Curve Fitting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unsupervised Contour Representation and Estimation Using B-Splines and a Minimum Description Length Criterion Mário A
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 6, JUNE 2000 1075 Unsupervised Contour Representation and Estimation Using B-Splines and a Minimum Description Length Criterion Mário A. T. Figueiredo, Member, IEEE, José M. N. Leitão, Member, IEEE, and Anil K. Jain, Fellow, IEEE Abstract—This paper describes a new approach to adaptive having external/potential energy, which is a func- estimation of parametric deformable contours based on B-spline tion of certain features of the image The equilibrium (min- representations. The problem is formulated in a statistical imal total energy) configuration framework with the likelihood function being derived from a re- gion-based image model. The parameters of the image model, the (1) contour parameters, and the B-spline parameterization order (i.e., the number of control points) are all considered unknown. The is a compromise between smoothness (enforced by the elastic parameterization order is estimated via a minimum description nature of the model) and proximity to the desired image features length (MDL) type criterion. A deterministic iterative algorithm is (by action of the external potential). developed to implement the derived contour estimation criterion. Several drawbacks of conventional snakes, such as their “my- The result is an unsupervised parametric deformable contour: it adapts its degree of smoothness/complexity (number of control opia” (i.e., use of image data strictly along the boundary), have points) and it also estimates the observation (image) model stimulated a great amount of research; although most limitations parameters. The experiments reported in the paper, performed of the original formulation have been successfully addressed on synthetic and real (medical) images, confirm the adequacy and (see, e.g., [6], [9], [10], [34], [38], [43], [49], and [52]), non- good performance of the approach. -
Chapter 26: Mathcad-Data Analysis Functions
Lecture 3 MATHCAD-DATA ANALYSIS FUNCTIONS Objectives Graphs in MathCAD Built-in Functions for basic calculations: Square roots, Systems of linear equations Interpolation on data sets Linear regression Symbolic calculation Graphing with MathCAD Plotting vector against vector: The vectors must have equal number of elements. MathCAD plots values in its default units. To change units in the plot……? Divide your axis by the desired unit. Or remove the units from the defined vectors Use Graph Toolbox or [Shift-2] Or Insert/Graph from menu Graphing 1 20 2 28 time 3 min Temp 35 K time 4 42 Time min 5 49 40 40 Temp Temp 20 20 100 200 300 2 4 time Time Graphing with MathCAD 1 20 Plotting element by 2 28 element: define a time 3 min Temp 35 K 4 42 range variable 5 49 containing as many i 04 element as each of the vectors. 40 i:=0..4 Temp i 20 100 200 300 timei QuickPlots Use when you want to x 0 0.12 see what a function looks like 1 Create a x-y graph Enter the function on sin(x) 0 y-axis with parameter(s) 1 Enter the parameter on 0 2 4 6 x-axis x Graphing with MathCAD Plotting multiple curves:up to 16 curves in a single graph. Example: For 2 dependent variables (y) and 1 independent variable (x) Press shift2 (create a x-y plot) On the y axis enter the first y variable then press comma to enter the second y variable. On the x axis enter your x variable. -
Chebyshev Polynomials of the Second, Third and Fourth Kinds in Approximation, Indefinite Integration, and Integral Transforms *
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 49 (1993) 169-178 169 North-Holland CAM 1429 Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms * J.C. Mason Applied and Computational Mathematics Group, Royal Military College of Science, Shrivenham, Swindon, Wiltshire, United Kingdom Dedicated to Dr. D.F. Mayers on the occasion of his 60th birthday Received 18 February 1992 Revised 31 March 1992 Abstract Mason, J.C., Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms, Journal of Computational and Applied Mathematics 49 (1993) 169-178. Chebyshev polynomials of the third and fourth kinds, orthogonal with respect to (l+ x)‘/‘(l- x)-‘I* and (l- x)‘/*(l+ x)-‘/~, respectively, on [ - 1, 11, are less well known than traditional first- and second-kind polynomials. We therefore summarise basic properties of all four polynomials, and then show how some well-known properties of first-kind polynomials extend to cover second-, third- and fourth-kind polynomials. Specifically, we summarise a recent set of first-, second-, third- and fourth-kind results for near-minimax constrained approximation by series and interpolation criteria, then we give new uniform convergence results for the indefinite integration of functions weighted by (1 + x)-i/* or (1 - x)-l/* using third- or fourth-kind polynomial expansions, and finally we establish a set of logarithmically singular integral transforms for which weighted first-, second-, third- and fourth-kind polynomials are eigenfunctions. -
Generalizations of Chebyshev Polynomials and Polynomial Mappings
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 359, Number 10, October 2007, Pages 4787–4828 S 0002-9947(07)04022-6 Article electronically published on May 17, 2007 GENERALIZATIONS OF CHEBYSHEV POLYNOMIALS AND POLYNOMIAL MAPPINGS YANG CHEN, JAMES GRIFFIN, AND MOURAD E.H. ISMAIL Abstract. In this paper we show how polynomial mappings of degree K from a union of disjoint intervals onto [−1, 1] generate a countable number of spe- cial cases of generalizations of Chebyshev polynomials. We also derive a new expression for these generalized Chebyshev polynomials for any genus g, from which the coefficients of xn can be found explicitly in terms of the branch points and the recurrence coefficients. We find that this representation is use- ful for specializing to polynomial mapping cases for small K where we will have explicit expressions for the recurrence coefficients in terms of the branch points. We study in detail certain special cases of the polynomials for small degree mappings and prove a theorem concerning the location of the zeroes of the polynomials. We also derive an explicit expression for the discrimi- nant for the genus 1 case of our Chebyshev polynomials that is valid for any configuration of the branch point. 1. Introduction and preliminaries Akhiezer [2], [1] and, Akhiezer and Tomˇcuk [3] introduced orthogonal polynomi- als on two intervals which generalize the Chebyshev polynomials. He observed that the study of properties of these polynomials requires the use of elliptic functions. In thecaseofmorethantwointervals,Tomˇcuk [17], investigated their Bernstein-Szeg˝o asymptotics, with the theory of Hyperelliptic integrals, and found expressions in terms of a certain Abelian integral of the third kind. -
Chebyshev and Fourier Spectral Methods 2000
Chebyshev and Fourier Spectral Methods Second Edition John P. Boyd University of Michigan Ann Arbor, Michigan 48109-2143 email: [email protected] http://www-personal.engin.umich.edu/jpboyd/ 2000 DOVER Publications, Inc. 31 East 2nd Street Mineola, New York 11501 1 Dedication To Marilyn, Ian, and Emma “A computation is a temptation that should be resisted as long as possible.” — J. P. Boyd, paraphrasing T. S. Eliot i Contents PREFACE x Acknowledgments xiv Errata and Extended-Bibliography xvi 1 Introduction 1 1.1 Series expansions .................................. 1 1.2 First Example .................................... 2 1.3 Comparison with finite element methods .................... 4 1.4 Comparisons with Finite Differences ....................... 6 1.5 Parallel Computers ................................. 9 1.6 Choice of basis functions .............................. 9 1.7 Boundary conditions ................................ 10 1.8 Non-Interpolating and Pseudospectral ...................... 12 1.9 Nonlinearity ..................................... 13 1.10 Time-dependent problems ............................. 15 1.11 FAQ: Frequently Asked Questions ........................ 16 1.12 The Chrysalis .................................... 17 2 Chebyshev & Fourier Series 19 2.1 Introduction ..................................... 19 2.2 Fourier series .................................... 20 2.3 Orders of Convergence ............................... 25 2.4 Convergence Order ................................. 27 2.5 Assumption of Equal Errors ........................... -
Dymore User's Manual Chebyshev Polynomials
Dymore User's Manual Chebyshev polynomials Olivier A. Bauchau August 27, 2019 Contents 1 Definition 1 1.1 Zeros and extrema....................................2 1.2 Orthogonality relationships................................3 1.3 Derivatives of Chebyshev polynomials..........................5 1.4 Integral of Chebyshev polynomials............................5 1.5 Products of Chebyshev polynomials...........................5 2 Chebyshev approximation of functions of a single variable6 2.1 Expansion of a function in Chebyshev polynomials...................6 2.2 Evaluation of Chebyshev expansions: Clenshaw's recurrence.............7 2.3 Derivatives and integrals of Chebyshev expansions...................7 2.4 Products of Chebyshev expansions...........................8 2.5 Examples.........................................9 2.6 Clenshaw-Curtis quadrature............................... 10 3 Chebyshev approximation of functions of two variables 12 3.1 Expansion of a function in Chebyshev polynomials................... 12 3.2 Evaluation of Chebyshev expansions: Clenshaw's recurrence............. 13 3.3 Derivatives of Chebyshev expansions.......................... 14 4 Chebychev polynomials 15 4.1 Examples......................................... 16 1 Definition Chebyshev polynomials [1,2] form a series of orthogonal polynomials, which play an important role in the theory of approximation. The lowest polynomials are 2 3 4 2 T0(x) = 1;T1(x) = x; T2(x) = 2x − 1;T3(x) = 4x − 3x; T4(x) = 8x − 8x + 1;::: (1) 1 and are depicted in fig.1. The polynomials can be generated from the following recurrence rela- tionship Tn+1 = 2xTn − Tn−1; n ≥ 1: (2) 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 CHEBYSHEV POLYNOMIALS −0.6 −0.8 −1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 XX Figure 1: The seven lowest order Chebyshev polynomials It is possible to give an explicit expression of Chebyshev polynomials as Tn(x) = cos(n arccos x): (3) This equation can be verified by using elementary trigonometric identities. -
Approximation Atkinson Chapter 4, Dahlquist & Bjork Section 4.5
Approximation Atkinson Chapter 4, Dahlquist & Bjork Section 4.5, Trefethen's book Topics marked with ∗ are not on the exam 1 In approximation theory we want to find a function p(x) that is `close' to another function f(x). We can define closeness using any metric or norm, e.g. Z 2 2 kf(x) − p(x)k2 = (f(x) − p(x)) dx or kf(x) − p(x)k1 = sup jf(x) − p(x)j or Z kf(x) − p(x)k1 = jf(x) − p(x)jdx: In order for these norms to make sense we need to restrict the functions f and p to suitable function spaces. The polynomial approximation problem takes the form: Find a polynomial of degree at most n that minimizes the norm of the error. Naturally we will consider (i) whether a solution exists and is unique, (ii) whether the approximation converges as n ! 1. In our section on approximation (loosely following Atkinson, Chapter 4), we will first focus on approximation in the infinity norm, then in the 2 norm and related norms. 2 Existence for optimal polynomial approximation. Theorem (no reference): For every n ≥ 0 and f 2 C([a; b]) there is a polynomial of degree ≤ n that minimizes kf(x) − p(x)k where k · k is some norm on C([a; b]). Proof: To show that a minimum/minimizer exists, we want to find some compact subset of the set of polynomials of degree ≤ n (which is a finite-dimensional space) and show that the inf over this subset is less than the inf over everything else. -
Curve Fitting Project
Curve fitting project OVERVIEW Least squares best fit of data, also called regression analysis or curve fitting, is commonly performed on all kinds of measured data. Sometimes the data is linear, but often higher-order polynomial approximations are necessary to adequately describe the trend in the data. In this project, two data sets will be analyzed using various techniques in both MATLAB and Excel. Consideration will be given to selecting which data points should be included in the regression, and what order of regression should be performed. TOOLS NEEDED MATLAB and Excel can both be used to perform regression analyses. For procedural details on how to do this, see Appendix A. PART A Several curve fits are to be performed for the following data points: 14 x y 12 0.00 0.000 0.10 1.184 10 0.32 3.600 0.52 6.052 8 0.73 8.459 0.90 10.893 6 1.00 12.116 4 1.20 12.900 1.48 13.330 2 1.68 13.243 1.90 13.244 0 2.10 13.250 0 0.5 1 1.5 2 2.5 2.30 13.243 1. Using MATLAB, fit a single line through all of the points. Plot the result, noting the equation of the line and the R2 value. Does this line seem to be a sensible way to describe this data? 2. Using Microsoft Excel, again fit a single line through all of the points. 3. Using hand calculations, fit a line through a subset of points (3 or 4) to confirm that the process is understood. -
Nonlinear Least-Squares Curve Fitting with Microsoft Excel Solver
Information • Textbooks • Media • Resources edited by Computer Bulletin Board Steven D. Gammon University of Idaho Moscow, ID 83844 Nonlinear Least-Squares Curve Fitting with Microsoft Excel Solver Daniel C. Harris Chemistry & Materials Branch, Research & Technology Division, Naval Air Warfare Center,China Lake, CA 93555 A powerful tool that is widely available in spreadsheets Unweighted Least Squares provides a simple means of fitting experimental data to non- linear functions. The procedure is so easy to use and its Experimental values of x and y from Figure 1 are listed mode of operation is so obvious that it is an excellent way in the first two columns of the spreadsheet in Figure 2. The for students to learn the underlying principle of least- vertical deviation of the ith point from the smooth curve is squares curve fitting. The purpose of this article is to intro- vertical deviation = yi (observed) – yi (calculated) (2) duce the method of Walsh and Diamond (1) to readers of = yi – (Axi + B/xi + C) this Journal, to extend their treatment to weighted least The least squares criterion is to find values of A, B, and squares, and to add a simple method for estimating uncer- C in eq 1 that minimize the sum of the squares of the verti- tainties in the least-square parameters. Other recipes for cal deviations of the points from the curve: curve fitting have been presented in numerous previous papers (2–16). n 2 Σ Consider the problem of fitting the experimental gas sum = yi ± Axi + B / xi + C (3) chromatography data (17) in Figure 1 with the van Deemter i =1 equation: where n is the total number of points (= 13 in Fig. -
(EU FP7 2013 - 612218/3D-NET) 3DNET Sops HOW-TO-DO PRACTICAL GUIDE
3D-NET (EU FP7 2013 - 612218/3D-NET) 3DNET SOPs HOW-TO-DO PRACTICAL GUIDE Curve fitting This is intended to be an aid-memoir for those involved in fitting biological data to dose response curves in why we do it and how to best do it. So why do we use non linear regression? Much of the data generated in Biology is sigmoidal dose response (E/[A]) curves, the aim is to generate estimates of upper and lower asymptotes, A50 and slope parameters and their associated confidence limits. How can we analyse E/[A] data? Why fit curves? What’s wrong with joining the dots? Fitting Uses all the data points to estimate each parameter Tell us the confidence that we can have in each parameter estimate Estimates a slope parameter Fitting curves to data is model fitting. The general equation for a sigmoidal dose-response curve is commonly referred to as the ‘Hill equation’ or the ‘four-parameter logistic equation”. (Top Bottom) Re sponse Bottom EC50hillslope 1 [Drug]hillslpoe The models most commonly used in Biology for fitting these data are ‘model 205 – Dose response one site -4 Parameter Logistic Model or Sigmoidal Dose-Response Model’ in XLfit (package used in ActivityBase or Excel) and ‘non-linear regression - sigmoidal variable slope’ in GraphPad Prism. What the computer does - Non-linear least squares Starts with an initial estimated value for each variable in the equation Generates the curve defined by these values Calculates the sum of squares Adjusts the variables to make the curve come closer to the data points (Marquardt method) Re-calculates the sum of squares Continues this iteration until there’s virtually no difference between successive fittings. -
A Grid Algorithm for High Throughput Fitting of Dose-Response Curve Data Yuhong Wang*, Ajit Jadhav, Noel Southal, Ruili Huang and Dac-Trung Nguyen
Current Chemical Genomics, 2010, 4, 57-66 57 Open Access A Grid Algorithm for High Throughput Fitting of Dose-Response Curve Data Yuhong Wang*, Ajit Jadhav, Noel Southal, Ruili Huang and Dac-Trung Nguyen National Institutes of Health, NIH Chemical Genomics Center, 9800 Medical Center Drive, Rockville, MD 20850, USA Abstract: We describe a novel algorithm, Grid algorithm, and the corresponding computer program for high throughput fitting of dose-response curves that are described by the four-parameter symmetric logistic dose-response model. The Grid algorithm searches through all points in a grid of four dimensions (parameters) and finds the optimum one that corre- sponds to the best fit. Using simulated dose-response curves, we examined the Grid program’s performance in reproduc- ing the actual values that were used to generate the simulated data and compared it with the DRC package for the lan- guage and environment R and the XLfit add-in for Microsoft Excel. The Grid program was robust and consistently recov- ered the actual values for both complete and partial curves with or without noise. Both DRC and XLfit performed well on data without noise, but they were sensitive to and their performance degraded rapidly with increasing noise. The Grid program is automated and scalable to millions of dose-response curves, and it is able to process 100,000 dose-response curves from high throughput screening experiment per CPU hour. The Grid program has the potential of greatly increas- ing the productivity of large-scale dose-response data analysis and early drug discovery processes, and it is also applicable to many other curve fitting problems in chemical, biological, and medical sciences. -
Fitting Conics to Noisy Data Using Stochastic Linearization
Fitting Conics to Noisy Data Using Stochastic Linearization Marcus Baum and Uwe D. Hanebeck Abstract— Fitting conic sections, e.g., ellipses or circles, to LRF noisy data points is a fundamental sensor data processing problem, which frequently arises in robotics. In this paper, we introduce a new procedure for deriving a recursive Gaussian state estimator for fitting conics to data corrupted by additive Measurements Gaussian noise. For this purpose, the original exact implicit measurement equation is reformulated with the help of suitable Fig. 1: Laser rangefinder (LRF) scanning a circular object. approximations as an explicit measurement equation corrupted by multiplicative noise. Based on stochastic linearization, an efficient Gaussian state estimator is derived for the explicit measurement equation. The performance of the new approach distributions for the parameter vector of the conic based is evaluated by means of a typical ellipse fitting scenario. on Bayes’ rule. An explicit description of the parameter uncertainties with a probability distribution is in particular I. INTRODUCTION important for performing gating, i.e., dismissing unprobable In this work, the problem of fitting a conic section such measurements, and tracking multiple conics. Furthermore, as an ellipse or a circle to noisy data points is considered. the temporal evolution of the state can be captured with This fundamental problem arises in many applications related a stochastic system model, which allows to propagate the to robotics. A traditional application is computer vision, uncertainty about the state to the next time step. where ellipses and circles are fitted to features extracted A. Contributions from images [1]–[4] in order to detect, localize, and track objects.