The Role of Sodium Channels in Disease

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Sodium Channels in Disease MEETING REPORT Highlights of the Society for Medicines Research Symposium held on September 27, 2001, in London. The Role of Sodium Channels in Disease Summary by Alan M. Palmer Native sodium channels exist as polypeptide multimers of an α-subunit (260 kDa) and Nick Carter and subsidiary and smaller β-subunits, which are divided into at least three sub- typesβ1, β2 and β3. The α-subunits are structurally diverse, arising from multiple sodium channel genes and alternative splicing events. Recent progress has led he Society for Medicines to a good understanding of the molecular structure of sodium channels, how they Research symposium The Role work and the significance of their expression in particular cell types. This, coupled T with experimental studies linking particular isoforms with particular disease states of Sodium Channels in Disease was held at the National Heart and and the discovery of distinct human sodium channelopathies (specific mutations Lung Institute of Imperial College of in specific isoforms that cause a variety of diseases, including paralysis, long QT Science, Technology and Medicine on syndrome and epilepsy), is beginning to reveal how particular sodium channel sub- September 27, 2001. The meeting types underlie specific pathologies. All this provides great potential for the devel- focused on the role of sodium channels opment of new therapies. The first generation of sodium channel blockers has led in disease and was organized by Alan to a broad-spectrum anticonvulsant that is now widely used (lamotrigine) and an impressive neuroprotective agent that is in clinical trials for stroke (sipatrigine). The M. Palmer (Vernalis, Wokingham, development of the next generation of sodium channel blockers will be greatly U.K.) and Nick Carter (St. Georges facilitated by elaboration of the pharmacology of the various isoforms, which itself Hospital Medical School, London, is dependent upon the existence of reliable, rapid and high-throughput assays for U.K.), who chaired the proceedings sodium channel activity. © 2001 Prous Science. All rights reserved. together with David Cavalla (Arach- nova, Cambridge, U.K.). The speakers equally represented academia and industry and were from both the tial changes and give rise to character- The pharmacology of sodium United Kingdom and the United istic action potentials. Overactivation channels is currently very rudimenta- States. of sodium channels can lead to neu- ry, since they are distinguished on the ronal dysfunction. Thus, the depolar- basis of sensitivity to a toxin derived Sodium channel activity is intrin- ization of plasma membranes that from puffer fish, tetrodotoxin. It is sic to neurotransmission and, there- occurs in acute brain injury (such as now known that native sodium chan- fore, sodium channels have a central stroke and traumatic brain injury) or nels exist as polypeptide multimers, role in normal neuronal function. overstimulation of certain neurons comprising a large (260 kDa) α-sub- Sodium channels are highly selective (such as that occurring in chronic pain unit and smaller (3336 kDa) modula- molecular pores, the opening and clos- states) leads to excessive sodium tory β-subunits (there are at least three ing of which shape membrane poten- channel activity. different subtypes: β1, β2 and β3). The 568 © 2001 Prous Science CCC: 02140934/2001 Drug News Perspect 14(9), November 2001 TABLE I: MAMMALIAN SODIUM CHANNEL α-SUBUNITS FORMER CHROMOSOMAL SPLICE TYPE NAME GENBANK NO.a GENE SYMBOL LOCATION VARIANTS PRIMARY TISSUES Nav1.1 Rat I X03638 (r) SCN1A Mouse 2 Nav1.1a CNS HBSCI X65362 (h) Human 2q24 PNS GPBI AF003372 (gp) SCN1A Nav1.2 Rat II X03639 (r) SCN2A Mouse 2 Nav1.2a CNS HBSCII X61149 (r) Human 2q23-24 HBA X65361 (h) M94055 (h) Nav1.3 Rat III Y00766 (r) SCN3A Mouse 2 Nav1.3a CNS Human 2q24 Nav1.3b Nav1.4 SkM1, µ-1 M26643 (r) SCN4A Mouse 11 Skeletal muscle M81758 (h) Human 17q23-25 Nav1.5 SkM2 M27902 (r) SCN5A Mouse 9 Uninnervated skeletal muscle, heart H1 M77235 (h) Human 3p21 Nav1.6 NaCh6 L39018 (r) SCN8A Mouse 15 Nav1.6a CNS, PNS PN4 AF049239 (r) Human 12q13 Scn8a AF049240 (r) CerIII U26707 (m) AF049617 (m) AF050736 (h) AF225988 (h) AF003373 (gp) Nav1.7 NaS U35238 (rb) SCN9A Mouse 2 PNS hNE-Na X82835 (h) Human 2q24 Schwann cells PN1 U79568 (r) AF000368 (r) Nav1.8 SNS X92184 (r) SCN10A Mouse 9 DRG PN3 U53833 (r) Human 3p22-24 NaNG Y09108 (m) U60590 (d) Nav1.9 NaN AF059030 (r) SCN11A Mouse 9 Nav1.9a PNS SNS2 AJ237852 (r) Human 3p21-24 PN5 AF118044 (m) NaT AB031389 (m) SCN12A AF126739 (h) AF188679 (h) AF109737 (h) AF150882 (h) Nax Nav2.1 M91556 (h) SCN7A Mouse 2 Heart, uterus, skeletal muscle, astrocytes, DRG Na-G M96578 (r) SCN6Ab Human 2q21-23 SCL11 Y09164 (r) Nav2.3 L36179 (m) aThe letter in parentheses after each accession number indicates the species of origin for the sequence, as follows: h, human; r, rat; rb, rabbit; m, mouse; gp, guinea pig; d, dog. bThis gene was originally assigned symbols SCN6A and SCN7A, which were mapped in human and mouse, respectively. The two most likely represent the same gene, and the SCN6A symbol will probably be deleted. Abbreviations: DRG, dorsal root ganglion; PNS, peripheral nervous system; CNS, central nervous system. Modified from Goldin et al.15 α-subunits are structurally diverse, number of disorders and the elucida- The discovery of compounds that arising from multiple sodium channel tion of distinct sodium channel- block overactivated sodium channels, genes and alternative splicing events opathies, is beginning to reveal how while permitting normal currents of (Table I). Recent progress has led to a particular sodium channel subtypes sodium ions, has provided a basis to good understanding of the molecular are linked to different disease states. develop such sodium channel blockers structure of sodium channels and how All this provides great potential for for the treatment of central nervous they work and the significance of their the development of new therapies system (CNS) disorders, such as expression in particular cell types. and underlines the attractiveness of stroke, traumatic brain injury and pain; This, coupled with the therapeutic util- this underexploited class of com- sodium channel blockers may also ity of sodium channel blockers for a pounds. have utility for other disorders. The Drug News Perspect 14(9), November 2001 569 First generation forward in understanding what might of sodium channel blockers be one of the more general mecha- NH2 The two prototypic sodium chan- nisms was achieved more than two Cl N nel blockers are the phenyltriazine decades ago with the realization that Cl N lamotrigine and the phenylpyrimidine glutamate is not only the main excita- N NH 2 sipatrigine. Both were synthesized tory neurotransmitter in the brain, but Lamotrigine and developed by Wellcome scientists also a powerful neurotoxin to many at Beckenham, U.K. Lamotrigine was different CNS neurons. This work led synthesized as part of a program to dis- to the formulation of the excitotoxic Cl cover new antifolates and was shown hypothesis, wherein excessive gluta- mate receptor activation contributed to NH to have anticonvulsant efficacy. Sipa- 2 trigine arose from a program to devel- (or caused) neuronal cell death. Cl N op analogues of lamotrigine and was Demonstrations that antagonists act- Cl subsequently shown to have neuropro- ing on glutamate receptors of both the N N tective efficacy. At the time, it was NMDA and AMPA subclass were pro- N tective in animal models of stroke and CH3 considered that the efficacy of both Sipatrigine compounds was mediated by inhibi- trauma added weighty evidence in tion of the release of the excitatory support of this hypothesis. The multi- Fig. 1. Prototypic first-generation sodium amino acids aspartate and glutamate. ple failures of this approach in clinical channel blockers. However, John Garthwaite (who trials in stroke victims, however, joined Wellcome as Head of Neuro- necessitate a rethink. It can be argued, science in 1992 and is now at Wolfson with some justification, that the ability of sodium channel-blocking Institute for Biomedical Research, hypothesis was never subjected to drugs to attenuate abnormal activity of University College London, London, proper experimental testing in humans sodium channels without affecting U.K.) reasoned that the mechanism of (e.g., inadequate dosing or too long a normal synaptic transmission proba- action was not defined precisely, since delay prior to drug administration2). bly underlies the good tolerability of both compounds blocked vertadrine- But another factor is that, to a greater sodium channel-blocking drugs. The evoked release but not potassium- or lesser extent, neurodegenerative prototypic example of the first gener- evoked release of excitatory amino disorders affect both neurons in the ation of sodium channel blockers is the acids. The fact that veratrine evokes gray matter and their axons running in broad-spectrum anticonvulsant lamot- release by opening sodium channels the white matter. Moreover, the human rigine (Lamictal; Fig. 1), which is suggested that it was sodium channel brain has disproportionately more now used widely to treat epilepsy. blockade that was underlying the effi- white matter than a rodent brain. Lamotrigine may also have utility in cacy of both lamotrigine and sipatrig- Hence, a better approach has to be one the treatment of other disorders (e.g., ine. This was then demonstrated that is capable of protecting both gray bipolar disorder). Another prototypic directly by electrophysiological stud- and white matter. sodium channel blocker, with a differ- ies of cells expressing recombinant ent efficacy profile, is sipatrigine 1 Nav1.2 sodium channels. Voltage-gated sodium channels are (BW-619C89; Fig. 1), which is expressed at the surface of all neuronal derived chemically from lamotrigine. Prof. Garthwaite went on to elements (dendrites, somata and Sipatrigine is a neuroprotective agent describe how sodium channel blockers axons).
Recommended publications
  • PPE Requirements Hazardous Drug Handling
    This document’s purpose is only to provide general guidance. It is not a definitive interpretation for how to comply with DOSH requirements. Consult the actual NIOSH hazardous drugs list and program regulations in entirety to understand all specific compliance requirements. Minimum PPE Required Minimum PPE Required Universal (Green) - handling and disposed of using normal precautions. PPE Requirements High (Red) - double gloves, gown, eye and face protection in Low (Yellow) - handle at all times with gloves and appropriate engineering Hazardous Drug Handling addition to any necessary controls. engineering controls. Moderate (Orange) -handle at all times with gloves, gown, eye and face protection (with splash potential) and appropirate engineering controls. Tablet Open Capsule Handling only - Contained Crush/Split No alteration Crush/Split Dispensed/Common Drug Name Other Drug Name Additional Information (Formulation) and (NIOSH CATEGORY #) Minimum PPE Minimum PPE Minimum PPE Minimum PPE Required required required required abacavir (susp) (2) ziagen/epzicom/trizivir Low abacavir (tablet) (2) ziagen/epzicom/trizivir Universal Low Moderate acitretin (capsule) (3) soriatane Universal Moderate anastrazole (tablet) (1) arimidex Low Moderate High android (capsule) (3) methyltestosterone Universal Moderate apomorphine (inj sq) (2) apomorphine Moderate arthotec/cytotec (tablet) (3) diclofenac/misoprostol Universal Low Moderate astagraf XL (capsule) (2) tacrolimus Universal do not open avordart (capsule) (3) dutasteride Universal Moderate azathioprine
    [Show full text]
  • Management of Status Epilepticus
    Published online: 2019-11-21 THIEME Review Article 267 Management of Status Epilepticus Ritesh Lamsal1 Navindra R. Bista1 1Department of Anaesthesiology, Tribhuvan University Teaching Address for correspondence Ritesh Lamsal, MD, DM, Department Hospital, Institute of Medicine, Tribhuvan University, Nepal of Anaesthesiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Tribhuvan University,Kathmandu, Nepal (e-mail: [email protected]). J Neuroanaesthesiol Crit Care 2019;6:267–274 Abstract Status epilepticus (SE) is a life-threatening neurologic condition that requires imme- diate assessment and intervention. Over the past few decades, the duration of seizure Keywords required to define status epilepticus has shortened, reflecting the need to start thera- ► convulsive status py without the slightest delay. The focus of this review is on the management of con- epilepticus vulsive and nonconvulsive status epilepticus in critically ill patients. Initial treatment ► neurocritical care of both forms of status epilepticus includes immediate assessment and stabilization, ► nonconvulsive status and administration of rapidly acting benzodiazepine therapy followed by nonbenzodi- epilepticus azepine antiepileptic drug. Refractory and super-refractory status epilepticus (RSE and ► refractory status SRSE) pose a lot of therapeutic problems, necessitating the administration of contin- epilepticus uous infusion of high doses of anesthetic agents, and carry a high risk of debilitating ► status epilepticus morbidity as well as mortality. ► super-refractory sta- tus epilepticus Introduction occur after 30 minutes of seizure activity. However, this working definition did not indicate the need to immediately Status epilepticus (SE) is a medical and neurologic emergency commence treatment and that permanent neuronal injury that requires immediate evaluation and treatment. It is associat- could occur by the time a clinical diagnosis of SE was made.
    [Show full text]
  • CEREBYX® (Fosphenytoin Sodium Injection)
    NDA 020450 Cerebyx (fosphenytoin sodium) Injection FDA Approved Labeling Text dated 10/2011 Page 1 of 22 CEREBYX® (Fosphenytoin Sodium Injection) WARNING: CARDIOVASCULAR RISK ASSOCIATED WITH RAPID INFUSION RATES The rate of intravenous CEREBYX administration should not exceed 150 mg phenytoin sodium equivalents (PE) per minute because of the risk of severe hypotension and cardiac arrhythmias. Careful cardiac monitoring is needed during and after administering intravenous CEREBYX. Although the risk of cardiovascular toxicity increases with infusion rates above the recommended infusion rate, these events have also been reported at or below the recommended infusion rate. Reduction in rate of administration or discontinuation of dosing may be needed (see WARNINGS and DOSAGE AND ADMINISTRATION). DESCRIPTION CEREBYX® (fosphenytoin sodium injection) is a prodrug intended for parenteral administration; its active metabolite is phenytoin. 1.5 mg of fosphenytoin sodium is equivalent to 1 mg phenytoin sodium, and is referred to as 1 mg phenytoin sodium equivalents (PE). The amount and concentration of fosphenytoin is always expressed in terms of mg PE. CEREBYX is marketed in 2 mL vials containing a total of 100 mg PE and 10 mL vials containing a total of 500 mg PE. The concentration of each vial is 50 mg PE/mL. CEREBYX is supplied in vials as a ready-mixed solution in Water for Injection, USP, and Tromethamine, USP (TRIS), buffer adjusted to pH 8.6 to 9.0 with either Hydrochloric Acid, NF, or Sodium Hydroxide, NF. CEREBYX is a clear, colorless to pale yellow, sterile solution. The chemical name of fosphenytoin is 5,5-diphenyl-3-[(phosphonooxy)methyl]-2,4­ imidazolidinedione disodium salt.
    [Show full text]
  • Calcium Channel Blocker As a Drug Candidate for the Treatment of Generalised Epilepsies
    UNIVERSITAT DE BARCELONA Faculty of Pharmacy and Food Sciences Calcium channel blocker as a drug candidate for the treatment of generalised epilepsies Final degree project Author: Janire Sanz Sevilla Bachelor's degree in Pharmacy Primary field: Organic Chemistry, Pharmacology and Therapeutics Secondary field: Physiology, Pathophysiology and Molecular Biology March 2019 This work is licensed under a Creative Commons license ABBREVIATIONS AED antiepileptic drug AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ANNA-1 antineuronal nuclear antibody 1 BBB blood-brain barrier Bn benzyl BnBr benzyl bromide BnNCO benzyl isocyanate Boc tert-butoxycarbonyl Bu4NBr tetrabutylammonium bromide Ca+2 calcium ion CACNA1 calcium channel voltage-dependent gene cAMP cyclic adenosine monophosphate CCB calcium channel blocker cGMP cyclic guanosine monophosphate CH3CN acetonitrile Cl- chlorine ion Cmax maximum concentration CMV cytomegalovirus CTScan computed axial tomography DCM dichloromethane DIPEA N,N-diisopropylethylamine DMF dimethylformamide DMPK drug metabolism and pharmacokinetics DNET dysembryoplastic neuroepithelial tumours EEG electroencephalogram EPSP excitatory post-synaptic potential FDA food and drug administration Fe iron FLIPR fluorescence imaging plate reader fMRI functional magnetic resonance imaging GABA γ-amino-α-hydroxybutyric acid GAD65 glutamic acid decarboxylase 65 GAERS generalised absence epilepsy rat of Strasbourg GluR5 kainate receptor GTC generalised tonic-clonic H+ hydrogen ion H2 hydrogen H2O dihydrogen dioxide (water)
    [Show full text]
  • Mechanisms of Action of Antiepileptic Drugs
    Review Mechanisms of action of antiepileptic drugs Epilepsy affects up to 1% of the general population and causes substantial disability. The management of seizures in patients with epilepsy relies heavily on antiepileptic drugs (AEDs). Phenobarbital, phenytoin, carbamazepine and valproic acid have been the primary medications used to treat epilepsy for several decades. Since 1993 several AEDs have been approved by the US FDA for use in epilepsy. The choice of the AED is based primarily on the seizure type, spectrum of clinical activity, side effect profile and patient characteristics such as age, comorbidities and concurrent medical treatments. Those AEDs with broad- spectrum activity are often found to exert an action at more than one molecular target. This article will review the proposed mechanisms of action of marketed AEDs in the US and discuss the future of AEDs in development. 1 KEYWORDS: AEDs anticonvulsant drugs antiepileptic drugs epilepsy Aaron M Cook mechanism of action seizures & Meriem K Bensalem-Owen† The therapeutic armamentarium for the treat- patients with refractory seizures. The aim of this 1UK HealthCare, 800 Rose St. H-109, ment of seizures has broadened significantly article is to discuss the past, present and future of Lexington, KY 40536-0293, USA †Author for correspondence: over the past decade [1]. Many of the newer AED pharmacology and mechanisms of action. College of Medicine, Department of anti epileptic drugs (AEDs) have clinical advan- Neurology, University of Kentucky, 800 Rose Street, Room L-455, tages over older, so-called ‘first-generation’ First-generation AEDs Lexington, KY 40536, USA AEDs in that they are more predictable in their Broadly, the mechanisms of action of AEDs can Tel.: +1 859 323 0229 Fax: +1 859 323 5943 dose–response profile and typically are associ- be categorized by their effects on the neuronal [email protected] ated with less drug–drug interactions.
    [Show full text]
  • Eslicarbazepine Acetate for the Adjunctive Treatment of Partial-Onset Seizures with Or Without Secondary Generalisation in Patients Over 18 Years of Age
    Effective Shared Care Agreement (ESCA) Eslicarbazepine acetate For the adjunctive treatment of partial-onset seizures with or without secondary generalisation in patients over 18 years of age. AREAS OF RESPONSIBILITY FOR THE SHARING OF CARE This shared care agreement outlines suggested ways in which the responsibilities for managing the prescribing of eslicarbazepine acetate for epileptic seizures can be shared between the specialist and general practitioner (GP). You are invited to participate however, if you do not feel confident to undertake this role, then you are not obliged to do so. In such an event, the total clinical responsibility for the patient for the diagnosed condition remains with the specialist. Sharing of care assumes communication between the specialist, GP and patient. The intention to share care will be explained to the patient by the specialist initiating treatment. It is important that patients are consulted about treatment and are in agreement with it. Patients with epilepsy are usually under regular specialist follow-up, which provides an opportunity to discuss drug therapy. The doctor who prescribes the medication legally assumes clinical responsibility for the drug and the consequences of its use. RESPONSIBILITIES and ROLES Specialist responsibilities 1. Confirm the diagnosis of epilepsy. 2. Confirm the patient has used oxcarbazepine (at maximum tolerated dose) or has documentation of intolerance. 3. Obtain approval via Trust’s DTC (or equivalent decision making body) before eslicarbazepine acetate is initiated. Please complete details on page 3. 4. Perform baseline assessment and periodic review of renal and hepatic function (as indicated for each patient). 5. Discuss the potential benefits, treatment side effects, and possible drug interactions with the patient.
    [Show full text]
  • Opening the Shaker K+ Channel with Hanatoxin
    A r t i c l e Opening the Shaker K+ channel with hanatoxin Mirela Milescu,1 Hwa C. Lee,1 Chan Hyung Bae,2 Jae Il Kim,2 and Kenton J. Swartz1 1Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 2Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms com- monly target the S1–S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1–S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance–voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin–channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance–voltage relation- ship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition.
    [Show full text]
  • Optical Measurement of Endogenous Ion Channel Voltage Sensor Activation in Tissue
    bioRxiv preprint doi: https://doi.org/10.1101/541805; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Optical measurement of endogenous ion channel voltage sensor activation in tissue Authors Parashar Thapa1‡, Robert Stewart1‡, Rebecka J. Sepela1, Oscar Vivas2, Laxmi K. Parajuli2, Mark Lillya1, Sebastian Fletcher-Taylor1, Bruce E. Cohen3, Karen Zito2, Jon T. Sack1* 1Department of Physiology and Membrane Biology, University of California, Davis, CA 95616 2Center for Neuroscience, University of California, Davis, CA 95616 3Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ‡Authors contributed equally to this work *Correspondence to [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/541805; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 A primary goal of molecular physiology is to understand how conformational changes of 3 proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging 4 method for measuring the conformational changes of a voltage-sensing protein within tissue. We 5 synthesized a fluorescent molecular probe, compatible with two-photon microscopy, that targets 6 a resting conformation of Kv2-type voltage gated K+ channel proteins. Voltage-response 7 characteristics were used to calibrate a statistical thermodynamic model relating probe labeling 8 intensity to the conformations adopted by unlabeled Kv2 proteins. Two-photon imaging of rat 9 brain slices labeled with the probe revealed fluorescence consistent with conformation-selective 10 labeling of endogenous neuronal Kv2 proteins.
    [Show full text]
  • Therapeutic Class Overview Anticonvulsants
    Therapeutic Class Overview Anticonvulsants INTRODUCTION • Epilepsy is a disease of the brain defined by any of the following (Fisher et al 2014): At least 2 unprovoked (or reflex) seizures occurring > 24 hours apart; 1 unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least ○ 60%) after 2 unprovoked seizures, occurring over the next 10 years; ○ Diagnosis of an epilepsy syndrome. • Types of seizures include generalized seizures, focal (partial) seizures, and status epilepticus (Centers for Disease Control○ and Prevention [CDC] 2018, Epilepsy Foundation Greater Chicago 2020). Generalized seizures affect both sides of the brain and include: . Tonic-clonic (grand mal): begin with stiffening of the limbs, followed by jerking of the limbs and face ○ . Myoclonic: characterized by rapid, brief contractions of body muscles, usually on both sides of the body at the same time . Atonic: characterized by abrupt loss of muscle tone; they are also called drop attacks or akinetic seizures and can result in injury due to falls . Absence (petit mal): characterized by brief lapses of awareness, sometimes with staring, that begin and end abruptly; they are more common in children than adults and may be accompanied by brief myoclonic jerking of the eyelids or facial muscles, a loss of muscle tone, or automatisms. Focal seizures are located in just 1 area of the brain and include: . Simple: affect a small part of the brain; can affect movement, sensations, and emotion, without a loss of ○ consciousness . Complex: affect a larger area of the brain than simple focal seizures and the patient loses awareness; episodes typically begin with a blank stare, followed by chewing movements, picking at or fumbling with clothing, mumbling, and performing repeated unorganized movements or wandering; they may also be called “temporal lobe epilepsy” or “psychomotor epilepsy” .
    [Show full text]
  • Download [ PDF ]
    Jemds.com Original Research Article SODIUM VALPROATE VERSUS FOSPHENYTOIN FOR STATUS EPILEPTICUS IN CHILDREN- A RANDOMIZED CONTROL TRIAL Rajasekar S1, Selvakumar P2, Mohamed Nazar R3 1Professor, Department of Paediatrics, Thanjavur Medical College, Thanjavur, Tamilnadu, India. 2Associate Professor, Department of Paediatrics, Thanjavur Medical College, Thanjavur, Tamilnadu, India. 3Junior Resident, Department of Paediatrics, Thanjavur Medical College, Thanjavur, Tamilnadu, India. ABSTRACT BACKGROUND Status epilepticus (SE) is a life-threatening neurological emergency in children associated with high morbidity and mortality. Phenytoin/fosphenytoin is the currently recommended first choice second line treatment in children, although there is lack of evidence for its use and it is associated with significant side effects. Emerging evidence suggests that intravenous (IV) sodium valproate may be more effective with fewer side effects. The objective of this study was to compare the efficacy and safety of IV sodium valproate with IV fosphenytoin as a second line treatment for SE in Indian children. METHODS This is a prospective randomized control trial conducted in the department of paediatric emergency of Raja Mirasudar Hospital attached to Thanjavur Medical College, Thanjavur, South India, from October 2017 to July 2018 among 30 children aged 2 years to 12 years admitted for SE, and in whom seizure did not terminate even with 2 doses of benzodiazepines. 20 mg Phenytoin equivalent (PE)/kg of fosphenytoin (FPHT) over 7 minutes or 20 mg/kg of sodium valproate (SVP) over 5 minutes. Clinical cessation of seizures five minutes following the completion of the infusion of the study medication was the expected primary outcome. RESULTS Sodium valproate terminated seizures earlier than fosphenytoin (P=0.001).
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • Targeting Voltage Sensors in Sodium Channels with Spider Toxins
    Review Targeting voltage sensors in sodium channels with spider toxins Frank Bosmans1,2 and Kenton J. Swartz1 1 Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA 2 Laboratory of Toxicology, University of Leuven, 3000 Leuven, Belgium Voltage-activated sodium (Nav) channels are essential more distantly related Nav channels (e.g. Nav1.8 and in generating and propagating nerve impulses, placing Nav1.9) have distinct operational mechanisms. them amongst the most widely targeted ion channels Nav channels are one of the foremost targets of mol- by toxins from venomous organisms. An increasing ecules present in animal venoms [13] . Toxins from scor- number of spider toxins have been shown to interfere pions and sea anemones, as well as venoms from cone with the voltage-driven activation process of mamma- snails, have been used to describe various receptor sites lian Nav channels, possibly by interacting with one or in different regions of the channel [14–17]. However, the more of their voltage sensors. This review focuses on exploration of the mechanism through which spider toxins our existing knowledge of the mechanism by which interact with mammalian Nav channels has only recently spider toxins affect Nav channel gating and the begun. This is in contrast to voltage-activated potassium possible applications of these toxins in the drug (Kv) channels, where tarantula toxins such as hanatoxin discovery process. from Grammostola spatulata have been used extensively to study the functional properties of these channels [18–21]. Introduction Evidence demonstrating that tarantula toxins modify the + Voltage-activated sodium (Nav) channels are Na -per- opening and closing (‘gating’) of Kv channels by influencing meable ion channels that open and close in response to their voltage sensors comes from three observations.
    [Show full text]