Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve
Total Page:16
File Type:pdf, Size:1020Kb
Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve by Kyle Davis Thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering (Mechanical) in the Faculty of Engineering at Stellenbosch University Supervisor: Dr. J.H. Müller Co-supervisor: Prof. C.J. Meyer Prof. F.E. Smit December 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: .......................................December 2018 Copyright © 2018 Stellenbosch University All rights reserved. i Stellenbosch University https://scholar.sun.ac.za Plagiarism Declaration 1. Plagiarism is the use of ideas, material and other intellectual property of another’s work and to present it as my own. 2. I agree that plagiarism is a punishable offence because it constitutes theft. 3. I also understand that direct translations are plagiarism. 4. Accordingly all quotations and contributions from any source whatsoever (includ- ing the internet) have been cited fully. I understand that the reproduction of text without quotation marks (even when the source is cited) is plagiarism. 5. I declare that the work contained in this assignment, except where otherwise stated, is my original work and that I have not previously (in its entirety or in part) sub- mitted it for grading in this module/assignment or another module/assignment. Student number Signature Initials and surname K Davis Date ii Stellenbosch University https://scholar.sun.ac.za Abstract Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve K. Davis Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Thesis: MEng (Mech) December 2018 Artificial heart valves used during valve replacement surgery currently suffer from fatigue (biological valves) or thrombosis (mechanical valves). This study focused on the experimental testing and simulation of a new polyurethane valve (PV tall) based on a previous polyurethane valve design. The new PV tall valve was experimentally evaluated against the original polyurethane design (PV short) and a commercially available tissue valve (tissue), as well as numerically simulated. All three valves were evaluated in a ViVitro Labs pulse duplicator to determine the pressure drop, effective orifice area and percentage regurgitation as required by FDA and ISO regulation. The PV tall valve had a noticeable decrease in the pressure drop and per- centage regurgitation compared to the PV short valve, whereas the commercial tissue valve had the lowest values. The effective orifice area of the PV tall valve outperformed the tissue valve at larger cardiac outputs. Particle image velocimetry testing was performed on all three valves during pulse du- plication. The obtained velocity vector fields were examined and the viscous shear stress (VSS), Reynolds shear stress (RSS), major Reynolds shear stress (RSSma j ) and turbulent viscous shear stress (TVSS) was determined to predict the onset of hemolysis and platelet activation. The measured VSS was below the threshold for both platelet activation and hemolysis, however the TVSS predicted that platelet activation could potentially occur for all three valves. The RSSma j value predicted that both platelet activation and hemol- ysis would occur. The RSSma j and RSS values were found to be subject to manipulation through filtering of large velocity fluctuations, however the VSS and TVSS values did not vary significantly through filtering. A numerical simulation procedure was developed using only open-source software to perform fluid-structure interaction simulations of the newly designed PV tall heart iii Stellenbosch University https://scholar.sun.ac.za ABSTRACT iv valve. The simulations were performed using openFOAM and CalculiX, and were cou- pled together using preCICE. The speed and stability of strongly coupled implicit simu- lations were significantly improved with the use of fast Quasi-Newton coupling schemes compared to conventional Aitken under-relaxation. The simulations were able to predict the VSS within the fluid domain, after which the wall shear stress (WSS) was obtained from the simulations. The WSS was orders of magnitude larger than the VSS, indicating that the WSS could be a much larger cause of platelet activation and hemolysis. This study demonstrated the effective use of pulse duplication and particle image ve- locimetry to experimentally evaluate heart valve hemodynamics. The study also shows that mesh based fluid-structure interaction simulations are capable of providing an early design stage indication of heart valve hemodynamic performance, reducing manufac- turing and experimental turn-around times and reducing cost. Stellenbosch University https://scholar.sun.ac.za Uittreksel Numeriese en Eksperimentele Ondersoek na die Hemodinamika van ‘n Kunsmatige Hartklep (“Numerical and Experimental Investigation of the Hemodynamics of an Artificial Heart Valve”) K. Davis Departement Meganiese en Megatroniese Ingenieurswese, Universiteit van Stellenbosch, Privaatsak X1, Matieland 7602, Suid Afrika. Tesis: MIng (Meg) Desember 2018 Kunsmatige hartkleppe wat gedurende klepvervangingchirurgie aangewend word, lei tans aan afmatting (biologies kleppe) of trombose (meganiese kleppe). Hierdie studie fokus op die eksperimentele toetsing en simulasie van ‘n poliuretaanklep (PK lang) wat op ‘n vorige ontwerp gebaseer is. Die nuwe PK langklep is eksperimenteel teen die oor- spronklike poliuretaanontwerp (PK kort) en ‘n weefselklep wat kommersiëel beskikbaar is beoordeel. Die drie kleppe is almal volgens die regulasies soos deur die FDA en ISO vereis word in ‘n ViVitro Labs polsduplikator beoordeel om sodoende die drukval, effektiewe ope- ningsarea en herhalingspersentasie te bepaal. Die PK langklep het ‘n merkbare verlaging in die drukval en herhalingspersentasie getoon in vergelyking met die PK kortklep, terwyl die kommersiële weefselklep die laagste waardes getoon het. Die effektiewe openingsa- rea van die PK langklep het die weefselklep tydens groter kardiale uitsette geklop. Partikelbeeldsnelheidsmetingtoetsing is tydens polsduplikasie op al drie kleppe uit- gevoer. Die stroomsnelheidsvektorvelde wat opgelewer is, is ondersoek en die viskose skuif sterkte (VSS), Reynolds skuif sterkte (RSS), hoof Reynolds skuif sterkte (RSShoo f ), en die turbulente viskose skuif sterkte (TVSS) is bepaal om die aanvangs van hemolise en plaatjie-aktivering te voorspel. Die gemete VSS was onder die drempel vir beide plaat- jieaktivering en hemolise, hoewel die TVSS voorspel het dat plaatjieaktivering potensiëel vir al drie kleppe kon plaasvind. Die RSShoo f -waarde het voorspel dat beide plaatjie- aktivering en hemolise sou plaasvind. Daar is gevind dat beide die RSShoo f - en RSS- waardes aan manipulasie deur filtrering van hewigefluktuasie in snelheid onderhewig is, tog het die VSS- en TVSS-waardes nie beduidend deur filtrering gewissel nie. v Stellenbosch University https://scholar.sun.ac.za UITTREKSEL vi ‘n Numeriese simulasieprosedure, wat slegs van oopbron sagteware gebruik maak, is ontwikkel ten einde vloeistofstruktuur interaksiesimulasies van die nuut-ontwerpte PV langklep uit te voer. Die simulasies is uitgevoer deur gebruik te maak van openFOAM en CalculiX en is saamgekoppel deur preCICE daarvoor in te span. Die spoed en stabiliteit van sterk-gekoppelde implisiete simulasies is beduidend verbeter deur die gebruik van vinnige Kwasi-Newton koppelingskemas vergeleke met konvensionele Aitken onderont- spanning. Die simulasies was daartoe in staat om die VSS binne die vloeistofomgewing te voorspel waarna die wand skuif sterkte (WSS) van die simulasies af verkry is. Die WSS was orde van grootte meer as die VSS, wat aangedui het dat die WSS ‘n baie groter oor- saak van plaatjieaktivering en hemolise kan wees. Hierdie studie demonstreer die effektiewe gebruik van polsduplikasie en partikel- beeldsnelheidsmeting om hartklephemodinamika eksperimenteel te evalueer. Die stu- die wys ook verder dat stofdigtheidsgebaseerde vloeistofstruktuurinteraksie simulasies daartoe in staat is om in ‘n vroeë ontwerpstadium ‘n aanduiding te gee van hemodina- miese hartklepprestasie, wat vervaardigings- en eksperimentele omdraaitye asook koste verminder. Stellenbosch University https://scholar.sun.ac.za Acknowledgements This study would not have been possible without the contributions of many people. I would like to thank: • My supervisors Dr. Cobus Müller, Prof. Chris Meyer and Prof. Francis Smit. Their guidance and patience was invaluable throughout this study. I thank them for their financial support, and providing me with the opportunity to travel and learn from experts around the world. • Everyone at the Cardiothoracic Surgery Department for the interesting conversa- tions and much needed coffee breaks in the office, and for making the move to Bloemfontein easier than expected. • The Centre for Rapid Prototyping and Manufacturing at the Central University of Technology, for their assistance with manufacturing of the heart valves. • The preCICE research group at the Technical University of Munich