7 Tunable Infrared Laser Spectroscopy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr. -
A Tunable Mode-Locked Ytterbium-Doped Fiber Laser Based on Nonlinear Kerr Beam Clean-Up Effect
A tunable mode-locked ytterbium-doped fiber laser based on nonlinear Kerr beam clean-up effect Shanchao Ma,1 Baofu Zhang,2,* Qiurun He,1 Jing Guo,3 and Zhongxing Jiao1,* 1School of Physics, Sun Yat-sen University, Guangzhou 510275, China 2School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China 3School of Opto-Electronics, Beijing Institute of Technology, Beijing 100081, China *Corresponding author: [email protected], [email protected] Abstract:We demonstrate a novel approach to achieve tunable ultrashort pulses from an all-fiber mode-locked laser with a saturable absorber based on nonlinear Kerr beam clean-up effect. This saturable absorber was formed by a single-mode fiber spliced to a commercial graded-index multimode fiber, and its tunable band-pass filter effect has been studied by an original numerical model. By adjusting the bending condition of graded-index multimode fiber, the laser could produce dissipative soliton pulses with their central wavelength tunable from1033 nm to 1063 nm. The pulse width of output laser could be compressed externally to 791 fs, and the signal to noise ratio of its radio frequency spectrum was measured to be 75.5 dB. This work provides a new idea for the design of tunable mode-locked laser which can be used as an attractive light source in optical communication system. 1. Introduction Wavelength tunable lasers are widely used in optical communication [1], detection [2], and remote sensing [3]. Compared to tunable continuous-wave lasers, tunable mode-locked lasers can generate ultra-short pulses with high peak power and wide bandwidth that enable many important advances, such as high-sensitivity optical absorption measurement [4], multi photon microscopy [5], and super-continuum light source used in dense wavelength division multiplexing [6]. -
Tunable Laser Absorption Spectroscopy for Human Spaceflight
49th International Conference on Environmental Systems ICES-2019-358 7-11 July 2019, Boston, Massachusetts Tunable Laser Absorption Spectroscopy for Human Spaceflight Christopher M Matty1 and Lance E Christensen2 National Aeronautics and Space Administration, Houston Texas 77058 and Pasadena California 91109 Human Spaceflight consistently has need for measurement of the major constituent gasses in a habitable cabin environment. Traditionally, this measurement has been performed using a mixture of mass spectrometry, electrochemical, and other traditional sensing methods. Tunable laser spectroscopy has been used in industry and research applications since the 1970s but has not been used in primary operational human spaceflight systems aside from a handful of experimental applications. Meanwhile, recent advances in the quality, size, and cost of semiconductor lasers has had a significant impact on the range of feasible applications for tunable laser spectroscopy. In 2018, work started on the Orion Laser Air Monitor (LAM), which is designed to be the primary major constituency monitoring system for the Orion Spacecraft. This paper covers the history leading up to the selection, design, and build of the Orion Laser Air Monitor as a primary major constituent analyzer for human spaceflight. Nomenclature TLDAS = Tunable Laser Diode Absorption Spectroscopy QC = Quantum Cascade IC = Interband Cascade TEC = Thermo Electric Cooler TRL = Technology Readiness Level SWAP = System Size Weight and Power IR = Infrared MCA = International Space Station Major Constituent Analyzer CAMS = Submarine Central Atmosphere Monitoring System AGA = Anomaly Gas Analyzer MGM = Multi Gas Monitor CPM = Combustion Product Monitor LAM = Laser Air Monitor SAFFIRE = Spacecraft Fire Experiement GaSb = Gallium Antimodide I. Introduction UNABLE Laser Diode Absorption Spectroscopy (TLDAS) is currently enjoying a period at the developmental Tforefront. -
Ultrafast Fiber Lasers Enabled by Highly Nonlinear Pulse Evolutions
ULTRAFAST FIBER LASERS ENABLED BY HIGHLY NONLINEAR PULSE EVOLUTIONS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Walter Pupin Fu August 2019 c 2019 Walter Pupin Fu ALL RIGHTS RESERVED ULTRAFAST FIBER LASERS ENABLED BY HIGHLY NONLINEAR PULSE EVOLUTIONS Walter Pupin Fu, Ph.D. Cornell University 2019 Ultrafast lasers have had tremendous impact on both science and applications, far beyond what their inventors could have imagined. Commercially-available solid-state lasers can readily generate coherent pulses lasting only a few tens of femtoseconds. The availability of such short pulses, and the huge peak in- tensities they enable, has allowed scientists and engineers to probe and manip- ulate materials to an unprecedented degree. Nevertheless, the scope of these advances has been curtailed by the complexity, size, and unreliability of such devices. For all the progress that laser science has made, most ultrafast lasers remain bulky, solid-state systems prone to misalignments during heavy use. The advent of fiber lasers with capabilities approaching that of traditional, solid-state lasers offers one means of solving these problems. Fiber systems can be fully integrated to be alignment-free, while their waveguide structure en- sures nearly perfect beam quality. However, these advantages come at a cost: the tight confinement and long interaction lengths make both linear and non- linear effects significant in shaping pulses. Much research over the past few decades has been devoted to harnessing and managing these effects in the pur- suit of fiber lasers with higher powers, stronger intensities, and shorter pulse durations. -
Detection of Chemical Clouds Using Widely Tunable Quantum Cascade Lasers
Detection of chemical clouds using widely tunable quantum cascade lasers Anish K. Goyal*, Petros Kotidis, Erik R. Deutsch, Ninghui Zhu, Mark Norman, Jim Ye, Kostas Zafiriou, and Alex Mazurenko Block Engineering/MEMS, 377 Simarano Drive, Marlborough, MA 01752 ABSTRACT Widely tunable quantum cascade lasers (QCLs) spanning the long-wave infrared (LWIR) atmospheric transmission window and an HgCdTe detector were incorporated into a transceiver having a 50-mm-diameter transmit/receive aperture. The transceiver was used in combination with a 50-mm-diameter hollow retro-reflector for the open-path detection of chemical clouds. Two rapidly tunable external-cavity QCLs spanned the wavelength range of 7.5 to 12.8 m. Open-path transmission measurements were made over round-trip path-lengths of up to 562 meters. Freon-132a and other gases were sprayed into the beam path and the concentration-length (CL) product was measured as a function of time. The system exhibited a noise-equivalent concentration (NEC) of 3 ppb for Freon-132a given a round-trip path of 310 meters. Algorithms based on correlation methods were used to both identify the gases and determine their CL- products as a function of time. Keywords: atmospheric sensing, open-path spectroscopy, gas detection, vibrational spectroscopy, infrared spectroscopy, quantum cascade lasers, chemical detection 1. INTRODUCTION Open-path atmospheric spectroscopy is used to measure the gas concentration along an optical path. There are many such systems and they operate within one or more of the atmospheric transmission bands that exist between the ultraviolet (UV) and mid-infrared (MIR) portions of the optical spectrum [1-4]. -
Population Inversion X-Ray Laser Oscillator
Population inversion X-ray laser oscillator Aliaksei Halavanaua, Andrei Benediktovitchb, Alberto A. Lutmanc , Daniel DePonted, Daniele Coccoe , Nina Rohringerb,f, Uwe Bergmanng , and Claudio Pellegrinia,1 aAccelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; bCenter for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany; cLinac & FEL division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; dLinac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; eLawrence Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Physics, Universitat¨ Hamburg, Hamburg 20355, Germany; and gStanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 Contributed by Claudio Pellegrini, May 13, 2020 (sent for review March 23, 2020; reviewed by Roger Falcone and Szymon Suckewer) Oscillators are at the heart of optical lasers, providing stable, X-ray free-electron lasers (XFELs), first proposed in 1992 transform-limited pulses. Until now, laser oscillators have been (8, 9) and developed from the late 1990s to today (10), are a rev- available only in the infrared to visible and near-ultraviolet (UV) olutionary tool to explore matter at the atomic length and time spectral region. In this paper, we present a study of an oscilla- scale, with high peak power, transverse coherence, femtosecond tor operating in the 5- to 12-keV photon-energy range. We show pulse duration, and nanometer to angstrom wavelength range, that, using the Kα1 line of transition metal compounds as the but with limited longitudinal coherence and a photon energy gain medium, an X-ray free-electron laser as a periodic pump, and spread of the order of 0.1% (11). -
A Laser (From the Acronym Light Amplification by Stimulated Emission of Radiation) Is an Optical Source That Emits Photons in a Coherent Beam
LASER A laser (from the acronym Light Amplification by Stimulated Emission of Radiation) is an optical source that emits photons in a coherent beam. The verb to lase means "to produce coherent light" or possibly "to cut or otherwise treat with coherent light", and is a back- formation of the term laser. Laser light is typically near-monochromatic, i.e. consisting of a single wavelength or color, and emitted in a narrow beam. This is in contrast to common light sources, such as the incandescent light bulb, which emit incoherent photons in almost all directions, usually over a wide spectrum of wavelengths. Laser action is explained by the theories of quantum mechanics and thermodynamics. Many materials have been found to have the required characteristics to form the laser gain medium needed to power a laser, and these have led to the invention of many types of lasers with different characteristics suitable for different applications. The laser was proposed as a variation of the maser principle in the late 1950's, and the first laser was demonstrated in 1960. Since that time, laser manufacturing has become a multi- billion dollar industry, and the laser has found applications in fields including science, industry, medicine, and consumer electronics. Contents [hide] 1 Physics 2 History 2.1 Recent innovations 3 Uses 3.1 Popular misconceptions 3.2 "LASER" 3.3 Scientific misconceptions 4 Laser safety 5 Categories 5.1 By type 5.2 By output power 6 See also 7 Further reading 7.1 Books 7.2 Periodicals 8 References 9 External links [edit] Physics See also: Laser science Principal components: 1. -
The Science and Applications of Ultrafast, Ultraintense Lasers
THE SCIENCE AND APPLICATIONS OF ULTRAFAST, ULTRAINTENSE LASERS: Opportunities in science and technology using the brightest light known to man A report on the SAUUL workshop held, June 17-19, 2002 THE SCIENCE AND APPLICATIONS OF ULTRAFAST, ULTRAINTENSE LASERS (SAUUL) A report on the SAUUL workshop, held in Washington DC, June 17-19, 2002 Workshop steering committee: Philip Bucksbaum (University of Michigan) Todd Ditmire (University of Texas) Louis DiMauro (Brookhaven National Laboratory) Joseph Eberly (University of Rochester) Richard Freeman (University of California, Davis) Michael Key (Lawrence Livermore National Laboratory) Wim Leemans (Lawrence Berkeley National Laboratory) David Meyerhofer (LLE, University of Rochester) Gerard Mourou (CUOS, University of Michigan) Martin Richardson (CREOL, University of Central Florida) 2 Table of Contents Table of Contents . 3 Executive Summary . 5 1. Introduction . 7 1.1 Overview . 7 1.2 Summary . 8 1.3 Scientific Impact Areas . 9 1.4 The Technology of UULs and its impact. .13 1.5 Grand Challenges. .15 2. Scientific Opportunities Presented by Research with Ultrafast, Ultraintense Lasers . .17 2.1 Basic High-Field Science . .18 2.2 Ultrafast X-ray Generation and Applications . .23 2.3 High Energy Density Science and Lab Astrophysics . .29 2.4 Fusion Energy and Fast Ignition. .34 2.5 Advanced Particle Acceleration and Ultrafast Nuclear Science . .40 3. Advanced UUL Technology . .47 3.1 Overview . .47 3.2 Important Research Areas in UUL Development. .48 3.3 New Architectures for Short Pulse Laser Amplification . .51 4. Present State of UUL Research Worldwide . .53 5. Conclusions and Findings . .61 Appendix A: A Plan for Organizing the UUL Community in the United States . -
Improved Laser Based Photoluminescence on Single-Walled Carbon Nanotubes
Improved laser based photoluminescence on single-walled carbon nanotubes S. Kollarics,1 J. Palot´as,1 A. Bojtor,1 B. G. M´arkus,1 P. Rohringer,2 T. Pichler,2 and F. Simon1 1Department of Physics, Budapest University of Technology and Economics and MTA-BME Lend¨uletSpintronics Research Group (PROSPIN), P.O. Box 91, H-1521 Budapest, Hungary 2Faculty of Physics, University of Vienna, Strudlhofgasse 4., Vienna A-1090, Austria Photoluminescence (PL) has become a common tool to characterize various properties of single- walled carbon nanotube (SWCNT) chirality distribution and the level of tube individualization in SWCNT samples. Most PL studies employ conventional lamp light sources whose spectral dis- tribution is filtered with a monochromator but this results in a still impure spectrum with a low spectral intensity. Tunable dye lasers offer a tunable light source which cover the desired excitation wavelength range with a high spectral intensity, but their operation is often cumbersome. Here, we present the design and properties of an improved dye-laser system which is based on a Q-switch pump laser. The high peak power of the pump provides an essentially threshold-free lasing of the dye laser which substantially improves the operability. It allows operation with laser dyes such as Rhodamin 110 and Pyridin 1, which are otherwise on the border of operation of our laser. Our sys- tem allows to cover the 540-730 nm wavelength range with 4 dyes. In addition, the dye laser output pulses closely follow the properties of the pump this it directly provides a time resolved and tunable laser source. -
Electrically Tunable Mode-Locked Lasers Based on Time-To-Wavelength Mapping for Optical Communications
Laser Original Electrically Tunable Mode-Locked Lasers Based on Time-to-Wavelength Mapping for Optical Communications Kohichi R. TAMURA NTT Corporation, NTT Network Innovation Laboratories, 1-1 Hikari-no-oka, Yokosuka, Kanagawa 239-0847 (Received August 20, 2001) The tunable mode-locked laser based on time-to-wavelength mapping is a relatively unexplored alternative to tunable sources that can be applied to transmission and wavelength switching in optical networks. These lasers have the advantages of a simple tuning mechanism, good wavelength reproducibility, and simple cavity design. The state of research is discussed. Key Words: Tunable laser, Mode-locked laser, Fiber Bragg grating, Arrayed waveguide grating 1. Introduction ment to make a cavity with a length that depends on wavelength. The oscillation wavelength is selected by changing a single elec- Compact and tunable lasers are considered to be key compo- trical control signal - the RF frequency. The dependence of the nents for realizing advanced functionality in optical communi- oscillation wavelength on RF frequency is determined by the cation networks.1) A variety of designs exist, and, currently, sev- delay element and should be stable over time if a stable wave- eral of them are in the early stages of commercialization. The length-selective element is used. Inherent drawbacks to ETMLs first application of tunable lasers will be as temporary sources are the changing repetition rate with wavelength and the broad for DWDM terminals, which eliminates the need for stocking optical spectrum that results from mode-locking. Even so, as spare parts at each wavelength. While the tuning speed is not we describe below, these lasers may find applications in optical critical in this case, more advanced applications call for speeds switching within nodes or for short distance transmission in ranging from millisecond-to-nanosecond time scales. -
Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser Volume 7, Number 3, June 2015
Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser Volume 7, Number 3, June 2015 S. Srinivasan M. Davenport T. Komljenovic J. Hulme D. T. Spencer J. E. Bowers, Fellow, IEEE DOI: 10.1109/JPHOT.2015.2428255 1943-0655 Ó 2015 IEEE IEEE Photonics Journal Heterogeneous III–V Silicon Tunable Laser Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, Fellow, IEEE Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 USA DOI: 10.1109/JPHOT.2015.2428255 1943-0655 Ó 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. Manuscript received February 6, 2015; revised April 21, 2015; accepted April 23, 2015. Date of current version May 26, 2015. This work was supported by the DARPA EPHI Program. The work of T. Komljenovic was supported by NEWFELPRO under Grant 25. Corresponding author: S. Srinivasan (e-mail: [email protected]). Abstract: We show theoretical and experimental results from a tunable laser, with its center wavelength in the C-band, designed using coupled-ring resonator mirrors. The effective cavity length enhancement and negativeopticalfeedbackobtainedfromtheres- onators helps to narrow the laser linewidth in a small form factor. We report a linewidth of 160 kHz and a side-mode suppression ratio of 9 40 dB over the full tuning range. Index Terms: Tunable lasers, coupled resonators, semiconductor lasers, silicon photonics. -
Chirped-Pulse Amplification Ultrahigh Peak Power Production from Compact Short-Pulse Laser Systems
TUTORIAL Chirped-Pulse Amplification Ultrahigh peak power production from compact short-pulse laser systems Introduction of chirped-pulse ampli- It turns out that the hint to a solution THE AUTHOR fication (CPA) enabled the latest revolu- of this problem can be found as early as tion in production of high peak powers the time of the demonstration of the first from lasers through amplification of very laser, but the idea has been initially pro- IGOR JOVANOVIC posed to overcome a different issue – the short (femtosecond) laser pulses to pulse Igor Jovanovic is an power limitations of radars [1]. In 1985 it energies previously available only from Associate Professor of was realized by the group at the University long-pulse lasers. CPA has rapidly bridged Nuclear Engineering at of Rochester led by Gérard Mourou that the gap from its initial modest demon- Penn State University. this technique, termed chirped-pulse am- strations to multi-terawatt and petawatt- He received his undergraduate degree plification (CPA) [2], can also be applied in scale systems in research facilities and from the University of Zagreb in 1997 the optical domain, with revolutionary con- universities, as well as numerous lower- and his Ph.D. from the University of sequences for laser science and technology California, Berkeley in 2001. He is one of power scientific and industrial applica- and its applications. The idea of CPA is in- the pioneers of the technique of optical tions. deed simple and beautiful: given the limita- parametric chirped-pulse amplification. tions encountered by ultrashort laser pulses After receiving his Ph.D.