Bergeys-Manual-Of-Systematic-Bacteriology.-Volume-Five-The

Total Page:16

File Type:pdf, Size:1020Kb

Bergeys-Manual-Of-Systematic-Bacteriology.-Volume-Five-The Gontents ix . .' Prefacetovolume5. xYil Contributors nil On using the Manual Part A I Road map of the phylum Actinobacteria ' ' æ the phylum Actinobacteria ' ' Taxonomic outline of 33 phyl' nov' Phylum XXYI. Actinobacteria 34 . - - Class l. Actinobacteria 35 Order l. ActinomYcetales' ' 36 l. ActinomYcetaceae Family 4i2 Genus l. ActinomYces 1(p Genus ll. Actinobaculum . 1t4 Genus lll. Arcanobacterium 16 lY. Mobiluncus. Genus 139 Genus Y. Varibaculum ord. nov' ldl Order ll. Actinopolysporales 169 Family l. ActinoPolYsPoraceae r63 l. ActinoPolYsPora . Genus ' ' 1?to Order lll. Bifidobacteriales lTl L Bifidobacteriaceae Family 171 Genus L Bifidobacterium . âË Genus ll. Aeriscardovia - - - Nf Genus lll. Alloscardovia . - - N Genus lY. Gardnerella ' ' - tll Genus Y. Metascardovia' . - ztg Genus YL Parascardovia 211 Genus Yll. Scardovia zË Order lV. Catenulisporales ord. nov' 26 Family l. CatenulisPoraceae z6 Genus L CatenulisPora- - - - Ên Family ll. ActinosPicaceae - ap, Genus l. ActinosPica É6 OrderV. Corynebacterialesord' nov' ' ' 2tu Family l. Corynebacteriaceae - 2Æ Genus l. CorYnebacterium æ Genus ll.Turicella. 3tl Family ll. Dietziaceae - - - . fln Dietzia Genus L 312 Family lll. MYcobacteriaceae 3t2 Genus l. MYcobacterium . d xtl CONTENTS Family lY. Nocardiaceae. 376 Genus L Nocardia. 376 Genus ll. Gordonia 419 Genus lll. Millisia 435 Genus lY. Rhodococcus. 437 Genus Y. Skermania 464 Genus Y L S maragdicoccus 467 Genus Yll. Williamsia. 470 Family V. Segniliparaceae. 497 Genus l. Segniliparus 497 Family Y L Tsu kamu rellaceae 500 Genus L Tsukamurella. 500 Order Vl. Frankiales ord. nov 509 Family L Frankiaceae . 512 Genus L Frankia 512 Family ll. Acidothermaceae 520 Genus l. Acidothermus. 520 Family lll. Cryptosporangiaceae 522 Genus L Cryptosporangium 522 Genus lncertae sedis l. Fodinicola 525 Family lY. Geodermatophilaceae . 528 Genus L Geodermatophilus 528 Genus ll. Blastococcus. 531 Genus lll. Modestobacter. 536 Famif y Y. N akamu rel laceae. 539 Genus l. Nakamurella. 540 Genus ll. Humicoccus . 542 Family Yl. Sporichthyaceae. 544 Genus L Sporichthya 544 OrderVlf . Glycomycetalesord. nov. 546 Family l. Glycomycetaceae. 547 GenusLGlycomyces.... 547 Genus ll. Stackebrandtia . 553 Order Vlll. Jiangellales ord. nov. 555 Family L Jiangellaceae . 557 Genus L Jiangella. 557 Genus ll. Haloactinopolyspora 560 Order lX. Kineosporiales ord. nov. 561 Family L Kineosporiaceae. 562 Genus L Kineosporia 562 Genus ll. Kineococcus. 565 Genus lll. Quadrisphaera. 567 Order X. Micrococcales. 569 Family l. Micrococcaceae . 571 Genus l. Microcoecus. 571 Genus ll. Acaricomes. 577 Genus lll. Arthrobacter. 578 Genus lV. Citricoccus. 624 Genus Y. Kocuria 626 Genus Yl. Nesterenkonia . 636 Genus Yll. Fienibacterium 643 Genus Ylll. Rothia 646 Genus lX. Yaniella ti5o Genus X. Zhihengliuella. 653 CONTENTS xiii Family ll. Beutenbergiaceae 667 Genus L Beutenbergia. 669 Genus ll. Miniimonas . 671 Genus lll. Salana 673 Genus lY. Serinibacter . 677 Family lll. Bogoriellaceae . 678 Genus L Bogoriella 679 Genus ll. Georgenia 681 Family lV. Brevibacteriaceae. 685 Genus l. Brevibacterium. 68s Family V. Cell u lomonadaceae. 701 Genus l. Cellulomonas. 702 Genus ll. lncertae sedis Actinotalea. 710 Genus lll. lncertae sedis Demequina. 712 Genus lV. Oerskovia 713 Genus Y. Tropheryma. 717 Family V L De rmabacte raceae. 727 GenusLDermabacter... 727 Genus ll. Brachybacterium. 730 Famify Yll. Dermacoccaceae 738 Genus L Dermacoccus. 798 Genus ll. Demetria 742 Genus lll. Kytococcus. 744 Family Vlll. Dermatophilaceae 748 Genus L Dermatophilus . 749 Genus ll. Kineosphaera . 752 Family lX. I ntrasporangiaceae 754 Genus l. lntrasporangium. 759 Genus ll. Arsenicicoccus 761 Genus lll. Humihabitans. 764 Genus lV. Janibacter . 765 Genus V. Knoellia 769 Genus Yl. Kribbia 773 Genus Vll. Lapillicoccus . 774 Genus V lll. O rnithi n icoccus 775 Genus lX. Ornithinimicrobium 777 Genus X. Oryzihumus . 781 Genus Xl. Phycicoccus. 782 Genus Xll. Serinicoccus. 78ô Genus Xlll. Terrabacter . 788 Genus XlV. Terracoccus. 790 Genus XV. Tetrasphaera . 792 Family X. Jonesiaceae . 802 Genus l. Jonesia 802 Family Xl. Microbacteriaceae 807 Genus l. Microbacterium . 814 Genus ll. Agreia 852 Genus lll. Agrococcus . 855 Genus lV. Agromyces. 862 GenusV. Clavibacter . 877 Genus Yl. Cryobacterium 883 Genus Yll. Curtobacterium. 887 Genus Y lll. Frigoribacte ri um. 895 Genus lX. Frondihabitans. 898 xtv CONTENTS Genus X. Gulosibacter. 900 Genus Xl. Humibacter . 904 Genus Xll. Labedella 906 GenusXll].Leifsonia.... 907 Genus XlV. Leucobacter. 923 GenusXV.Microcella.... 933 Genus XVl. Microterricola 934 Genus XVll. Mycetocola. 936 Genus XVllL Okibacterium. 940 Genus XlX. Phycicola 942 Genus XX. Plantibacter . 943 Genus XXl. Pseudoclavibacter. 949 Genus XXll. Rathayibacter. 953 Genus XXlll. Rhodoglobus 964 Genus XXIY. Salinibacterium 969 GenusXXV.Subtercola.... 973 Genus XXVI. Yonghaparkia 975 FamilyXll.Promicromonosporaceae.... 995 Genus L Promicromonospora. 995 Genus ll. Cellulosimicrobium 1002 Genus lll.lsoptericola 1006 Genus lY. Myceligenerans . 1010 Genus V. Xylanibacterium. 1012 Genus Vl. Xylanimicrobium . 1015 Genus Yll. Xylanimonas. 1016 Family Xlll. Rarobacteraceae 1019 Genus l.Rarobacter..... 1O2O Family XlV. Ruaniaceae . 1022 Genus l. Ruania 1024 Genus.ll. Haloactinobacterium. 1025 Family XV. Sanguibacteraceae. 1027 Genus LSanguibacter... 1030 Part B Order Xl. Micromonosporales ord. nov.. 1035 Family L Micromonosporaceae. 1035 Genus 1. Micromonospora 1039 Genus ll. Actinocatenispora !057 Genus lll. Actinoplanes . , 1058 Genus lV. Asanoa. 1088 Genus V. Catellatospora. 1090 Genus Vl. Catenuloplanes . 1092 Genus Vll. Couchioplanes . 1094 Genus Ylll. Dactylosporangium 1096 Genus lX.Krasilnikovia.... 1106 GenusX.Longispora.... 1107 Genus Xl. Luedemannella 1110 Genus Xll. Pilimelia 1111 Genus Xlll. Polymorphospora 1117 Genus XlV. Salinispora. 1118 Genus XV. Spirilliplanes. 1123 Genus XVL Venucosispora . 1',?4 Genus XVll. Virgisporangium. 1127 Order Xll. Propionibacteriales ord. nov. 1137 Family l. Propionibacteriaceae 1138 Genus l. Propionibacterium 1138 CONTENTS xv Genus ll. Aestuariimicrobium 1155 Genus lll.Brooklawnia..,. 1156 Genus lV. Friedmanniella . 1159 Genus V. Granulicoccus . 1165 Genus Vl. Luteococcus. 1166 Genus Yll. Microlunatus . 1168 GenusVlll.Micropruina... 1173 Genus lX. Propionicicella. 1174 Genus X. Propionicimonas. 1175 Genus Xl. Propioniferax. , . 1177 Genus Xll. Propionimicrobium 1179 rlr Genus Xlll. Tessaracoccus, 1180 Family ll. Nocardioidaceae. 1189 rl Genusl.Nocardioides.... 1197 Genus ll. Actinopolymorpha. 1251 Genus lll. Aeromicrobium. 1258 Genus lY. Kribbella 1268 GenusY.Marmoricola... 1284 Order Xlll. Pseudonocardiales ord. nov. 1301 Family l. Pseudonocardiaceae 1302 Genus l. Pseudonocardia. 1305 Genus ll. Actinoalloteichus. 1323 Genus lll. Actinokineospora 1325 Genus lY. Actinosynnema . 1331 Genus Y. Amycolatopsls. 1334 Genus Yl. Crossiella 1359 Genus Vll. Goodfellowiella. 1363 Genus Ylll. Kibdelosporangium 1366 Genus lX. Kutzneria 1371 Genus X. Lechevalieria . 1375 Genus Xl. Lentzea '1379 GenusXll.Prauserella.... 1384 Genus Xlll. Saccharomonospora 1390 Genus XlY. Saccharopolyspora 1396 Genus XY. Saccharothrix . 1415 Genus XVl. Streptoalloteichus 1419 Genus XVll. Thermocrispum 1423 Genus XVlll. Umezawaea . 1427 OrderXlV. Streptomycetalesord. nov. .. 1446 Family L Streptomycetaceae 1446 Genusl.Streptomyces.... 1455 Genus lncertaesedlsL Kitasatospora.,.. 1768 Genus lncertae sedis ll. Streptacidiphilus . 1777 Order XV. Streptosporangiales ord. nov. 1805 Family L Streptosporangiaceae 1807 Genus l. Streptosporangium. 181 1 Genus ll. Acrocarpospora . 1825 Genus lll. Herbidospora, . 1827 Genus lY. Microbispora . 1831 Genus V. Microtetraspora. 1838 Genus Yl. Nonomuraea . 1844 Genus Vll. Planobispora. 1861 Genus Vlll. Planomonospora 1866 Genus lX. Planotetraspora. 1873 Genus X. Sphaerisporangium 1875 Genus Xl. Thermopolyspora 1880 xvl CONTENTS Family ll. Nocardiopsaceae 1889 Genus LNocardioPs,s.,.. 1891 Genus ll. Hatoactinos7ora 1907 Genus lll. StrePtomonosPora 1908 Genus lY.Thermobifida.. 1914 Family lll. Thermomonosporaceae. ' 1929 Genus l. ThermomonosPora 1931 Genus ll-Actinocorattia.... 1935 Genus lll. Actinomadura. 1940 Genus lY. SPirittosPora. 1959 Order XYl. tncertae sedis 1967 Genus LThermobisPora... 1967 1968 Class f l. Acidimicrobira class. nov . Order l. Acidimicrobiates. 1969 Family L Acidimicrobiaceae . 1970 Genus l. Acidimicrobium. 1970 Genus ll. Ferrimicrobium . 1972 Genus lll. Ferrithrix 1973 Familyll.lamiaceae.... 1974 Genus l. tamia 1975 Class lll. Coriobacteriiaclass. nov. 1975 Order L Coriobacteriales 1976 Family l. Coriobacteriaceae 1977 Genus l. Coriobacterium . 1977 Genus ll. AtoPobium 1978 Genus 11. Co1insetta 1984 Genus lY. CryPtobacterium 1987 Genus V. Denitrobacterium. 1988 GenusYl.Eggerthetta... 1990 Genus Vll. Otsenetta 1993 Genus ylll. Stackia 1995 Class lV. Nitriliruptoriaclass. nov. 2000 Order l. Nitriliruptorales. 2001 Family L Nitritiruptoraceae 2001 Genus LNitritiruPtor..... 2001 Order ll.Euzebyate.s.... 2OO2 Family l.Euzebyaceae... 2003 Genus l. Euzebya. :2003 Class V. Rubrobactera class. nov. 2OO4 Order l. Rubrobacterales. 2005 Family L Rubrobacteraceae 2006 Genus l. Rubrobacter. 2006 ClassVl. Thermoteopftfiiaclass. nov. 2010 Order l. Thermoteophitates 2010 Family L Thermoleophitaceae. 2011 Genus l.ThermoteoPhitum. 2011 Order ll. Sotirubrobacterales. 20'14 Family l. Sotirubrobacteraceae 2015 Genus|sotirubrobacter. 2015 Family ll. Conexibacteraceae 2018 Genus LConexibacter... 2019 Family lll. Patutibacteraceae. 2024 Genus LPatutibacter.... 2024 Author index. 2029 lndex of scientific names of Archaeaand Bacteria 2031.
Recommended publications
  • Aestuariimicrobium Ganziense Sp. Nov., a New Gram-Positive Bacterium Isolated from Soil in the Ganzi Tibetan Autonomous Prefecture, China
    Aestuariimicrobium ganziense sp. nov., a new Gram-positive bacterium isolated from soil in the Ganzi Tibetan Autonomous Prefecture, China Yu Geng Yunnan University Jiang-Yuan Zhao Yunnan University Hui-Ren Yuan Yunnan University Le-Le Li Yunnan University Meng-Liang Wen yunnan university Ming-Gang Li yunnan university Shu-Kun Tang ( [email protected] ) Yunnan Institute of Microbiology, Yunnan University https://orcid.org/0000-0001-9141-6244 Research Article Keywords: Aestuariimicrobium ganziense sp. nov., Chemotaxonomy, 16S rRNA sequence analysis Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-215613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Archives of Microbiology on March 12th, 2021. See the published version at https://doi.org/10.1007/s00203-021-02261-2. Page 1/11 Abstract A novel Gram-stain positive, oval shaped and non-agellated bacterium, designated YIM S02566T, was isolated from alpine soil in Shadui Towns, Ganzi County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, PR China. Growth occurred at 23–35°C (optimum, 30°C) in the presence of 0.5-4 % (w/v) NaCl (optimum, 1%) and at pH 7.0–8.0 (optimum, pH 7.0). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain YIM S02566T was most closely related to the genus Aestuariimicrobium, with Aestuariimicrobium kwangyangense R27T and Aestuariimicrobium soli D6T as its closest relative (sequence similarities were 96.3% and 95.4%, respectively). YIM S02566T contained LL-diaminopimelic acid in the cell wall.
    [Show full text]
  • Hongia Gen. Nov., a New Genus of the Order Actinomycetales
    International Journal of Systematic and Evolutionary Microbiology (2000), 50, 191–199 Printed in Great Britain Hongia gen. nov., a new genus of the order Actinomycetales Soon Dong Lee, Sa-Ouk Kang and Yung Chil Hah Author for correspondence: Yung Chil Hah. Tel: ­82 2 880 6700. Fax: ­82 2 888 4911. e-mail: hahyungc!snu.ac.kr Department of An aerobic, nocardioform actinomycete, named LM 161T, was isolated from a Microbiology, College of soil sample obtained from a gold mine in Kongiu, Republic of Korea. This Natural Sciences and Research Center for organism formed well-differentiated aerial and substrate mycelia and Molecular Microbiology, produced branched hyphae that fragmented into short or elongated rods. The Seoul National University, cell wall contains major amounts of LL-diaminopimelic acid, alanine, glycine, Seoul 151-742, Republic of Korea glutamic acid, mannose, glucose, galactose, ribose and acetyl muramic acid. The major phospholipids of this isolate are phosphatidylcholine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol, and the major isoprenologue is a tetrahydrogenated menaquinone with nine isoprene units. The whole-cell hydrolysate of strain LM 161T contains 12- methyltetradecanoic and 14-methylpentadecanoic acids as the predominant fatty acids, but does not contain mycolic acids. The GMC content of the DNA is 71<3 mol%. The phylogenetic position of the test strain was investigated using an almost complete 16S rDNA sequence. The isolate formed the deepest branch in the clade encompassing the members of the suborder Propionibacterineae Rainey et al. 1997. On the basis of chemical, phenotypic and genealogical data, it is proposed that this isolate be classified within a new genus as Hongia koreensis gen.
    [Show full text]
  • Polyamine Profiles Within Genera of the Class Actinobacteria with U-Diaminopimelic Acid in the Peptidoglycan
    International Journal of Systematic Bacteriology (1 999), 49, 179-1 84 Printed in Great Britain Polyamine profiles within genera of the class NOTE Actinobacteria with u-diaminopimelic acid in the peptidoglycan Hans-Jurgen Busse't and Peter Schumann2 Author for correspondence: Hans-Jurgen Busse. Tel: +43 1 25077 2128. Fax: +43 1 25077 2190. e-mail : Hans-Juergen. Busse @vu-wien.ac.at 1 Institute of Microbiology Polyamine patterns of coryne- and nocardioform representatives of the class and Genetics, University of Actinobacteria with u-diaminopimelic acid in the peptidoglycan, comprising Vienna, A-1030 Vienna, Austria strains of the genera A eromicrobium, Nocardioides, In trasporangium, Terrabacter, Terracoccus, Propioniferax, Friedmanniella, Microlunatus, * DSMZ-German Collection of Microorganisms and Luteococcus and Sporichthya, were analysed. The different polyamine patterns Cell Cultures GmbH, were in good agreement with the phylogenetic heterogeneity within this D-07745 Jena, Germany group of actinomycetes. Strains of the closely related genera Nocardioides and Aeromicrobium were characterized by the presence of cadaverine. The second cluster, consisting of the type strains of the species Friedmanniella antarctica, Propioniferax innocua, Microlunatus phosphovorus and Luteococcus japonicus, displayed as a common feature the presence of the two predominant compounds spermidine and spermine. The presence of putrescine was common to the type strains of the species Intrasporangium calvum, Terrabacter tumescens and Terracoccus luteus. Sporichthyapolymotpha,
    [Show full text]
  • International Code of Nomenclature of Prokaryotes
    2019, volume 69, issue 1A, pages S1–S111 International Code of Nomenclature of Prokaryotes Prokaryotic Code (2008 Revision) Charles T. Parker1, Brian J. Tindall2 and George M. Garrity3 (Editors) 1NamesforLife, LLC (East Lansing, Michigan, United States) 2Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany) 3Michigan State University (East Lansing, Michigan, United States) Corresponding Author: George M. Garrity ([email protected]) Table of Contents 1. Foreword to the First Edition S1–S1 2. Preface to the First Edition S2–S2 3. Preface to the 1975 Edition S3–S4 4. Preface to the 1990 Edition S5–S6 5. Preface to the Current Edition S7–S8 6. Memorial to Professor R. E. Buchanan S9–S12 7. Chapter 1. General Considerations S13–S14 8. Chapter 2. Principles S15–S16 9. Chapter 3. Rules of Nomenclature with Recommendations S17–S40 10. Chapter 4. Advisory Notes S41–S42 11. References S43–S44 12. Appendix 1. Codes of Nomenclature S45–S48 13. Appendix 2. Approved Lists of Bacterial Names S49–S49 14. Appendix 3. Published Sources for Names of Prokaryotic, Algal, Protozoal, Fungal, and Viral Taxa S50–S51 15. Appendix 4. Conserved and Rejected Names of Prokaryotic Taxa S52–S57 16. Appendix 5. Opinions Relating to the Nomenclature of Prokaryotes S58–S77 17. Appendix 6. Published Sources for Recommended Minimal Descriptions S78–S78 18. Appendix 7. Publication of a New Name S79–S80 19. Appendix 8. Preparation of a Request for an Opinion S81–S81 20. Appendix 9. Orthography S82–S89 21. Appendix 10. Infrasubspecific Subdivisions S90–S91 22. Appendix 11. The Provisional Status of Candidatus S92–S93 23.
    [Show full text]
  • Abstract Tracing Hydrocarbon
    ABSTRACT TRACING HYDROCARBON CONTAMINATION THROUGH HYPERALKALINE ENVIRONMENTS IN THE CALUMET REGION OF SOUTHEASTERN CHICAGO Kathryn Quesnell, MS Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Melissa Lenczewski, Director The Calumet region of Southeastern Chicago was once known for industrialization, which left pollution as its legacy. Disposal of slag and other industrial wastes occurred in nearby wetlands in attempt to create areas suitable for future development. The waste creates an unpredictable, heterogeneous geology and a unique hyperalkaline environment. Upgradient to the field site is a former coking facility, where coke, creosote, and coal weather openly on the ground. Hydrocarbons weather into characteristic polycyclic aromatic hydrocarbons (PAHs), which can be used to create a fingerprint and correlate them to their original parent compound. This investigation identified PAHs present in the nearby surface and groundwaters through use of gas chromatography/mass spectrometry (GC/MS), as well as investigated the relationship between the alkaline environment and the organic contamination. PAH ratio analysis suggests that the organic contamination is not mobile in the groundwater, and instead originated from the air. 16S rDNA profiling suggests that some microbial communities are influenced more by pH, and some are influenced more by the hydrocarbon pollution. BIOLOG Ecoplates revealed that most communities have the ability to metabolize ring structures similar to the shape of PAHs. Analysis with bioinformatics using PICRUSt demonstrates that each community has microbes thought to be capable of hydrocarbon utilization. The field site, as well as nearby areas, are targets for habitat remediation and recreational development. In order for these remediation efforts to be successful, it is vital to understand the geochemistry, weathering, microbiology, and distribution of known contaminants.
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Summary - Bacterial Systematics
    Bacterial Systematics (bact-sys) 1 Summary - Bacterial Systematics Bacterial Phylogeny - Genotypic Characteristics of Bacteria: Nucleic acids are universally distributed (RNA and chromosomal DNA) and they alone can be used as standards for wide-ranging comparisons. DNA-Analysis: DNA is far more stable than RNA (RNAase rapidly decomposes RNA). • Base Composition (G-C Ratio): Among prokaryotic DNA the ratio of the nucleotide bases adenine (A) plus thiamine (T) to guanine (G) and cytosine (C) varies within the range of 23-78 [mol%]; __[C+G]__ expressed in [mol%]; G+C ratios w/ differences >20-30% among species samples seem less ⋅ 100 [A+T+G+C] closely related; determination of C-G ratio is required in order to establish new taxa. Samples showing 10% - 20% differences should be assigned to the same genus, 5% is the maximum range permissible for same species. A >G+C ratio requires a > temperature to break the DNA-double helix into single strands; G+C is held by 3 H-bonds, whereas A+T has only 2 H-bonds (see genetics). • DNA-Fingerprinting: Via Restriction Fragment Length Polymerization (requires little DNA), the genetic probe is broken by endonucleases into certain fragments. The number and locations of these units / cuts are unique for each genome (includes pattern / groups of these fragments of different size). The cleaved DNA-fragments are amplified via Polymerase Chain Reaction, purified, separated by gel- electrophoresis (larger units by Pulse Field Gel Electrophoresis), and compared with already existing patterns. ERIC-PCR: selected primers are used to amplify specific DNA sequences. RAPD (Random Amplified Polymorphic DNA): Randomly selected primers are used to specify for its existence, and if present, to amplify that particular sequence to be analyzed in gel-electrophoresis.
    [Show full text]
  • These De Doctorat De
    2018 - 14 THESE DE DOCTORAT DE AGROCAMPUS OUEST COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 600 Ecole doctorale Ecologie, Géosciences, Agronomie et Alimentation Spécialité : Biochimie, biologie moléculaire et cellulaire Par Fillipe Luiz ROSA DO CARMO La protéine de couche de surface SlpB assure la médiation de l’immunomodulation et de l’adhésion chez le probiotique Propionibacterium freudenreichii CIRM-BIA 129 Thèse présentée et soutenue à AGROCAMPUS OUEST campus de Rennes, le 6 septembre 2018 Unité de recherche : UMR INRA AGROCAMPUS OUEST Science et Technologie du lait et de l’œuf (STLO) Thèse en Cotutelle : Université Fédérale du Minas Gerais Thèse N° : 2018-14 _ B-315 Rapporteurs avant soutenance : Aristóteles Góes Neto Professeur Université fédérale du Minas Gerais, Brésil. Muriel Thomas Directrice de recherche INRA UMR1319 Micalis, Jouy en Josas. Composition du Jury : Président : Françoise Nau Professeur AGROCAMPUS OUEST-Rennes Examinateurs : Nathalie Desmasures Professeur Université de Caen Normandie, Caen Benoit Foligné Université du Droit et de la Santé Lille 2, Lille Dir. de thèse : Gwénaël Jan Directeur de recherche UMR STLO INRA, Rennes Dir. de thèse : Vasco Azevedo Professeur Université fédérale du Minas Gerais, Brésil. Invité(s) Yves Le Loir Directeur de l’UMR STLO INRA, Rennes Gwennola Ermel Professeur Université de Rennes 1,Rennes UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOLOGIA GERAL PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA Tese de Doutorado Papel da proteína de superfície SlpB na imunomodulação e adesão da linhagem probiótica Propionibacterium freudenreichii CIRM-BIA 129. Orientado: Fillipe Luiz Rosa do Carmo Orientadores: Prof./Dr. Vasco Ariston de Carvalho Azevedo Dr.
    [Show full text]
  • Computer Assisted Classification and Identification of Actinomycetes
    Computer Assisted Classification and Identification of Actinomycetes Jongsik Chun (B.Sc. Microbiology, Seoul National University, Seoul, Korea) NEWCASTLE UNIVERSITY LIERARY 094 52496 3 Thesis submitted in accordance with the requirements of the University of Newcastle upon Tyne for the Degree of Doctor of Philosophy Department of Microbiology The Medical School Newcastle upon Tyne England-UK July 1995 ABSTRACT Three computer software packages were written in the C++ language for the analysis of numerical phenetic, 16S rRNA sequence and pyrolysis mass spectrometric data. The X program, which provides routines for editing binary data, for calculating test error, for estimating cluster overlap and for selecting diagnostic and selective tests, was evaluated using phenotypic data held on streptomycetes. The AL16S program has routines for editing 16S rRNA sequences, for determining secondary structure, for finding signature nucleotides and for comparative sequence analysis; it was used to analyse 16S rRNA sequences of mycolic acid-containing actinomycetes. The ANN program was used to generate backpropagation-artificial neural networks using pyrolysis mass spectra as input data. Almost complete 1 6S rDNA sequences of the type strains of all of the validly described species of the genera Nocardia and Tsukamurel!a were determined following isolation and cloning of the amplified genes. The resultant nucleotide sequences were aligned with those of representatives of the genera Corynebacterium, Gordona, Mycobacterium, Rhodococcus and Turicella and phylogenetic trees inferred by using the neighbor-joining, least squares, maximum likelihood and maximum parsimony methods. The mycolic acid-containing actinomycetes formed a monophyletic line within the evolutionary radiation encompassing actinomycetes. The "mycolic acid" lineage was divided into two clades which were equated with the families Coiynebacteriaceae and Mycobacteriaceae.
    [Show full text]
  • View Was Conducted in Terms of Cheese Quality and Safety Issues
    The Application of Culture-Independent Methods in Microbial Assessment of Quality and Safety Risk Factors in Swiss Cheese and Oysters Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Qianying Yao, B.S. Graduate Program in Food Science and Technology The Ohio State University 2016 Dissertation Committee: Dr. Hua Wang, advisor Dr. Lynn Knipe Dr. Melvin Pascall Dr. Zhongtang Yu Copyright by Qianying Yao 2016 Abstract Unwanted microorganisms greatly affect the quality and safety of the final food products. For instance, besides foodborne pathogens, quality defects in Swiss cheese ranging from unusual eyes, splits, off-flavors, to off-odors result in an estimated $24 million economic loss annually to the industry. Ohio has the largest Swiss cheese industry in the U.S., and to reveal microbial causative agents in Swiss cheese with quality defects has become a critical need to solve the problem for the industry. While conventional approaches were insufficient to identify the risk factors promptly and accurately, recent advancements in molecular techniques enabled in-depth investigation of potential causative agents and the development of rapid detection method for safety and quality control. To properly assess the split defect associated bacteria in Swiss cheese, a rapid detection platform for propionibacteria in dairy matrices was developed, and the microbial profiles of Swiss cheese with and without split defect were successfully evaluated. Results of these studies contributed to a comprehensive understanding of the microbial cause of split defect in Swiss cheese, enabled culture-independent methods in ii microbial assessment for dairy products, and illustrated the power of 16S metagenomics in improving fundamental understanding of the microbiology in Swiss cheese.
    [Show full text]
  • New Primers for the Class Actinobacteria: Application to Marine and Terrestrial Environments
    Blackwell Science, LtdOxford, UKEMIEnvironmental Microbiology1462-2920Blackwell Publishing Ltd, 2003510828841Original ArticlePCR primers for the class ActinobacteriaJ. E. M. Stach et al . Environmental Microbiology (2003) 5(10), 828–841 doi:10.1046/j.1462-2920.2003.00483.x New primers for the class Actinobacteria: application to marine and terrestrial environments James E. M. Stach,1* Luis A. Maldonado,2 cytosine and form a distinct phyletic line in the 16S rDNA Alan C. Ward,2 Michael Goodfellow2 and Alan T. Bull1 tree (Embley and Stackebrandt, 1994; Stackebrandt et al., 1Research School of Biosciences, University of Kent, 1997). Members of the taxon are of interest primarily Canterbury, Kent CT2 7NJ, UK. because of their importance in agriculture, ecology, indus- 2School of Biology, University of Newcastle, Newcastle try and medicine (McNeill and Brown, 1994; Strohl, 2003). upon Tyne NE1 7RU, UK. Actinobacteria are widely distributed in terrestrial (McVeigh et al., 1996; Heuer et al., 1997; Hayakawa et al., 2000), freshwater (Goodfellow et al., 1990; Wohl and Summary McArthur, 1998) and marine (Goodfellow and Haynes, In this study, we redesigned and evaluated primers for 1984; Takizawa et al., 1993; Colquhoun et al., 1998) hab- the class Actinobacteria. In silico testing showed that itats where they are involved in the turnover of organic the primers had a perfect match with 82% of genera matter (McCarthy, 1987; Schrempf, 2001) and xenobiotic in the class Actinobacteria, representing a 26–213% compounds (Kastner et al., 1994; Bunch, 1998; De Schr- improvement over previously reported primers. Only ijver and De Mot, 1999). Some actinobacteria are serious 4% of genera that displayed mismatches did so in the pathogens of animals, including humans, and plants terminal three bases of the 3¢¢¢ end, which is most (Locci, 1994; McNeill and Brown, 1994; Trujillo and critical for polymerase chain reaction success.
    [Show full text]
  • Raineyella Antarctica Gen. Nov., Sp. Nov., a Psychrotolerant, D-Amino-Acid-Utilizing Anaerobe Isolated from Two Geographic Locat
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5529–5536 DOI 10.1099/ijsem.0.001552 Raineyella antarctica gen. nov., sp. nov., a psychrotolerant, D-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere Elena Vladimirovna Pikuta,1 Rodolfo Javier Menes,2 Alisa Michelle Bruce,3† Zhe Lyu,4 Nisha B. Patel,5 Yuchen Liu,6 Richard Brice Hoover,1 Hans-Jürgen Busse,7 Paul Alexander Lawson5 and William Barney Whitman4 Correspondence 1Department of Mathematical, Computer and Natural Sciences, Athens State University, Athens, Elena Vladimirovna Pikuta AL 35611, USA [email protected] 2Catedra de Microbiología, Facultad de Química y Facultad de Ciencias, UDELAR, 11800 or Montevideo, Uruguay [email protected] 3Biology Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA 4Microbiology Department, University of Georgia in Athens, Athens, GA 30602, USA 5Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 7Institut für Mikrobiologie - Veterinarmedizinische€ Universitat€ Wien, A-1210 Wien, Austria A Gram-stain-positive bacterium, strain LZ-22T, was isolated from a rhizosphere of moss Leptobryum sp. collected at the shore of Lake Zub in Antarctica. Cells were motile, straight or pleomorphic rods with sizes of 0.6–1.0Â3.5–10 µm. The novel isolate was a facultatively anaerobic, catalase-positive, psychrotolerant mesophile. Growth was observed at 3–41 C (optimum 24–28 C), with 0–7 % (w/v) NaCl (optimum 0.25 %) and at pH 4.0–9.0 (optimum pH 7.8). The quinone system of strain LZ-22T possessed predominately menaquinone MK-9(H4).
    [Show full text]