................................................... 5 Lentils .......................................................................................................................... 5 Field Peas .................................................................................................................... 6 Hard White Spring Wheat ............................................................................................ 6 Millhouse Barley .......................................................................................................... 6 Durum Wheat ............................................................................................................. -
Growing Small Grains Organically
LAKEVIEW ORGANIC GRAIN Box 361, Penn Yan, NY 14527 315-531-1038 MANAGING SMALL GRAINS ORGANICALLY Small grains respond strongly to soil fertility and soil condition. Most small grains will do best in well-drained, fertile soils with a pH of at least 6.0. Barley needs a higher pH (>6.5pH) and oats can tolerate more acidity (>5.8pH) Barley prefers high fertility and dry soil, oats can tolerate lower fertility and wetter fields. More fertile soil that has adequate calcium will definitely give better yields. If possible, spread compost, lime and gypsum in the fall on fields where spring small grains are planned, especially if there is a cover crop to put the amendments on. Fall is also a great time to take soil tests to determine nutrient deficiencies. Oats and rye respond well to manure or compost applications, but putting on too much nitrogen may cause lodging. Fall planted grains need generous amounts of P and K for good fall tillering and winter survival. As soil cools, phosphorus becomes less available making high P levels more important than with summer planted crops. When soil test levels of P and K are low, poultry litter or compost can be spread before planting to prevent deficiencies. When K is very low, spreading some additional potassium fertilizers (potassium sulfate, potassium chloride, SulPoMag, or green sand) may be needed to improve winter survival and prevent lodging. According to European research, barley is an extremely heavy feeder, especially of potassium and phosphorus. High nitrogen levels will reduce potassium uptake, possibly creating a shortage if potash soil levels are moderate. -
Spelt Wheat: an Alternative for Sustainable Plant Production at Low N-Levels
sustainability Article Spelt Wheat: An Alternative for Sustainable Plant Production at Low N-Levels Eszter Sugár, Nándor Fodor *, Renáta Sándor ,Péter Bónis, Gyula Vida and Tamás Árendás Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, 2462 Martonvásár, Hungary; [email protected] (E.S.); [email protected] (R.S.); [email protected] (P.B.); [email protected] (G.V.); [email protected] (T.A.) * Correspondence: [email protected]; Tel.: +36-22-569-554 Received: 31 October 2019; Accepted: 21 November 2019; Published: 27 November 2019 Abstract: Sustainable agriculture strives for maintaining or even increasing productivity, quality and economic viability while leaving a minimal foot print on the environment. To promote sustainability and biodiversity conservation, there is a growing interest in some old wheat species that can achieve better grain yields than the new varieties in marginal soil and/or management conditions. Generally, common wheat is intensively studied but there is still a lack of knowledge of the competitiveness of alternative species such as spelt wheat. The aim is to provide detailed analysis of vegetative, generative and spectral properties of spelt and common wheat grown under different nitrogen fertiliser levels. Our results complement the previous findings and highlight the fact that despite the lodging risk increasing together with the N fertiliser level, spelt wheat is a real alternative to common wheat for low N input production both for low quality and fertile soils. Vitality indices such as flag leaf chlorophyll content and normalized difference vegetation index were found to be good precursors of the final yield and the proposed estimation equations may improve the yield forecasting applications. -
Whole and Enriched Grains CACFP Reference Sheet
OSPI CNS Child and Adult Care Food Program Reference Sheet Whole and Enriched Grains Whole and enriched grains are a part of identifying Whole Grain-Rich (WGR) items. There are several methods to identify WGR items. Please view the Grain Requirements in the CACFP Reference Sheet for more information. Whole Grains: Amaranth Sprouted einkorn Amaranth flour Sprouted spelt Brown rice Sprouted whole rye Buckwheat Sprouted whole wheat Buckwheat flour Steel cut oats Buckwheat groats Teff Bulgur Teff flour Cracked wheat Triticale Graham flour Triticale flour Instant oatmeal Wheat berries Millet Wheat groats Millet flour Whole durum flour Oat groats Whole einkorn berries Old fashioned oats Whole grain corn Quick cooking oats Whole grain corn flour Quinoa Whole grain einkorn flour Rye groats Whole grain oat flour Sorghum Whole grain spelt flour Sorghum flour Whole grain wheat flakes Spelt berries Whole rye flour Sprouted brown rice Whole wheat flour Sprouted buckwheat Wild rice Whole corn Brans and Germs: Corn bran Rye bran Oat bran Wheat bran Rice bran Wheat germ Enriched Grains: Enriched bromated flour Enriched rice Enriched corn flour Enriched rice flour Enriched durum flour Enriched rye flour Enriched durum wheat Enriched wheat flour flour Enriched white flour OSPI CNS November 2018 OSPI CNS Child and Adult Care Food Program Reference Sheet Disregarded Ingredients – May be ignored (typically presented in small amounts) Corn dextrin Tapioca starch Corn starch Wheat dextrin Modified -
Processing, Nutritional Composition and Health Benefits of Finger Millet
a OSSN 0101-2061 (Print) Food Science and Technology OSSN 1678-457X (Dnline) DDO: https://doi.org/10.1590/fst.25017 Processing, nutritional composition and health benefits of finger millet in sub-saharan Africa Shonisani Eugenia RAMASHOA1*, Tonna Ashim ANYASO1, Eastonce Tend GWATA2, Stephen MEDDDWS-TAYLDR3, Afam Osrael Dbiefuna JODEANO1 Abstract Finger millet (Eleusine coracana) also known as tamba, is a staple cereal grain in some parts of the world with low income population. The grain is characterized by variations in colour (brown, white and light brown cultivars); high concentration of carbohydrates, dietary fibre, phytochemicals and essential amino acids; presence of essential minerals; as well as a gluten-free status. Finger millet (FM) in terms of nutritional composition, ranks higher than other cereal grains, though the grain is extremely neglected and widely underutilized. Nutritional configuration of FM contributes to reduced risk of diabetes mellitus, high blood pressure and gastro-intestinal tract disorder when absorbed in the body. Utilization of the grain therefore involves traditional and other processing methods such as soaking, malting, cooking, fermentation, popping and radiation. These processes are utilised to improve the dietetic and sensory properties of FM and equally assist in the reduction of anti-nutritional and inhibitory activities of phenols, phytic acids and tannins. However, with little research and innovation on FM as compared to conventional cereals, there is the need for further studies on processing methods, nutritional composition, health benefits and valorization with a view to commercialization of FM grains. Keywords: finger millet; nutritional composition; gluten-free; antioxidant properties; traditional processing; value-added products. Practical Application: Effects of processing on nutritional composition, health benefits and valorization of finger millet grains. -
General Agreement on Tariffs and Trade
CONFIDENTIAL TN.64/Ce/W/3 GENERAL AGREEMENT ON 5 July 1965 TARIFFS AND TRADE Special Distribution Group on Cereals NOTES ON CEREALS' POLICIES In the attached notes some basic data have been assembled regarding the cereals policy of Argentina, Australia, Canada, Japan, Switzerland and the United Kingdom. For practical reasons no notes have been prepared in respect of the EEC and the United States. For the EEC reference may be made to the Report of Committee II on the consultation with the EEC (L/19IO) and the description of the EEC Common Cereal Policy in document COM.II/134• As regards the United States reference may be made to the ninth and tenth annual report by the United States Government under, the decision of 5 March 1955 (L/2081, L/2340) and the United States notification of its wheat and feed grain legislation and programme»(L/2433)» • s I TN.64/Ce/w/3 Page 2/3 ARGENTINA The Government intervenes through the Junta Nacional de Granos to guarantee minimum support prices for cereals. The level of the minimum support prices is governed by various factors, the most important of which is the level of prices on the international market» This is due to the fact that the Government does not subsidize grain exports and must therefore ensure that on the home market it operates within price limits that will be conducive to the disposal abroad of exportable balances. The following table shows the trends for the floor prices in recent years: Wheat Grade No. 1 Maize Oats Barley Rye Semi-hard Hard Hard Dent Argentine pesos per 100 kgs. -
The Amaranth (Amaranthus Hypochondriacus) Genome: Genome, Transcriptome and Physical Map Assembly
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2015-06-01 The Amaranth (Amaranthus Hypochondriacus) Genome: Genome, Transcriptome and Physical Map Assembly Jared William Clouse Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Plant Sciences Commons BYU ScholarsArchive Citation Clouse, Jared William, "The Amaranth (Amaranthus Hypochondriacus) Genome: Genome, Transcriptome and Physical Map Assembly" (2015). Theses and Dissertations. 5916. https://scholarsarchive.byu.edu/etd/5916 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. The Amaranth (Amaranthus hypochondriacus) Genome: Genome, Transcriptome and Physical Map Assembly Jared William Clouse A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science P. Jeffery Maughan, Chair Eric N. Jellen Joshua A. Udall Department of Plant and Wildlife Sciences Brigham Young University June 2015 Copyright © 2015 Jared William Clouse All Rights Reserved ABSTRACT The Amaranth (Amaranthus Hypochondriacus) Genome: Genome, Transcriptome and Physical Map Assembly Jared William Clouse Department of Plant and Wildlife Sciences, BYU Master of Science Amaranthus hypochondriacus is an emerging pseudo-cereal native to the New World which has garnered increased attention in recent years due to its nutritional quality, in particular its seed protein, and more specifically its high levels of the essential amino acid lysine. It belongs to the Amaranthaceae family, is an ancient paleotetraploid that shows amphidiploid inheritance (2n=32), and has an estimated genome size of 466 Mb. -
Bread Quality of Spelt Wheat and Its Starch1
Bread Quality of Spelt Wheat and Its Starch1 J. D. Wilson,2,3 D. B. Bechtel,2 G. W. T. Wilson,4 and P. A. Seib5 ABSTRACT Cereal Chem. 85(5):629–638 Flours from five spelt cultivars grown over three years were evaluated starches of 2–21% over the hard red winter wheat (HRW) control. Nega- as to their breadbaking quality and isolated starch properties. The starch tive correlations were observed for the large A-type granules to bread properties included amylose contents, gelatinization temperatures (differ- crumb score, amylose level, and final pasting viscosity for cultivars ential scanning calorimetry), granule size distributions, and pasting prop- grown in year 1999 and to pasting temperature in 1998 samples. Positive erties. Milled flour showed highly variable protein content and was higher correlations were found for the small B- and C-type granules relative to than hard winter wheat, with short dough-mix times indicating weak crumb score, loaf volume, amylose, and RVA final pasting viscosity for gluten. High protein cultivars gave good crumb scores, some of which cultivars grown in 1999, and to RVA pasting temperature for samples surpassed the HRW baking control. Loaf volume was correlated to pro- grown in 1998. The environmental impact on spelt properties seemed to tein and all spelt cultivars were at least 9–51% lower than the HRW con- have a greater effect than genetic control. trol. Isolated starch properties revealed an increase in amylose in the spelt U.S. production of spelts peaked in the early 1900’s and de- Other studies have reported variations in protein, lysine, vitamins, clined steadily thereafter.