Neurologic Deterioration Secondary to Unrecognized Spinal Instability Following Trauma–A Multicenter Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spinal Cord Injury and Traumatic Brain Injury Research Grant Program Report 2020
This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp Spinal Cord Injury and Traumatic Brain Injury Research Grant Program Report January 15, 2020 Author About the Minnesota Office of Higher Education Alaina DeSalvo The Minnesota Office of Higher Education is a Competitive Grants Administrator cabinet-level state agency providing students with Tel: 651-259-3988 financial aid programs and information to help [email protected] them gain access to postsecondary education. The agency also serves as the state’s clearinghouse for data, research and analysis on postsecondary enrollment, financial aid, finance and trends. The Minnesota State Grant Program is the largest financial aid program administered by the Office of Higher Education, awarding up to $207 million in need-based grants to Minnesota residents attending eligible colleges, universities and career schools in Minnesota. The agency oversees other state scholarship programs, tuition reciprocity programs, a student loan program, Minnesota’s 529 College Savings Plan, licensing and early college awareness programs for youth. Minnesota Office of Higher Education 1450 Energy Park Drive, Suite 350 Saint Paul, MN 55108-5227 Tel: 651.642.0567 or 800.657.3866 TTY Relay: 800.627.3529 Fax: 651.642.0675 Email: [email protected] Table of Contents Introduction 1 Spinal Cord Injury and Traumatic Brain Injury Advisory Council 1 FY 2020 Proposal Solicitation Schedule -
Degloving Injury: Different Ways of Management 76
CASE REPORT Journal of Nepalgunj Medical College, 2018 Degloving Injury: Different Ways of Management Nakarmi KK1, Shrestha SP2 ABSTRACT Degloving injury involves shearing of the skin from the underlying tissue due to differential gliding in response to the tangential force applied to the surface of the body leading to disruption of all the blood vessels connected to skin. The flap of degloved skin has precarious blood supply making it almost impossible for the flap to survive. We describe two cases of degloving of thigh managed differently in different settings. Keywords: degloving; excision; split skin graft INTRODUCTION management of these patients have been associated with Degloving injuries occur when there is sufficient tangential force lesser number of surgeries and shorter hospital stay6. Clinical to a body surface to disrupt the structures connecting skin and evaluation aided by use of fluorescein dye to assess the flap subcutaneous tissues to the superficial fascia. There may also be viability will guide whether skin can be harvested from the associated injuries to the underlying soft tissues, bone, nerves flap which can be stored for later use if general condition and vessels. It involves the young males, and most are related to does not allow immediate grafting7. Use of the degloved flap road traffic accident constituting upto 4% of all the trauma after defatting along with negative pressure wound therapy related admissions. Treatment guidelines are not clear1. The has also been described8. injury may be so severe that the limb is non-viable and requires amputation. It has been classified into three group based on Cases whether only skin, underlying soft tissue or bone is involved in Case 1 the injury process2. -
Major Extremity Trauma Module
MAJOR EXTREMITY TRAUMA MODULE INTRODUCTION Extremity trauma in general is extremely common, and may be characterised by the following: • Occur in isolation, or in the multiply injured patient; • Be limb threatening and occasionally life threatening • Occur secondary to blunt or penetrating trauma • Present with degrees of severity from a closed, neurovascularly intact simple fracture through to a mangled extremity or traumatic amputation • Involve skeletal, soft tissue, vascular and neurological structures in various combinations While the principles of assessment are consistent irrespective of the severity of the injury, this module does not specifically address simple closed fractures. Rather, this module focuses on the assessment and management of more severe limb trauma and its complications. The most common mechanisms for major extremity trauma are open fractures, crush injuries and major soft tissue injury from motor vehicle crashes, pedestrian injuries, falls from heights and industrial accidents. 1 The lower limb is more frequently involved than the upper limb. Penetrating trauma resulting in vascular injuries is unfortunately increasing in frequency. Assessment and management of major extremity trauma must occur in the context of assessing and managing the patient as a whole. Life-threatening injuries, which should be identified as part of the primary survey, will always take precedence over limb-threatening injuries, which may not be identified until the secondary survey. Life threatening extremity injuries include: • Pelvic -
T5 Spinal Cord Injuries
Spinal Cord (2020) 58:1249–1254 https://doi.org/10.1038/s41393-020-0506-7 ARTICLE Predictors of respiratory complications in patients with C5–T5 spinal cord injuries 1 2,3 3,4 1,5 1,5 Júlia Sampol ● Miguel Ángel González-Viejo ● Alba Gómez ● Sergi Martí ● Mercedes Pallero ● 1,4,5 3,4 1,4,5 1,4,5 Esther Rodríguez ● Patricia Launois ● Gabriel Sampol ● Jaume Ferrer Received: 19 December 2019 / Revised: 12 June 2020 / Accepted: 12 June 2020 / Published online: 24 June 2020 © The Author(s), under exclusive licence to International Spinal Cord Society 2020 Abstract Study design Retrospective chart audit. Objectives Describing the respiratory complications and their predictive factors in patients with acute traumatic spinal cord injuries at C5–T5 level during the initial hospitalization. Setting Hospital Vall d’Hebron, Barcelona. Methods Data from patients admitted in a reference unit with acute traumatic injuries involving levels C5–T5. Respiratory complications were defined as: acute respiratory failure, respiratory infection, atelectasis, non-hemothorax pleural effusion, 1234567890();,: 1234567890();,: pulmonary embolism or haemoptysis. Candidate predictors of these complications were demographic data, comorbidity, smoking, history of respiratory disease, the spinal cord injury characteristics (level and ASIA Impairment Scale) and thoracic trauma. A logistic regression model was created to determine associations between potential predictors and respiratory complications. Results We studied 174 patients with an age of 47.9 (19.7) years, mostly men (87%), with low comorbidity. Coexistent thoracic trauma was found in 24 (19%) patients with cervical and 35 (75%) with thoracic injuries (p < 0.001). Respiratory complications were frequent (53%) and were associated to longer hospital stay: 83.1 (61.3) and 45.3 (28.1) days in patients with and without respiratory complications (p < 0.001). -
Pneumorrhachis of Thoracic Spine After Gunshot Wound Farooq Azam Rathore1, Zaheer Ahmad Gill2 and Malik Muhammad Amjad Yasin3
CASE REPORT Pneumorrhachis of Thoracic Spine After Gunshot Wound Farooq Azam Rathore1, Zaheer Ahmad Gill2 and Malik Muhammad Amjad Yasin3 ABSTRACT Air in the spinal canal (Pneumorrhachis) is a rare complication of traumatic spinal injuries reported at various levels of the spinal canal. Pneumorrhachis resolves spontaneously most of the times. Rarely, it may cause cord compression. It is important to rule out potentially serious causes like basilar skull fracture, injury to lungs, mediastinum, mastoid air cells, frontal sinuses or intestine. We present a case of pneumorrhachis in a young soldier who sustained gunshot wound in neck, resulting in spinal cord injury, He was managed conservatively and pneumorrhachis resolved spontaneously without complications. Pathogenesis along with review of relevant literature is presented. Key words: Pneumorrhachis. Air. Spinal canal. Spinal cord injury. Gunshot wound. Pakistan. INTRODUCTION evacuated to a tertiary care hospital by road. Upon Air in the spinal canal is called pneumorrhachis. It is also arrival, he had stable vital signs with a Glasgow Coma described as aerorachia, intraspinal pneumocele, Scale score of 15 and could recount the events leading pneumosaccus or pneumomyelogram.1 It is a rare but to his injury. There were no complaints of dysphagia or documented complication of many traumatic (pneumo- respiratory difficulty at presentation and during his stay thorax, spinal fracture, basilar skull fracture) and non- at the rehabilitation department. traumatic events (vertebral metastases, spontaneous X-rays of the thoracic spine revealed comminuted pneumomediastinum).2-6 fracture of the first dorsal vertebra (DV1), while X-ray Presence of air in spinal canal itself is harmless and chest was negative for pneumothorax or mediastinal absorbs spontaneously in due course of time, yet some widening (Figure 1). -
Update on Critical Care for Acute Spinal Cord Injury in the Setting of Polytrauma
NEUROSURGICAL FOCUS Neurosurg Focus 43 (5):E19, 2017 Update on critical care for acute spinal cord injury in the setting of polytrauma *John K. Yue, BA,1,2 Ethan A. Winkler, MD, PhD,1,2 Jonathan W. Rick, BS,1,2 Hansen Deng, BA,1,2 Carlene P. Partow, BS,1,2 Pavan S. Upadhyayula, BA,3 Harjus S. Birk, MD,3 Andrew K. Chan, MD,1,2 and Sanjay S. Dhall, MD1,2 1Department of Neurological Surgery, University of California, San Francisco; 2Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco; and 3Department of Neurological Surgery, University of California, San Diego, California Traumatic spinal cord injury (SCI) often occurs in patients with concurrent traumatic injuries in other body systems. These patients with polytrauma pose unique challenges to clinicians. The current review evaluates existing guidelines and updates the evidence for prehospital transport, immobilization, initial resuscitation, critical care, hemodynamic stabil- ity, diagnostic imaging, surgical techniques, and timing appropriate for the patient with SCI who has multisystem trauma. Initial management should be systematic, with focus on spinal immobilization, timely transport, and optimizing perfusion to the spinal cord. There is general evidence for the maintenance of mean arterial pressure of > 85 mm Hg during imme- diate and acute care to optimize neurological outcome; however, the selection of vasopressor type and duration should be judicious, with considerations for level of injury and risks of increased cardiogenic complications in the elderly. Level II recommendations exist for early decompression, and additional time points of neurological assessment within the first 24 hours and during acute care are warranted to determine the temporality of benefits attributable to early surgery. -
Posttraumatic Stress Following Spinal Cord Injury: a Systematic Review of Risk and Vulnerability Factors
Spinal Cord (2017) 55, 800–811 & 2017 International Spinal Cord Society All rights reserved 1362-4393/17 www.nature.com/sc REVIEW Posttraumatic stress following spinal cord injury: a systematic review of risk and vulnerability factors K Pollock1,3, D Dorstyn1,3, L Butt2 and S Prentice1 Objectives: To summarise quantitatively the available evidence relating to pretraumatic, peritraumatic and posttraumatic characteristics that may increase or decrease the risk of developing posttraumatic stress disorder (PTSD) following spinal cord injury (SCI). Study design: Systematic review. Methods: Seventeen studies were identified from the PubMed, PsycInfo, Embase, Scopus, CINAHL, Web of Science and PILOTS databases. Effect size estimates (r) with associated 95% confidence intervals (CIs), P-values and fail-safe Ns were calculated. Results: Individual studies reported medium-to-large associations between factors that occurred before (psychiatric history r = 0.48 (95% CI, 0.23–0.79) P = 0.01) or at the time of injury (tetraplegia r = − 0.36 (95% CI, − 0.50 to − 0.19) Po0.01). Postinjury factors had the strongest pooled effects: depressed mood (rw = 0.64, (95% CI, 0.54–0.72)), negative appraisals (rw = 0.63 (95% CI, 0.52– 0.72)), distress (rw = 0.57 (95% CI, 0.50–0.62)), anxiety (rw = 0.56 (95% CI, 0.49–0.61)) and pain severity (rw = 0.35 (95% CI, 0.27– 0.43)) were consistently related to worsening PTSD symptoms (Po0.01). Level of injury significantly correlated with current PTSD severity for veteran populations (QB (1) = 18.25, Po0.001), although this was based on limited data. -
18.2 1 Degloving Injuries
18.2 1 Degloving Injuries R. Reid Hanson, DVM, Diplomate ACVS and ACVECC Introduction Management of Degloving Injuries Healing of Distal Limb Wounds Wound Preparation and Evaluation Vascularity and Granulation Surgical Management Wound Contraction Open Wound Management Second Intention Healing Immobilization of the Wound Sequestra Formation Management of Sequestra Impediments to Wound Healing Skin Grafting Healing of Degloving Wounds Conclusion Complications Associated with Denuded References Bone Methods to Stimulate the Growth of Granulation Tissue Introduction Horses are subject to trauma in relation to their locale, use, and character. Wire fences, sheet metal, or other sharp objects in the environment, as well as entrapment between two immovable objects or during transport, are often the cause of injury. The wounds are commonly associated with extensive soft tissue loss, crush injury, and harsh contamination, which necessitate open wound management and second intention healing. One of the most difficultof these wounds to heal is the degloving injury that exposes bone by avulsion of the skin and subcutaneous tissues overlying it. Exposed bone is defined as bone denuded of periosteum, which in an open wound can delay second inten- tion healing indirectly and directly.' The rigid nature of bone indirectly inhibits contraction of granulation tissue and can prolong the inflammatory phase of repair.' Prolonged periods may be required for extensive wounds of the distal extremity with denuded bone and tendon to become covered with a healthy, uniform bed of granu- lation tiss~e.~Desiccation of the superficial layers of exposed bone can lead to sequestrum formation, which is one of the most common causes for delayed healing of wounds of the distal limb of horse^.^ Rapid coverage of exposed bone with granulation tissue can decrease healing time and prevent desiccation of exposed bone and subsequent sequestrum formation. -
Osteoporosis and Vertebral Compression (Spinal) Fractures Fact Sheet
Osteoporosis and Vertebral Compression (Spinal) Fractures Fact Sheet About Osteoporosis • Osteoporosis is estimated to affect 200 million women worldwide.1 • Worldwide, osteoporosis causes more than nine million fractures annually, resulting in an osteoporotic fracture every three seconds.1 • A recent report issued by the Surgeon General noted that by 2020, one in two Americans over age 50 will be at risk for fractures from osteoporosis and low bone mass.2 • Although prevalent, 75 percent of women and 90 percent of men with a high likelihood of developing osteoporosis are not investigated. 3 • Up to 80 percent who have already had at least one osteoporotic fracture are neither identified nor treated.3 • Overall, 61 percent of osteoporotic fractures occur in women, with a female-to-male ratio of 1.6.4 • A prior fracture is associated with an 86 percent increased risk of any fracture.5 • In 2005, osteoporosis-related fractures cost the U.S. health care system about $17 billion per year.6 • Osteoporosis takes a huge personal and economic toll. In Europe, the disability due to osteoporosis is greater than that caused by cancers (with the exception of lung cancer) and is comparable to or greater than that lost to a variety of chronic non- communicable diseases, such as rheumatoid arthritis, osteoarthritis, chronic obstructive pulmonary disease (COPD) and ischemic heart disease.4 PMD009493-1.0 About Vertebral Compression (Spinal) Fractures • Osteoporosis causes more than 700,000 spinal fractures each year in the U.S. – more than twice the annual number of hip fractures1 – accounting for more than 100,000 hospital admissions and resulting in close to $1.5 billion in annual costs.8 • Vertebral fractures are the most common osteoporotic fracture, yet approximately two-thirds are undiagnosed and untreated. -
Degloving Wound Management by Second-Intention Healing
CLINICAL CASE: WOUND MANAGEMENT / PEER REVIEWED TEACHING TARGET IN-HOSPITAL TREATMENT AND AT-HOME CARE OF WOUND HEALING BY SECOND INTENTION ARE EQUALLY IMPORTANT COMPONENTS OF OPEN WOUND MANAGEMENT. CLIENT EDUCATION IS CRITICAL FOR A SUCCESSFUL OUTCOME. Degloving Wound Management by Second-Intention Healing Caleb Hudson, DVM, MS, DACVS (Small Animal) Gulf Coast Veterinary Specialists Houston, Texas Case Summary Rosie, a 6-month-old spayed female region, and right forelimb radiographs Chihuahua mix, presented for showed fractures of the third, fourth, evaluation after being hit by a car and fifth metacarpal bones and the several hours earlier. No systemic first phalange of digit 3. Carpal abnormalities were noted. Physical palpation revealed no evidence of examination disclosed a large varus or valgus instability, indicating degloving injury over her right the carpal collateral ligaments were forelimb proximal to the carpal intact. Thoracic radiographs disclosed joint and extending distally to the clear lung fields and a normal-sized tips of the phalanges. cardiac silhouette with no evidence of pulmonary contusions. The wound involved approximately 50% of the distal limb circumference Surgical debridement was indicated, and consisted of full-thickness soft- and Rosie was premedicated with Photo courtesy of Dana Gale, DVM tissue loss on the dorsal aspect of the d FIGURE 1 Degloving wound at initial hydromorphone and midazolam. presentation with exposure of the third metacarpus with exposure of the Anesthesia was induced using metacarpal bone second, third, and fourth metacarpal propofol and maintained using bones. (See Figure 1.) The carpal and isoflurane inhalant anesthesia. digital pads were intact. Palpation of The degloving wound was flushed was collected from the wound site the distal right forelimb elicited thoroughly with sterile saline and and submitted for bacterial culture instability and crepitus in the wound surgically debrided. -
Amc Trauma Practice Management Guidelines: Traumatic Brian Injury
AMC TRAUMA PRACTICE MANAGEMENT GUIDELINES: TRAUMATIC BRIAN INJURY Original 10/2018 Revised 1/2020 AMC TRAUMA PRACTICE MANAGEMENT GUIDELINES: TRAUMATIC BRIAN INJURY Purpose: Neurotrauma care must be continuously available for all TRAUMATIC BRIAN INJURY (TBI) and Spinal Cord Injury patients. SUPPORTIVE DATA Policy Statements: Neurosurgical providers must respond and be present for consultation and management decisions for patients with TBI or spinal cord injury within 30 minutes of consultation by the Trauma Service based on institution specific criteria. Neurosurgery Attending will arrive within 30 minutes for decreasing GCS with midline shift requiring operative decompression. Institution Specific Criteria and Definitions: TBI Initial Encounter Codes S06.1 Traumatic Cerebral Edema S06.2 Diffuse Traumatic Brain Injury S06.3 Focal Traumatic Brain Injury S06.4 Epidural Hemorrhage S06.5 Traumatic Subdural Hemorrhage S06.6 Traumatic Subarachnoid Hemorrhage S06.8 Other Specified Intracranial Injuries S06.9 Unspecified Intracranial Injury Spinal Cord Injury Cervical Initial Encounter Codes S14.0xxa Concussion and Edema of Cervical Spinal Cord, Initial Encounter S14.1 Other and Unspecified Injuries of Cervical Spinal Cord Spinal Cord Injury Thoracic Initial Encounter Codes S24.0xxa Concussion and Edema of Thoracic Spinal Cord, Initial Encounter S24.1 Other and Unspecified Injuries of Thoracic Spinal Cord Lumbar & Sacral Initial Encounter Codes S34.0 Concussion and Edema of Lumbar and Sacral Spinal Cord S34.1 Other and Unspecified Injury of Lumbar and Sacral Spinal Cord S34.3xxa Injury of Cauda Equina, Initial Encounter Background: The following clinical practice guidelines for management of traumatic brain injury were abstracted directly from the Brain Trauma Foundation’s Guidelines for the Management of Severe Traumatic Brain Injury 4th Edition. -
Fat Embolism Syndrome – a Qualitative Review of Its Incidence, Presentation, Pathogenesis and Management
2-RA_OA1 3/24/21 6:00 PM Page 1 Malaysian Orthopaedic Journal 2021 Vol 15 No 1 Timon C, et al doi: https://doi.org/10.5704/MOJ.2103.001 REVIEW ARTICLE Fat Embolism Syndrome – A Qualitative Review of its Incidence, Presentation, Pathogenesis and Management Timon C, MCh, Keady C, MSc, Murphy CG, FRCS Department of Trauma and Orthopaedics, Galway University Hospitals, Galway, Ireland This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited Date of submission: 12th November 2020 Date of acceptance: 05th March 2021 ABSTRACT DEFINITION AND INTRODUCTION Fat Embolism Syndrome (FES) is a poorly defined clinical Fat embolism 1 occurs when fat enters the circulation, this fat phenomenon which has been attributed to fat emboli entering can embolise and may or may not produce clinical the circulation. It is common, and its clinical presentation manifestations. may be either subtle or dramatic and life threatening. This is a review of the history, causes, pathophysiology, FES is a poorly defined clinical phenomenon which has been presentation, diagnosis and management of FES. FES mostly attributed to fat emboli entering the circulation. It classically occurs secondary to orthopaedic trauma; it is less frequently presents with respiratory, neurological and dermatological associated with other traumatic and atraumatic conditions. features. It typically occurs after long-bone fractures and There is no single test for diagnosing FES. Diagnosis of FES total hip arthroplasty, less frequently it is caused by burns is often missed due to its subclinical presentation and/or and soft tissue injuries 2.