Mushrooms of the Genus Agaricusas Functional Foods

Total Page:16

File Type:pdf, Size:1020Kb

Mushrooms of the Genus Agaricusas Functional Foods 08. MUSHROOMS:01. Interacción 30/05/12 9:35 Página 1017 Nutr Hosp. 2012;27(4):1017-1024 ISSN 0212-1611 • CODEN NUHOEQ S.V.R. 318 Revisión Mushrooms of the genus Agaricus as functional foods J. Vinhal Costa Orsine1, R. Vinhal da Costa2 and M.ª R. Carvalho Garbi Novaes3 1Professor. Mestre. Instituto Federal Goiano. Campus Urutaí. Urutaí. Goiás. Brazil. 2Medical Resident. Hospital de Base do Distrito Federal. HBDF. Secretaria de Estado de Saúde do Distrito Federal. SES/DF. Brasília. Distrito Federal.Brazil. 3Professor. Doutor. School of Medicine. Escola Superior de Ciências da Saúde. ESCS-FEPECS. Universidade de Brasília. UnB. Brasília. Brazil. Abstract HONGOS DEL GÉNERO AGARICUS COMO ALIMENTOS FUNCIONALES Mushrooms of the genus Agaricus are noted for their pharmacological and culinary properties. In this study, it Resumen was performed a critical literature review, focusing primarily on aspects of the chemical composition of these Hongos del género Agaricus son conocidos por sus pro- mushrooms whose pharmacological properties and nutri- piedades farmacológicas y culinarias. En este estudio, se tional composition characterize them as functional foods. realizó una revisión crítica de la literatura, centrándose It was also discussed articles conducted in vitro and in principalmente en los aspectos de la composición química vivo proving the high antioxidant potential of the Agari- de estos hongos, cuyas propiedades farmacológicas y caceae family, in addition to articles which emphasize the composición nutricional caracterizarlos como alimentos toxicity characteristics and safety for its use in therapy or funcionales. También se discutió artículos realizados in in human nutrition. These mushrooms exhibit numerous vitro e in vivo demostrando el potencial antioxidante de bioactive substances as well as safety regarding toxicity, alta de la familia Agaricaceae, además de los artículos que which characterize them as functional foods. Despite the hacen hincapié en las características de toxicidad y segu- countless beneficial effects on human health, mushrooms ridad para su uso en terapia o en la nutrición humana. of the genus Agaricus are little known by the population, Estos hongos presentan numerosas sustancias bioactivas, making it necessary partnership and combined efforts así como la seguridad en relación con la toxicidad, lo que among producers, industries and researchers in order to les caracterizan como alimentos funcionales. A pesar de disseminate, research and consumption of these foods. los innumerables efectos beneficiosos sobre la salud (Nutr Hosp. 2012;27:1017-1024) humana, las setas del género Agaricus son poco conocidos por la población, por lo que es colaboración necesaria y el DOI:10.3305/nh.2012.27.4.5841 trabajo conjunto entre productores, industrias e investi- Key words: Agaricaceae. Health. Medicinal foods. gadores con el fin de difundir, la investigación y el con- sumo de estos alimentos. (Nutr Hosp. 2012;27:1017-1024) DOI:10.3305/nh.2012.27.4.5841 Palabras clave: Agaricaceae. Salud. Alimentos funcionales. Abbreviations DNA: Deoxyribonucleic acid. DPPH: 2, 2-diphenyl-1-picrylhydrazyl. A. blazei: Agaricus blazei. ENU: N-ethyl-N-nitrosourea. A. brasiliensis: Agaricus brasiliensis. HR: Heart rate. A. sylvaticus: Agaricus sylvaticus. LDL-C: Low-density lipoprotein cholesterol. AdipoQ: Adiponectin. MAP: Mean arterial pressure. Anvisa: National Health Surveillance Agency. MIP-2: Macrophage inflammatory protein 2. CFU-GM: Granulocytes-macrophage. Pristane: 2,6,10,14-tetrametilpentadecano. CRP: C-reactive protein. SCGE: Single cell gel electrophoresis. DMH: 1,2-dimethylhydrazine. TNF-α: Tumor necrosis factor alphal. Correspondence: Joice Vinhal Costa Orsine. Rodovia Geraldo Silva Nascimento, km. 2,5. Introduction CEP 75790-000 Urutai. Goiás. Brazil. E-mail: [email protected] Edible mushrooms belong to the Funghi group, Recibido: 6-III-2012. 1.ª Revisión: 13-III-2012. which can grow in the wild or be cultivated, and after Aceptado: 27-III-2012. properly prepared, will be suitable for use as food.1 1017 08. MUSHROOMS:01. Interacción 30/05/12 9:35 Página 1018 In accordance with Resolution RDC no 272/05 of Materials and methods the Anvisa (National Health Surveillance Agency), edible mushrooms are classified as products obtained A review of articles published in Data Bases from species of edible fungi, traditionally used as food, Medline, Lilacs, PubMed, from 1990 to 2012 was and can be prepared in different ways such as dried, done, crossing data between the descriptors in Health whole, fragmented, ground or preserved, subject to Sciences: mushrooms, functional foods, Agaricaceae, drying, smoked, cooked, salted, fermented or any other in Portuguese, English and Spanish. technical process deemed safe for food production.1 The term functional food attributed to edible mush- rooms is due to its rich nutritional value and therapeutic Results and discussion properties described by several researchers, but regula- tion is permitted only after proof of its healthy physio- It was found 60 papers and given the reduced logical effects. To be classified as functional foods they number of articles, all of them have been selected in should be included in daily eating habits, providing this review. The mushrooms showed numerous bioac- consumers with specific physiological benefits, thanks tive substances and safety for toxicity, which characte- to its components capable of causing physiological rize them as functional foods. Some species of the sound effects.2 genus Agaricus have shown chemical and nutritional To be considered functional food, conditions of use composition suitable for human consumption, as well and nutritional value, chemical composition or mole- as a flavor much appreciated for culinary purposes. cular characterization or the product formulation must In 2007 the Brazilian production of mushrooms of be registered. Biochemical, nutritional and/or physiolo- the genus Agaricus reached around 40 tons of dehy- gical, and/or toxicological tests in experimental animals drated mushrooms, 95% of which destined for export should also be submitted, further to epidemiological to the Japanese market. In order to increase their studies, clinical trials, and comprehensive evidence of profits, many businessmen and farmers started looking scientific literature; accredited by international health for these mushrooms as a new alternative source of organizations and international laws recognized under income. For this reason, several companies and coope- properties and characteristics of the product; proven to ratives have produced and marketed the inoculum be of traditional use by the population having no associa- (seed or spawn) of A. blazei or the colonized compost tion with adverse health effects.3,4,5 itself. But little is known about the origin and genetic The study of functional foods is very important, variability of these products.9 since they have beneficial results for the increase in life The identification and classification of species of expectancy of the population. Often times there are Agaricus mushrooms have been based on morpholo- cases of chronic diseases such as obesity, atheroscle- gical and physiological characteristics or by genetic rosis, hypertension, osteoporosis, diabetes and cancer. methods, molecular and biochemical. The genetic These ailments have been of great concern both for the variability of the genus Agaricus, native or cultivated population as well as public agencies related to health, throughout the world is enormous. Generally these and are part of their agenda to discuss solutions for differences are in color, shape and size of microscopic better eating habits.6 structures and fruiting bodies (spores, plates, and According to Araújo,7 health-conscious consumers cystides).10 are increasingly looking for foods that help control To talk about A. sylvaticus is the same as to talk their own health and well-being. This growing search about A. blazei. When there are small differences in for a balanced diet in maintaining health has contri- morphology, it does not justify creating a new species. buted to encourage research into new biologically Therefore, mushrooms A. sylvaticus and A. brasiliensis active natural components and has changed our unders- are synonyms of A. blazei.10 tanding of the importance of diet in good health. In a study conducted by Tominazawa et al.,9 the Mushrooms are very rich in proteins, vitamins and authors investigated nine isolates of A. blazei obtained minerals, and have been used worldwide as nutraceu- from different regions in Brazil (São Paulo, Espírito ticals in the prevention and treatment of various Santo, Minas Gerais, Rio Grande do Sul), through the disea ses.8 use of molecular markers to assess genetic similarity The objective of this study was to perform a critical among them. The authors concluded that six of the nine review of the literature, highlighting aspects of the isolates showed high genetic similarity and are consi- chemical composition of these mushrooms responsible dered the same origin or clones. for the pharmacological properties and nutritional A. sylvaticus mushroom is a Brazilian fungus found composition which characterize them as functional natively in the countryside in Brazil. Its popular name foods. It was also discussed articles conducted in vitro is “Sun Mushroom”. This mushroom is ranked as and in vivo attesting the antioxidant potential of the Eukaryotic superkingdom, Fungi kingdom, Metazoa Agaricaceae family, besides articles that emphasize
Recommended publications
  • COMMON Edible Mushrooms
    Plate 1. A. Coprinus micaceus (Mica, or Inky, Cap). B. Coprinus comatus (Shaggymane). C. Agaricus campestris (Field Mushroom). D. Calvatia calvatia (Carved Puffball). All edible. COMMON Edible Mushrooms by Clyde M. Christensen Professor of Plant Pathology University of Minnesota THE UNIVERSITY OF MINNESOTA PRESS Minneapolis © Copyright 1943 by the UNIVERSITY OF MINNESOTA © Copyright renewed 1970 by Clyde M. Christensen All rights reserved. No part of this book may be reproduced in any form without the writ- ten permission of the publisher. Permission is hereby granted to reviewers to quote brief passages, in a review to be printed in a maga- zine or newspaper. Printed at Lund Press, Minneapolis SIXTH PRINTING 1972 ISBN: 0-8166-0509-2 Table of Contents ABOUT MUSHROOMS 3 How and Where They Grow, 6. Mushrooms Edible and Poi- sonous, 9. How to Identify Them, 12. Gathering Them, 14. THE FOOLPROOF FOUR 18 Morels, or Sponge Mushrooms, 18. Puff balls, 19. Sulphur Shelf Mushrooms, or Sulphur Polypores, 21. Shaggyrnanes, 22. Mushrooms with Gills WHITE SPORE PRINT 27 GENUS Amanita: Amanita phalloides (Death Cap), 28. A. verna, 31. A. muscaria (Fly Agaric), 31. A. russuloides, 33. GENUS Amanitopsis: Amanitopsis vaginata, 35. GENUS Armillaria: Armillaria mellea (Honey, or Shoestring, Fun- gus), 35. GENUS Cantharellus: Cantharellus aurantiacus, 39. C. cibarius, 39. GENUS Clitocybe: Clitocybe illudens (Jack-o'-Lantern), 41. C. laccata, 43. GENUS Collybia: Collybia confluens, 44. C. platyphylla (Broad- gilled Collybia), 44. C. radicata (Rooted Collybia), 46. C. velu- tipes (Velvet-stemmed Collybia), 46. GENUS Lactarius: Lactarius cilicioides, 49. L. deliciosus, 49. L. sub- dulcis, 51. GENUS Hypomyces: Hypomyces lactifluorum, 52.
    [Show full text]
  • Coco Lumber Sawdust
    MushroomPart II. Oyster Growers Mushrooms’ Handbook 1 Chapter 5. Substrate 91 Oyster Mushroom Cultivation Part II. Oyster Mushrooms Chapter 5 Substrate COCO LUMBER SAWDUST J. Christopher D. Custodio Bataan State College, the Philippines Oyster Mushrooms (Pleurotus spp.) are saprophytic as they obtain there nutrients by decomposing various agricultural by-products. This mushroom has been cultivated worldwide because of its taste and low maintenance technology. There are different substrates that have already been identified that can be utilized for the cultivation of oyster mushroom. The possible substrates include rice straw, coffee pulps, sawdust, and even paper. Most of these are types of low-value lignocellulosic wastes that are primarily derived from agricultural practices or the agro-industry. (J.A. Buswell et. al., 1996) The bioconversion of these wastes is one reason why the cultivation of edible mushrooms is an appropriate practice for a society that depends on its agriculture. In the early 1990s, ‘coco lumber’ was given a great attention in the province as a substitute for hardwood. Sawmills producing lumber from coconut trees bloomed in reaction to the increasing demand for this low cost constructional material. Though beginners in mushroom cultivation are usually persuaded not to use sawdust from softwoods, sawdust from coco lumber (Fig. 1) is another possible substrate for P. ostreatus and has shown great results. Growers living near a coco lumber sawmill can make use of this waste product in order to start their own cultivation of oyster mushroom species. Figure 1. Coco lumber sawdust Coco Lumber Sawdust as a Substrate of Oyster Mushroom Oyster mushroom is one example of edible mushrooms that can utilize lignocellulosic materials as a substrate.
    [Show full text]
  • Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella Esculenta
    molecules Article Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta Syed Lal Badshah 1,* , Anila Riaz 1, Akhtar Muhammad 1, Gülsen Tel Çayan 2, Fatih Çayan 2, Mehmet Emin Duru 2, Nasir Ahmad 1, Abdul-Hamid Emwas 3 and Mariusz Jaremko 4,* 1 Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; [email protected] (A.R.); [email protected] (A.M.); [email protected] (N.A.) 2 Department of Chemistry and Chemical Processing Technologies, Mu˘glaVocational School, Mu˘glaSıtkı Koçman University, 48000 Mu˘gla,Turkey; [email protected] (G.T.Ç.); [email protected] (F.Ç.); [email protected] (M.E.D.) 3 Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 4 Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia * Correspondence: [email protected] (S.L.B.); [email protected] (M.J.) Abstract: Mushroom polysaccharides are active medicinal compounds that possess immune-modulatory and anticancer properties. Currently, the mushroom polysaccharides krestin, lentinan, and polysac- Citation: Badshah, S.L.; Riaz, A.; charopeptides are used as anticancer drugs. They are an unexplored source of natural products with Muhammad, A.; Tel Çayan, G.; huge potential in both the medicinal and nutraceutical industries. The northern parts of Pakistan have Çayan, F.; Emin Duru, M.; Ahmad, N.; a rich biodiversity of mushrooms that grow during different seasons of the year. Here we selected an Emwas, A.-H.; Jaremko, M. Isolation, edible Morchella esculenta (true morels) of the Ascomycota group for polysaccharide isolation and Characterization, and Medicinal characterization.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Supplementation at Casing to Improve Yield and Quality of White Button Mushroom
    Vol.4, No.1, 27-33 (2013) Agricultural Sciences http://dx.doi.org/10.4236/as.2013.41005 Supplementation at casing to improve yield and quality of white button mushroom Yaqvob Mami1*, Gholamali Peyvast1, Mahmood Ghasemnezhad1, Farhood Ziaie2 1Department of Horticulture Science, Faculty of Agriculture, University of Guilan, Rasht, Iran; *Corresponding Author: [email protected] 2Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, Karaj, Iran Received 6 October 2012; revised 13 November 2012; accepted 10 December 2012 ABSTRACT initiation of fruiting body formation [3]. The casing layer, applied 14 - 16 days after spawning Supplementation of substrate at casing to in- is an essential part of the total substrate in the artificial crease the yield and quality of mushroom [Aga- culture of A. bisporus. Although many different materials ricus bisporus (Lange) Sing] is an important may function as a casing layer, peat is generally regarded practice in commercial production of white but- as the most suitable. Because of its unique water holding ton mushroom. This project was done to study and structural properties, it is widely accepted as an ideal the effects of supplementing the compost at for casing. Peat has a neutral pH and because of its or- casing with ground corn and soybean seed ap- ganic content and granular structure, stays porous even plied at: 0 g as control, 17, 34 and 51 g per 17 kg after a succession of watering, holds moisture, allows ap- compost on production and harvest quality of A. propriate gaseous exchanges and supports microbial po- bisporus. There were significant differences pulation able to release hormone-like substances which between supplemented and non-supplemented are likely involved in stimulating the initiation of fruit substrates.
    [Show full text]
  • Camellia Oleifera Seed Shell: an Effective Substrate for Producing Flammulina Velutipes Fruit Bodies with Improved Nutritional Value
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 18–0690/2019/21–5–989–996 DOI: 10.17957/IJAB/15.0984 http://www.fspublishers.org Full Length Article Camellia oleifera Seed Shell: An Effective Substrate for Producing Flammulina velutipes Fruit Bodies with Improved Nutritional Value Wei-Rui Zhang1,2*, Sheng-Rong Liu1,2, Gui-Ping Su3 and Li-Yan Ma4 1College of Life Science, Ningde Normal University, Ningde, China 2Fujian Higher Education Research Center for Local Biological Resources in Ningde City, Ningde, China 3Edible Fungus Management Stations of Ningde City, Ningde, China 4Ningde Yizhiyuan Agriculture Development Co., Ltd., Ningde, China *For correspondence: [email protected] Abstract The rapid expansion of mushroom cultivation has resulted in a shortage of cottonseed hulls and other materials. Camellia oleifera seed shell (CSS) is one of the major by-products of tea oil processing and is available in large quantities in China and many other Asian countries, but it has yet not been utilized in mushroom cultivation. This study investigated the feasibility of using CSS for Flammulina velutipes cultivation. Fermented CSS (FCSS) was superior to non-fermented (NFCSS) for the cultivation. FCSS at 20 supplementation level as a substitute for cottonseed hull had positive effects on F. velutipes production, generating a yield of 445.84 g/bag (in 410 g dry matter of substrate), which was higher than the control (437.24 g/bag). Moreover, the commercial ratio and marketable quality of fruit bodies produced was almost unchanged. Conversely, using FCSS or NFCSS at 8%–28% supplementation range as a replacement of wheat bran considerably decreased yield by 29.2–213.88 g/bag and the commercial ratio by 2.29–11.62%.
    [Show full text]
  • General Wellness the Only Home-Delivered Meal Program to Offer Choice of Every Meal
    111518-011419/7945 Menu General Wellness The only home-delivered meal program to offer choice of every meal... we think you deserve it! NOURISHING INDEPENDENCE SINCE 1999 TO PLACE AN ORDER or if you have comments or concerns, please call: 1.844.657.8721 1.844.657.8721 www.MomsMeals.com M-F 7 AM to 6 PM CST *007945/3333* www.MomsMeals.com Carbs (g): Approximate grams of carbohydrates are shown for the entree (tray only) and the full meal Heart Friendly: <800mg Sodium <30% Fat <10% Sat. Fat D Diabetic-Friendly meals contain <75g of carbohydrates ITEM American Classics CARBS (g) Salisbury Steak with Mushroom Gravy, White Rice and Mixed Vegetables 95026 53 73 D and Gelatin Turkey Breast with Orange Wild Rice Salad and Spiced Fruit Medley, 95058 59 98 Gelatin and Raspberry Applesauce Salisbury Steak with Mushroom Gravy, Potatoes and Seasoned Green Beans, 95078 36 88 Peach Cup, Whole Wheat Dinner Roll and Gelatin 95114 BBQ Chicken with Roasted Potato Medley and Seasoned Peas, and Apple Juice 55 70 D Homestyle Meatloaf with Herbed Pasta and Mixed Vegetables, Whole Wheat Dinner 95144 45 73 D Roll and Apple Juice 95147 Beef Stew and Buttermilk Biscuit, Gelatin and Apple Juice 33 68 D Holiday Meal Turkey Breast with Apple Cranberry Sauce, Potato Medley and Seasoned Corn and Pumpkin Loaf 95154 Sliced turkey breast accompanied by savory apple and cranberry sauce (flavors 72 92 include brown sugar, fruit juice, cider vinegar, ginger and sage) and served with roasted red-skin and sweet potato medley. Tray also includes side of seasoned sweet corn.
    [Show full text]
  • A Case for the Commercial Harvest of Wild Edible Fungi in Northwestern Ontario
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2020 A case for the commercial harvest of wild edible fungi in Northwestern Ontario Campbell, Osa http://knowledgecommons.lakeheadu.ca/handle/2453/4676 Downloaded from Lakehead University, KnowledgeCommons A CASE FOR THE COMMERCIAL HARVEST OF WILD EDIBLE FUNGI IN NORTHWESTERN ONTARIO by Osa Campbell FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO May 2020 i A CASE FOR THE COMMERCIAL HARVEST OF WILD EDIBLE FUNGI IN NORTHWESTERN ONTARIO by Osa Campbell An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University 2020 ------------------------------------------ ----------------------------------- Dr. Leonard Hutchison Dr. Lada Malek Major Advisor Second Reader ii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Signature: _____________________________ Date: _____________________________ iii A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific forestry. The reader should be aware that opinions and conclusions expressed in this document ae those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or of Lakehead University.
    [Show full text]
  • Home of Bar Harbor's Best Wild Maine Blueberry Pancakes and Muffins
    Home of Bar Harbor's Best Wild Maine Blueberry Pancakes and Muffins Family Owned and Operated 80 Cottage Street, Bar Harbor ME 04609 Open 5am-2pm daily (207) 288-3586 • www.JordansBarHarbor.com Substitute Egg Beaters or Egg Whites for BREAKFAST 3-egg Wild Maine Blueberry Pancakes all day! Mmmm! This hearty Maine breakfast is a true blue classic Enjoy the sweet and tangy taste of our Omelettes delicious Wild Maine Blueberry Pancakes Served with a fresh baked muffin or toast white wheat or rye w/Wild Blueberry Syrup Plain Each Additional Omelette Item w/Real Maine Maple Syrup Maine Delight Omelette Western Omelette ham green pepper and onion with Swiss Cheese American Cheese and Maine Potatoes folded inside Vegetable & Cheese Ham & Cheese Spinach & Cheese Bacon & Cheese Pancakes & Waffles Spanish Asparagus & Cheese Pancakes Belgian Waffle Cheese Potato & Cheese Strawberry Pancakes w/strawberries Mushroom Broccoli & Cheese Strawberry sauce over our w/vanilla ice cream add Tomato & Cheese Steak & Cheese with homemade pancakes 3-Cheese onions & peppers Chocolate Chip Chili & Cheese Lobster, Cheese Pancakes Healthy & Hearty & 1 Vegetable French Toast Nonfat vanilla yogurt fresh Western fruit and granola Served Feta, Spinach & Tomato with coffee and muffin Pancake Club Special Healthy pancakes with eggs any style Eggs Options w/toast bacon or sausage and homefries All eggs served with a fresh Egg White Sandwich on an English muffin choice of cheese Canadian bacon baked muffin or choice of w/toasted English muffin
    [Show full text]
  • Antimicrobial Activity of Biochemical Substances Against Pathogens of Cultivated Mushrooms in Serbia
    Pestic. Phytomed. (Belgrade), 31(1-2), 2016, 19–27 UDC 547.913:632.937.1:632.952:635.8 DOI: 10.2298/PIF1602019P Review paper Antimicrobial activity of biochemical substances against pathogens of cultivated mushrooms in Serbia Ivana Potočnik*, Biljana Todorović, Rada Đurović-Pejčev, Miloš Stepanović, Emil Rekanović and Svetlana Milijašević-Marčić Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade, Serbia, Tel./Fax: +381-11-3076 133 *Corresponding author: [email protected] Received: 10 May, 2016 Accepted: 23 May, 2016 SUMMARY Disease control with few or no chemicals is a major challenge for mushroom growers in the 21st century. An alarming incidence of resistance to antibiotics in bacteria, and to fungicides among mycopathogenic fungi requires effective alternatives. Previous studies have indicated that various plant oils and their components demonstrate strong antimicrobial effects against pathogens on cultivated mushrooms. The strongest and broadest activity to pathogens obtained from mushroom facilities in Serbia was shown by the oils of oregano, thyme and basil. Five oils inhibited the growth of pathogenic bacteria Pseudomonas tolaasii: wintergreen, oregano, lemongrass, rosemary and eucalyptus. The essential oils of oregano, geranium and thyme were considerably toxic to the pathogenic fungi Mycogone perniciosa, Lecanicillium fungicola and Cladobotryum spp. The strongest activity against Trichoderma aggressivum f. europaeum was shown by the oils of basil and mint. Oils of juniper and pine showed neither inhibitory nor lethal effects on mushroom pathogens. Although the fungitoxic activity of oils is not strong, they could be used as a supplement to commercial productus for disease control, which will minimize the quantity of fungicides used.
    [Show full text]
  • Most Common Mushroom Types and Food
    MOST COMMON MUSHROOM TYPES AND FOOD 1. White button mushroom Agaricus bisporus is an edible mushroom which has two color states while immature – white and brown – both of which have various names. When mature, it is known as portobello mushroom. White button mushroom is the immature and white variety. It’s the most common and mildest-tasting from all the mushroom types. 90 percent of the mushrooms we eat are of this variety. Its flavor is mild, and that makes it more versatile. It can be eaten either raw or cooked and works well in soups, stews, salads, and on pizzas. 2. Crimini mushroom Also known as: when immature and brown, Agaricus bisporus may be known as Cremino mushroom, Swiss brown mushroom, Roman brown mushroom, Italian brown mushroom, classic brown mushroom, or chestnut mushroom. Criminis are young portobello mushrooms, also sold as baby portobellos, and they’re just more mature white button mushrooms. Crimini and white button mushrooms are interchangeable. They are similar in shape, but may be slightly bigger in size and darker in color: crimini have a light shade of brown. 3. Portobello mushroom Also known as: field mushroom, or open cap mushroom. Mushrooms of this variety are as wide as the palm of your hand. Portobello mushrooms are dense in texture and have a rich taste. In Italy, they’re used in sauces and pasta and make a great meat substitute. Also, if you want a bread bun- substitute, you can even use the mushroom’s flat cap. They’re perfect for grilling and stuffing. 4. Shiitake mushroom Also known as: Shitake, black forest, black winter, brown oak, Chinese black, black mushroom, oriental black, forest mushroom, golden oak, Donko.
    [Show full text]
  • Antioxidant and Antimicrobial Activities of Armillaria Mellea and Macrolepiota Procera Extracts
    MANTAR DERGİSİ/The Journal of Fungus Ekim(2020)11(2)121-128 Geliş(Recevied) :27.01.2020 Araştırma Makalesi/Research Article Kabul(Accepted) :01.06.2020 Doi: 10.30708.mantar.680496 Antioxidant and Antimicrobial Activities of Armillaria mellea and Macrolepiota procera Extracts Erdi Can AYTAR*1, Ilgaz AKATA2,Leyla AÇIK3 *Corresponding author: [email protected] 1 Ondokuz Mayıs Unıversity, Faculty of Sciences and Arts, Department of Biology, Samsun, Turkey 1Orcid ID:0000-0001-6045-0183/[email protected] 2Ankara Unıversity, Faculty of Sciences, Department of Biology, Ankara, Turkey 2Orcid ID:0000-0002-1731-1302/[email protected] 3Gazi University, Faculty of Sciences, Departman of Biology, Ankara, Turkey 3Orcid ID:0000-0002-3672-8429/ [email protected] Abstract: Mushrooms have been used extensively, owing to their nutritional and medicinal value, for thousands of years. This study designed for the determine of antioxidant and antimicrobial potential of two edible mushrooms Armillaria mellea (Vahl) P.Kumm. and Macrolepiota procera (Scop.) Singer. Antioxidant activity was detected method by DPHH free radical scavenging. M.procera extract had more potent free radical scavenging activity than A.mellea extract (IC50: 0.191, 1.19 mg/mL). The concent of the components with antioxidant properties, such as total phenols,β-caratone and lycopene were determined by spectrophotometric methods. Finally, the antimicrobial potential was determined with a agar well diffusion method on 14 microorganisms. A. mellea methanol extract formed against to Klebsiella pneumaniae ATCC 13883, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923,10±1 mm inhibition zone diameter. M.procera methanol extract formed against to Enterococcus faecalis ATCC 29212, Klebsiella pneumaniae ATCC 13883, 9±1 mm inhibition zone diameter.
    [Show full text]