Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve

Total Page:16

File Type:pdf, Size:1020Kb

Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve by Kyle Davis Thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering (Mechanical) in the Faculty of Engineering at Stellenbosch University Supervisor: Dr. J.H. Müller Co-supervisor: Prof. C.J. Meyer Prof. F.E. Smit December 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: .......................................December 2018 Copyright © 2018 Stellenbosch University All rights reserved. i Stellenbosch University https://scholar.sun.ac.za Plagiarism Declaration 1. Plagiarism is the use of ideas, material and other intellectual property of another’s work and to present it as my own. 2. I agree that plagiarism is a punishable offence because it constitutes theft. 3. I also understand that direct translations are plagiarism. 4. Accordingly all quotations and contributions from any source whatsoever (includ- ing the internet) have been cited fully. I understand that the reproduction of text without quotation marks (even when the source is cited) is plagiarism. 5. I declare that the work contained in this assignment, except where otherwise stated, is my original work and that I have not previously (in its entirety or in part) sub- mitted it for grading in this module/assignment or another module/assignment. Student number Signature Initials and surname K Davis Date ii Stellenbosch University https://scholar.sun.ac.za Abstract Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve K. Davis Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Thesis: MEng (Mech) December 2018 Artificial heart valves used during valve replacement surgery currently suffer from fatigue (biological valves) or thrombosis (mechanical valves). This study focused on the experimental testing and simulation of a new polyurethane valve (PV tall) based on a previous polyurethane valve design. The new PV tall valve was experimentally evaluated against the original polyurethane design (PV short) and a commercially available tissue valve (tissue), as well as numerically simulated. All three valves were evaluated in a ViVitro Labs pulse duplicator to determine the pressure drop, effective orifice area and percentage regurgitation as required by FDA and ISO regulation. The PV tall valve had a noticeable decrease in the pressure drop and per- centage regurgitation compared to the PV short valve, whereas the commercial tissue valve had the lowest values. The effective orifice area of the PV tall valve outperformed the tissue valve at larger cardiac outputs. Particle image velocimetry testing was performed on all three valves during pulse du- plication. The obtained velocity vector fields were examined and the viscous shear stress (VSS), Reynolds shear stress (RSS), major Reynolds shear stress (RSSma j ) and turbulent viscous shear stress (TVSS) was determined to predict the onset of hemolysis and platelet activation. The measured VSS was below the threshold for both platelet activation and hemolysis, however the TVSS predicted that platelet activation could potentially occur for all three valves. The RSSma j value predicted that both platelet activation and hemol- ysis would occur. The RSSma j and RSS values were found to be subject to manipulation through filtering of large velocity fluctuations, however the VSS and TVSS values did not vary significantly through filtering. A numerical simulation procedure was developed using only open-source software to perform fluid-structure interaction simulations of the newly designed PV tall heart iii Stellenbosch University https://scholar.sun.ac.za ABSTRACT iv valve. The simulations were performed using openFOAM and CalculiX, and were cou- pled together using preCICE. The speed and stability of strongly coupled implicit simu- lations were significantly improved with the use of fast Quasi-Newton coupling schemes compared to conventional Aitken under-relaxation. The simulations were able to predict the VSS within the fluid domain, after which the wall shear stress (WSS) was obtained from the simulations. The WSS was orders of magnitude larger than the VSS, indicating that the WSS could be a much larger cause of platelet activation and hemolysis. This study demonstrated the effective use of pulse duplication and particle image ve- locimetry to experimentally evaluate heart valve hemodynamics. The study also shows that mesh based fluid-structure interaction simulations are capable of providing an early design stage indication of heart valve hemodynamic performance, reducing manufac- turing and experimental turn-around times and reducing cost. Stellenbosch University https://scholar.sun.ac.za Uittreksel Numeriese en Eksperimentele Ondersoek na die Hemodinamika van ‘n Kunsmatige Hartklep (“Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve”) K. Davis Departement Meganiese en Megatroniese Ingenieurswese, Universiteit van Stellenbosch, Privaatsak X1, Matieland 7602, Suid Afrika. Tesis: MIng (Meg) Desember 2018 Kunsmatige hartkleppe wat gedurende klepvervangingchirurgie aangewend word, lei tans aan afmatting (biologies kleppe) of trombose (meganiese kleppe). Hierdie studie fokus op die eksperimentele toetsing en simulasie van ‘n poliuretaanklep (PK lang) wat op ‘n vorige ontwerp gebaseer is. Die nuwe PK langklep is eksperimenteel teen die oor- spronklike poliuretaanontwerp (PK kort) en ‘n weefselklep wat kommersiëel beskikbaar is beoordeel. Die drie kleppe is almal volgens die regulasies soos deur die FDA en ISO vereis word in ‘n ViVitro Labs polsduplikator beoordeel om sodoende die drukval, effektiewe ope- ningsarea en herhalingspersentasie te bepaal. Die PK langklep het ‘n merkbare verlaging in die drukval en herhalingspersentasie getoon in vergelyking met die PK kortklep, terwyl die kommersiële weefselklep die laagste waardes getoon het. Die effektiewe openingsa- rea van die PK langklep het die weefselklep tydens groter kardiale uitsette geklop. Partikelbeeldsnelheidsmetingtoetsing is tydens polsduplikasie op al drie kleppe uit- gevoer. Die stroomsnelheidsvektorvelde wat opgelewer is, is ondersoek en die viskose skuif sterkte (VSS), Reynolds skuif sterkte (RSS), hoof Reynolds skuif sterkte (RSShoo f ), en die turbulente viskose skuif sterkte (TVSS) is bepaal om die aanvangs van hemolise en plaatjie-aktivering te voorspel. Die gemete VSS was onder die drempel vir beide plaat- jieaktivering en hemolise, hoewel die TVSS voorspel het dat plaatjieaktivering potensiëel vir al drie kleppe kon plaasvind. Die RSShoo f -waarde het voorspel dat beide plaatjie- aktivering en hemolise sou plaasvind. Daar is gevind dat beide die RSShoo f - en RSS- waardes aan manipulasie deur filtrering van hewigefluktuasie in snelheid onderhewig is, tog het die VSS- en TVSS-waardes nie beduidend deur filtrering gewissel nie. v Stellenbosch University https://scholar.sun.ac.za UITTREKSEL vi ‘n Numeriese simulasieprosedure, wat slegs van oopbron sagteware gebruik maak, is ontwikkel ten einde vloeistofstruktuur interaksiesimulasies van die nuut-ontwerpte PV langklep uit te voer. Die simulasies is uitgevoer deur gebruik te maak van openFOAM en CalculiX en is saamgekoppel deur preCICE daarvoor in te span. Die spoed en stabiliteit van sterk-gekoppelde implisiete simulasies is beduidend verbeter deur die gebruik van vinnige Kwasi-Newton koppelingskemas vergeleke met konvensionele Aitken onderont- spanning. Die simulasies was daartoe in staat om die VSS binne die vloeistofomgewing te voorspel waarna die wand skuif sterkte (WSS) van die simulasies af verkry is. Die WSS was orde van grootte meer as die VSS, wat aangedui het dat die WSS ‘n baie groter oor- saak van plaatjieaktivering en hemolise kan wees. Hierdie studie demonstreer die effektiewe gebruik van polsduplikasie en partikel- beeldsnelheidsmeting om hartklephemodinamika eksperimenteel te evalueer. Die stu- die wys ook verder dat stofdigtheidsgebaseerde vloeistofstruktuurinteraksie simulasies daartoe in staat is om in ‘n vroeë ontwerpstadium ‘n aanduiding te gee van hemodina- miese hartklepprestasie, wat vervaardigings- en eksperimentele omdraaitye asook koste verminder. Stellenbosch University https://scholar.sun.ac.za Acknowledgements This study would not have been possible without the contributions of many people. I would like to thank: • My supervisors Dr. Cobus Müller, Prof. Chris Meyer and Prof. Francis Smit. Their guidance and patience was invaluable throughout this study. I thank them for their financial support, and providing me with the opportunity to travel and learn from experts around the world. • Everyone at the Cardiothoracic Surgery Department for the interesting conversa- tions and much needed coffee breaks in the office, and for making the move to Bloemfontein easier than expected. • The Centre for Rapid Prototyping and Manufacturing at the Central University of Technology, for their assistance with manufacturing of the heart valves. • The preCICE research group at the Technical University of Munich
Recommended publications
  • Advanced Molecular Dynamics in Openfoam✩ S.M
    Computer Physics Communications 224 (2018) 1–21 Contents lists available at ScienceDirect Computer Physics Communications journal homepage: www.elsevier.com/locate/cpc Feature article mdFoam+: Advanced molecular dynamics in OpenFOAMI S.M. Longshaw a,*, M.K. Borg b, S.B. Ramisetti b, J. Zhang b, D.A. Lockerby c, D.R. Emerson a, J.M. Reese b a Scientific Computing Department, The Science & Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK b School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK c School of Engineering, University of Warwick, Coventry, CV4 7AL, UK article info a b s t r a c t Article history: This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver imple- Received 6 March 2017 mented entirely within the OpenFOAM software framework. It is open-source and released under the Received in revised form 17 August 2017 same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open Accepted 25 September 2017 software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed Available online 23 October 2017 entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The Keywords: code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, OpenFOAM in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in Molecular dynamics OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based MD solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon Computational fluid dynamics the OpenFOAM dictionary-based directory structure.
    [Show full text]
  • Introduction to Nuclear Reactor Modelling Using Openfoam Carlo Fiorina 2
    Introduction to nuclear reactor modelling using OpenFOAM Carlo Fiorina 2 Disclaimer C. Fiorina ▪ Focus on the use of OpenFOAM for multiphysics ○ Use of OpenFOAM as CFD tool widely covered by documentation, forums, courses, etc. ▪ Focus on already existing tool (GeN-Foam) as an example ○ Programming from scratch is not that difficult, but unsuited for a 75 minutes lecture ▪ In the slides, more material than can actually be covered in this lecture ○ Can help better understanding the slides after the lecture 3 Content C. Fiorina ▪ General Introduction ▪ Introduction to the use of OpenFOAM ▪ Basics of GeN-Foam ▪ Short introduction on the use of GeN-Foam 4 Objective C. Fiorina What is it about? ▪ Provide you with general information, references, suggestions, terminology and lessons learnt that can facilitate your approach to the OpenFOAM world ▪ Provide with slides that can help you out orienting yourself if you decide to embrace the use of OpenFOAM What is not about? ▪ Detailed course on the use of OpenFOAM ▪ Hands-on training 5 The IAEA-facilitated ONCORE initiative C. Fiorina ONCORE to support the open-source nuclear community and help addressing typical shortcomings of open-source development (scattered community, documentation, QA, loss of knowledge) ▪ Promote collaboration and facilitate communication (connect the community) ▪ Provide guidelines for code contribution (documentation, QA) ▪ Provide development best practices (QA) ▪ Preserve knowledge ○ Incl. compiling a list of open-source codes https://www.iaea.org/topics/nuclear-power-reactors/open-source-nuclear-cod e-for-reactor-analysis-oncore 6 A first important outcome: list of C. Fiorina available codes ▪ https://nucleus.iaea.org/sites/oncore/SitePages/List%20of%20Codes.aspx ▪ A vibrant community with an impressive R&D output ▪ ~35 codes already identified so far: ○ OpenMC ○ Raven ○ Dragon ○ MOOSE ○ Salome platform (Code_Saturne, Code_Aster) ○ TrioCFD ○ … ○ Several OpenFOAM-based tools 7 A central tool for open-source simulation C.
    [Show full text]
  • Fenics-Shells Release 2018.1.0
    FEniCS-Shells Release 2018.1.0 Aug 02, 2021 Contents 1 Subpackages 1 2 Module contents 13 3 Documented demos 15 4 FEniCS-Shells 61 Bibliography 65 Python Module Index 67 Index 69 i ii CHAPTER 1 Subpackages 1.1 fenics_shells.analytical package 1.1.1 Submodules 1.1.2 fenics_shells.analytical.lovadina_clamped module Analytical solution for clamped Reissner-Mindlin plate problem from Lovadina et al. 1.1.3 fenics_shells.analytical.simply_supported module Analytical solution for simply-supported Reissner-Mindlin square plate under a uniform transverse load. 1.1.4 fenics_shells.analytical.vonkarman_heated module Analytical solution for elliptic orthotropic von Karman plate with lenticular thickness subject to a uniform field of inelastic curvatures. fenics_shells.analytical.vonkarman_heated.analytical_solution(Ai, Di, a_rad, b_rad) 1 FEniCS-Shells, Release 2018.1.0 1.1.5 Module contents 1.2 fenics_shells.common package 1.2.1 Submodules 1.2.2 fenics_shells.common.constitutive_models module fenics_shells.common.constitutive_models.psi_M(k, **kwargs) Returns bending moment energy density calculated from the curvature k using: Isotropic case: .. math:: D = frac{E*t^3}{24(1 - nu^2)} W_m(k, ldots) = D*((1 - nu)*tr(k**2) + nu*(tr(k))**2) Parameters • k – Curvature, typically UFL form with shape (2,2) (tensor). • **kwargs – Isotropic case: E: Young’s modulus, Constant or Expression. nu: Poisson’s ratio, Constant or Expression. t: Thickness, Constant or Expression. Returns UFL form of bending stress tensor with shape (2,2) (tensor). fenics_shells.common.constitutive_models.psi_N(e, **kwargs) Returns membrane energy density calculated from e using: Isotropic case: .. math:: B = frac{E*t}{2(1 - nu^2)} N(e, ldots) = B(1 - nu)e + nu mathrm{tr}(e)I Parameters • e – Membrane strain, typically UFL form with shape (2,2) (tensor).
    [Show full text]
  • 15Th Openfoam Workshop - June 22, 2020 - Technical Session I-D a Flexible and Precice Solver Coupling Ecosystem
    15th OpenFOAM Workshop - June 22, 2020 - Technical Session I-D A flexible and preCICE solver coupling ecosystem Gerasimos Chourdakis, Technical University of Munich [email protected] Benjamin Uekermann, Eindhoven University of Technology [email protected] Find these slides on GitHub https://github.com/MakisH/ofw15-slides The Big Picture e r ic r te c e p e lv a r o d p s a lib structure fluid solver solver The Big Picture e r ic r te c e p e lv a r o d p s a lib structure fluid solver solver in-house commercial solver solver The Big Picture e r ic r te c e p e lv a r o d p s a lib structure fluid solver solver OpenFOAM CalculiX SU2 Code_Aster foam-extend FEniCS deal-ii Nutils MBDyn in-house commercial solver solver API in: C++ Python Matlab ANSYS Fluent C Fortran COMSOL The Big Picture e r ic r te c e p e lv a r o d p s a lib structure fluid solver A Coupling Library for Partitioned Multi-Physics Simulations solver OpenFOAM CalculiX SU2 Code_Aster . foam-extend FEniCS deal-ii . Nutils MBDyn communication data mapping in-house commercial solver solver coupling schemes time interpolation API in: C++ Python Matlab ANSYS Fluent C Fortran COMSOL News preCICE v2.0 Simplified config & API Better building & testing XML reference & visualizer xSDK member Faster initialization Better Python bindings Spack / Debian / AUR New Matlab bindings packages Upgrade guide in the wiki Other news deal.ii adapter new non-linear example for FSI FEniCS adapter new example for FSI code_aster adapter revived for code_aster 14 and preCICE v2 The OpenFOAM adapter
    [Show full text]
  • Model Order Reduction for Aerodynamic Lifting Surfaces Aerospace Engineering
    Model Order Reduction for Aerodynamic Lifting Surfaces Gonçalo da Cunha Laboreiro Mendonça Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisors: Prof. Fernando José Parracho Lau Dr. Frederico José Prata Rente Reis Afonso Examination Committee Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha Supervisor: Prof. Fernando José Parracho Lau Member of the Committee: Prof. Afzal Suleman November 2017 ii Dedicated to my family and friends, who were always there for me. iii iv Acknowledgments I would like to thank dearly my supervisors Prof. Lau and Dr. Afonso who gave me constant support throughout this thesis up until the very end. Their insights on aerodynamics and CFD models guided me in my research of model order reduction methods and allowed me to better understand the models with which I had to work. Their demands for rigor and quality also pushed me to better my work, and in the end write a better thesis. v vi Resumo Nesta tese o tema de reduc¸ao˜ de modelos e a sua aplicac¸ao˜ a Mecanicaˆ de Fluidos Computacional sao˜ abordados. E´ mostrada a necessidade da industria´ aeroespacial, seja nacional ou Europeia, de modelos mais rapidos´ mas fieis´ a` realidade. Isto e´ devido ao elevado tempo de calculo´ associado aos modelos de alta-fidelidade. Estes mostram-se pouco viaveis´ para aplicac¸oes˜ do tipo Optimizac¸ao˜ Multi- disciplinar, como a plataforma de optimizac¸ao˜ NOVEMOR. Tendo por objectivo testar e aplicar reduc¸ao˜ de modelos a modelos CFD de superf´ıcies sustentadoras, uma pesquisa bibliografica´ abrangendo a reduc¸ao˜ de modelos nao-lineares,˜ dinamicosˆ e ou estaticos´ foi feita.
    [Show full text]
  • The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions
    Journal of Marine Science and Engineering Article The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions Mobin Masoomi 1 and Amir Mosavi 2,3,* 1 Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran; [email protected] 2 Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany 3 John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary * Correspondence: [email protected] Abstract: This paper aims to assess a new fluid–structure interaction (FSI) coupling approach for the vp1304 propeller to predict pressure and stress distributions with a low-cost and high-precision approach with the ability of repeatability for the number of different structural sets involved, other materials, or layup methods. An outline of the present coupling approach is based on an open- access software (OpenFOAM) as a fluid solver, and Abaqus used to evaluate and predict the blade’s deformation and strength in dry condition mode, which means the added mass effects due to propeller blades vibration is neglected. Wherein the imposed pressures on the blade surfaces are extracted for all time-steps. Then, these pressures are transferred to the structural solver as a load condition. Although this coupling approach was verified formerly (wedge impact), for the case in-hand, a further verification case, open water test, was performed to evaluate the hydrodynamic part of the solution with an e = 7.5% average error. A key factor for the current coupling approach is Citation: Masoomi, M.; Mosavi, A.
    [Show full text]
  • Fenics-HPC: Automated Predictive High-Performance Finite Element
    FEniCS-HPC: Automated predictive high-performance finite element computing with applications in aerodynamics Johan Hoffman1, Johan Jansson2, and Niclas Jansson3 1 Computational Technology Laboratory, School of Computer Science and Communication, KTH, Stockholm, Sweden and BCAM - Basque Center for Applied Mathematics, Bilbao, Spain [email protected] 2 BCAM - Basque Center for Applied Mathematics, Bilbao, Spain and Computational Technology Laboratory, School of Computer Science and Communication, KTH, Stockholm, Sweden [email protected] 3 RIKEN Advanced Institute for Computational Science, Kobe, Japan [email protected] Abstract. Developing multiphysics finite element methods (FEM) and scalable HPC implementations can be very challenging in terms of soft- ware complexity and performance, even more so with the addition of goal-oriented adaptive mesh refinement. To manage the complexity we in this work present general adaptive stabilized methods with automated implementation in the FEniCS-HPC automated open source software framework. This allows taking the weak form of a partial differential equation (PDE) as input in near-mathematical notation and automati- cally generating the low-level implementation source code and auxiliary equations and quantities necessary for the adaptivity. We demonstrate new optimal strong scaling results for the whole adaptive framework applied to turbulent flow on massively parallel architectures down to 25000 vertices per core with ca. 5000 cores with the MPI-based PETSc backend and for assembly down to 500 vertices per core with ca. 20000 cores with the PGAS-based JANPACK backend. As a demonstration of the high impact of the combination of the scalability together with the adaptive methodology allowing prediction of gross quantities in turbulent flow we present an application in aerodynamics of a full DLR-F11 aircraft in connection with the HiLift-PW2 benchmarking workshop with good match to experiments.
    [Show full text]
  • Wind Field Simulation in a Wind Farm Using Openfoam and Actuator Line Model
    ParCFD'2019 31st International Conference on Parallel Computational Fluid Dynamics May-14-17 2019, Antalya TURKEY WIND FIELD SIMULATION IN A WIND FARM USING OPENFOAM AND ACTUATOR LINE MODEL Huseyin Can Onel∗ & Dr. Ismail H. Tuncery ∗ Middle East Technical University (METU) Department of Aerospace Engineering 06800 Ankara, TURKEY e-mail: [email protected] yMiddle East Technical University (METU) Department of Aerospace Engineering 06800 Ankara, TURKEY e-mail: [email protected] - Web page: http://www.ae.metu.edu.tr/tuncer/ Key words: Aerospace applications, Wind turbine, HAWT, Actuator Line Model, Wake calculation Abstract. In this study, a horizontal axis wind turbine (HAWT) is modeled using so called Actuator Line Model (ALM), where full resolution of boundary layer over turbine blades is not needed and hence computation is cheaper. Results are validated against other numerical and experimental studies as well as panel method (XFOIL) and Blade Element Momentum Theory (BEMT) results which are still widely employed in today's wind energy industry. Important simulation and operation parameters and their effects on accuracy are discussed. It is concluded that within a certain range of tip speed ratios, ALM gives acceptable results and is a promising model for full-scale wind farm simulations to estimate energy production. 1 INTRODUCTION Market share of renewable energy grows at ever highest rates and wind turbine and wind farm design processes becomes more sophisticated with the advancements in computation technologies. There are two main design problems in wind energy: • Design of an individual wind turbine at its ideal operation conditions, where classical methods like 2D airfoil theory, potential flow theory and Blade Element Momentum Theory (BEMT) are still widely used, • Design of a complete wind farm, in which statistical meteorological data is used for macro-siting and simple analytical or empirical methods are used for micro-siting.
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • The DUNE-Fem-DG Framework
    Extendible and Efficient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods Andreas Dedner, Robert Klofkorn¨ ∗ Abstract This paper discusses a Python interface for the recently published DUNE-FEM- DG module which provides highly efficient implementations of the Discontinuous Galerkin (DG) method for solving a wide range of non linear partial differential equations (PDE). Although the C++ interfaces of DUNE-FEM-DG are highly flexible and customizable, a solid knowledge of C++ is necessary to make use of this powerful tool. With this work easier user interfaces based on Python and the Unified Form Language are provided to open DUNE-FEM-DG for a broader audience. The Python interfaces are demonstrated for both parabolic and first order hyperbolic PDEs. Keywords DUNE,DUNE-FEM, Discontinuous Galerkin, Finite Volume, Python, Advection-Diffusion, Euler, Navier-Stokes MSC (2010): 65M08, 65M60, 35Q31, 35Q90, 68N99 In this paper we introduce a Python layer for the DUNE-FEM-DG1 module [14] which is available open-source. The DUNE-FEM-DG module is based on DUNE [5] and DUNE- FEM [20] in particular and makes use of the infrastructure implemented by DUNE-FEM for seamless integration of parallel-adaptive Finite Element based discretization methods. DUNE-FEM-DG focuses exclusively on Discontinuous Galerkin (DG) methods for var- ious types of problems. The discretizations used in this module are described by two main papers, [17] where we introduced a generic stabilization for convection dominated problems that works on generally unstructured and non-conforming grids and [9] where we introduced a parameter independent DG flux discretization for diffusive operators.
    [Show full text]
  • Universidade Federal Do Rio Grande Do Sul
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA FACULDADE DE ARQUITETURA PROGRAMA DE PÓS-GRADUAÇÃO EM DESIGN Eduardo da Cunda Fernandes DESIGN NO DESENVOLVIMENTO DE UM PROJETO DE INTERFACE: Aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras Dissertação de Mestrado Porto Alegre 2020 EDUARDO DA CUNDA FERNANDES Design no desenvolvimento de um projeto de interface: aprimorando o processo de modelagem em programas de estruturas tridimensionais por barras Dissertação apresentada ao Programa de Pós- Graduação em Design da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de Mestre em Design. Orientador: Prof. Dr. Fábio Gonçalves Teixeira Porto Alegre 2020 Catalogação da Publicação Fernandes, Eduardo da Cunda DESIGN NO DESENVOLVIMENTO DE UM PROJETO DEINTERFACE: Aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras / Eduardo da Cunda Fernandes. -- 2020. 230 f. Orientador: Fábio Gonçalves Teixeira. Dissertação (Mestrado) -- Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Programa de Pós- Graduação em Design, Porto Alegre, BR-RS, 2020. 1. Design de Interface. 2. Análise Estrutural. 3.Modelagem Preditiva do Comportamento Humano. 4.Heurísticas da Usabilidade. 5. KLM-GOMS. I. Teixeira, Fábio Gonçalves, orient. II. Título. FERNANDES, E. C. Design no desenvolvimento de um projeto de interface: aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras. 2020. 142 f. Dissertação (Mestrado em Design) – Escola de Engenharia / Faculdade de Arquitetura, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2020. Eduardo da Cunda Fernandes DESIGN NO DESENVOLVIMENTO DE UM PROJETO DED INTERFACE: aprimorando o processo de modelagem em programas de análise de estruturas tridimensionais por barras Esta Dissertação foi julgada adequada para a obtenção do Título de Mestre em Design, e aprovada em sua forma final pelo Programa de Pós-Graduação em Design da UFRGS.
    [Show full text]
  • Intel Xeon W-1200 Workstation Processors Product Brief
    PRODUCT BRIEF | Intel® Xeon® W-1200 Workstation Processors PROFESSIONAL PERFORMANCE POWER AN ENTRY-LEVEL PROFESSIONAL WORKSTATION WITH AN INTEL® Xeon® W-1200 PROCESSOR Intel® Xeon® W-1200 processors (succeeding the Intel® Xeon® E-2200 processors) deliver great performance for entry workstation users with integrated processor graphics alongside the added reliability and confidence of Error Correcting Code (ECC) memory. Get outstanding performance plus best-in-class manageability features and support for ground- breaking technologies that enable you to visualize, simulate, research and work with greater accuracy than ever before. PROFESSIONAL Performance WHEN IT MATTERS • Up to 10 Cores | Up to 20 Threads • Up to 4.1 GHz Base • Up to 5.3 GHz with Intel® Thermal Velocity Boost1 • NEW Intel® Turbo Boost Max Technology 3.0 • Support for up to 128 GB DDR4-2933 ECC Memory2 • Intel® Wi-Fi AX202 (Gig+) support using CNVi³ FeaTURED TecHNOLOGIES • Intel® Hyper-Threading Technology • Up to 40 processor PCIe* lanes • Error-correcting code (ECC) memory support • Thunderbolt™ 3 support • Intel® Optane™ technology support • Intel vPro® platform support A NEW LEVEL OF Performance Designed to deliver an entry-level platform for professionals requiring a true workstation, Intel® Xeon® W-1200 processors are specially optimized for a wide range of workflows and industries such as health and life sciences, financial services, architecture, engineering and construction (AEC). IncreaseD CapaBILITY ENHANCED Performance FAST ConnecTIVITY NEW—Intel® Thermal Velocity Boost NEW—UP TO 5.3 GHz NEW—2.5G Intel® Ethernet Controller Technology i225 support4 Get up to a blazing 5.3 GHz clock speed, Even the most complex workflows won’t Network speed is essential in today’s right out of the box for fast performance.
    [Show full text]