Choices and Experiences with Type Level and Macro Programming in Scala
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reactive Programming with Scala, Lagom, Spark, Akka and Play
Issue October 2016 | presented by www.jaxenter.com #53 The digital magazine for enterprise developers Reactive Programming with Scala, Lagom, Spark, Akka and Play Interview with Scala creator Martin Odersky The state of Scala The Lagom Framework Lagom gives the developer a clear path DevOpsCon 2016: Our mission statement This is how we interpret modern DevOps ©istockphoto.com/moorsky Editorial Reactive programming is gaining momentum “We believe that a coherent approach to systems architec- If the definition “stream of events” does not satisfy your ture is needed, and we believe that all necessary aspects are thirst for knowledge, get ready to find out what reactive pro- already recognized individually: we want systems that are Re- gramming means to our experts in Scala, Lagom, Spark, Akka sponsive, Resilient, Elastic and Message Driven. We call these and Play. Plus, we talked to Scala creator Martin Odersky Reactive Systems.” – The Reactive Manifesto about the impending Scala 2.12, the current state of this pro- Why should anyone adopt reactive programming? Because gramming language and the technical innovations that await it allows you to make code more concise and focus on im- us. portant aspects such as the interdependence of events which Thirsty for more? Open the magazine and see what we have describe the business logic. Reactive programming means dif- prepared for you. ferent things to different people and we are not trying to rein- vent the wheel or define this concept. Instead we are allowing Gabriela Motroc, Editor our authors to prove how Scala, Lagom, Spark, Akka and Play co-exist and work together to create a reactive universe. -
Introduction to the Literature on Programming Language Design Gary T
Computer Science Technical Reports Computer Science 7-1999 Introduction to the Literature On Programming Language Design Gary T. Leavens Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons Recommended Citation Leavens, Gary T., "Introduction to the Literature On Programming Language Design" (1999). Computer Science Technical Reports. 59. http://lib.dr.iastate.edu/cs_techreports/59 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Introduction to the Literature On Programming Language Design Abstract This is an introduction to the literature on programming language design and related topics. It is intended to cite the most important work, and to provide a place for students to start a literature search. Keywords programming languages, semantics, type systems, polymorphism, type theory, data abstraction, functional programming, object-oriented programming, logic programming, declarative programming, parallel and distributed programming languages Disciplines Programming Languages and Compilers This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/59 Intro duction to the Literature On Programming Language Design Gary T. Leavens TR 93-01c Jan. 1993, revised Jan. 1994, Feb. 1996, and July 1999 Keywords: programming languages, semantics, typ e systems, p olymorphism, typ e theory, data abstrac- tion, functional programming, ob ject-oriented programming, logic programming, declarative programming, parallel and distributed programming languages. -
Programming-In-Scala.Pdf
Cover · Overview · Contents · Discuss · Suggest · Glossary · Index Programming in Scala Cover · Overview · Contents · Discuss · Suggest · Glossary · Index Programming in Scala Martin Odersky, Lex Spoon, Bill Venners artima ARTIMA PRESS MOUNTAIN VIEW,CALIFORNIA Cover · Overview · Contents · Discuss · Suggest · Glossary · Index iv Programming in Scala First Edition, Version 6 Martin Odersky is the creator of the Scala language and a professor at EPFL in Lausanne, Switzerland. Lex Spoon worked on Scala for two years as a post-doc with Martin Odersky. Bill Venners is president of Artima, Inc. Artima Press is an imprint of Artima, Inc. P.O. Box 390122, Mountain View, California 94039 Copyright © 2007, 2008 Martin Odersky, Lex Spoon, and Bill Venners. All rights reserved. First edition published as PrePrint™ eBook 2007 First edition published 2008 Produced in the United States of America 12 11 10 09 08 5 6 7 8 9 ISBN-10: 0-9815316-1-X ISBN-13: 978-0-9815316-1-8 No part of this publication may be reproduced, modified, distributed, stored in a retrieval system, republished, displayed, or performed, for commercial or noncommercial purposes or for compensation of any kind without prior written permission from Artima, Inc. All information and materials in this book are provided "as is" and without warranty of any kind. The term “Artima” and the Artima logo are trademarks or registered trademarks of Artima, Inc. All other company and/or product names may be trademarks or registered trademarks of their owners. Cover · Overview · Contents · Discuss · Suggest · Glossary · Index to Nastaran - M.O. to Fay - L.S. to Siew - B.V. -
The Grace Programming Language Draft Specification Ersionv 0.3.53
Portland State University PDXScholar Computer Science Faculty Publications and Presentations Computer Science 8-14-2013 The Grace Programming Language Draft Specification ersionV 0.3.53 Andrew P. Black Portland State University, [email protected] Kim B. Bruce James Noble Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac Part of the Programming Languages and Compilers Commons Let us know how access to this document benefits ou.y Citation Details Black, Andrew P.; Bruce, Kim B.; and Noble, James, "The Grace Programming Language Draft Specification Version 0.3.53" (2013). Computer Science Faculty Publications and Presentations. 93. https://pdxscholar.library.pdx.edu/compsci_fac/93 This Working Paper is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Grace Programming Language Draft Specification Version 0.353 Andrew P. Black Kim B. Bruce James Noble April 3, 2012 1 Introduction This is a specification of the Grace Programming Language. This spec- ification is notably incomplete, and everything is subject to change. In particular, this version does not address: • collection syntax and collection literals • tuples vs multiple values vs multiple returns • nested static type system (although we've made a start) • encapsulation system (privacy annotations) • module system • metadata (Java's @annotations, C] attributes, final, abstract etc) • purity and non-nulls. • reflection • assertions, data-structure invariants, pre & post conditions, contracts • regexps • test support • libraries, including more Numeric types For discussion and rationale, see http://gracelang.org. -
Programming in Scala
A comprehensive step-by-step guide Programming in Scala Martin Odersky Lex Spoon artima Bill Venners Prepared for jacques weiss Cover· Overview· Contents· Discuss· Suggest· Glossary· Index Programming in Scala PrePrint™ Edition Prepared for jacques weiss Cover· Overview· Contents· Discuss· Suggest· Glossary· Index iii Thank you for purchasing the PrePrint™ Edition of Programming in Scala. A PrePrint™ is a work-in-progress, a book that has not yet been fully written, reviewed, edited, or formatted. We are publishing this book as a PrePrint™ for two main reasons. First, even though this book is not quite finished, the information contained in its pages can already provide value to many readers. Second, we hope to get reports of errata and suggestions for improvement from those readers while we still have time incorporate them into the first printing. As a PrePrint™ customer, you’ll be able to download new PrePrint™ versions from Artima as the book evolves, as well as the final PDF of the book once finished. You’ll have access to the book’s content prior to its print publication, and can participate in its creation by submitting feedback. Please submit by clicking on the Suggest link at the bottom of each page. Thanks for your participation. We hope you find the book useful and enjoyable. Bill Venners President, Artima, Inc. Prepared for jacques weiss Cover· Overview· Contents· Discuss· Suggest· Glossary· Index Programming in Scala PrePrint™ Edition Martin Odersky, Lex Spoon, Bill Venners artima ARTIMA PRESS MOUNTAIN VIEW,CALIFORNIA Prepared for jacques weiss Cover· Overview· Contents· Discuss· Suggest· Glossary· Index v Programming in Scala PrePrint™ Edition Version 2 Martin Odersky is the creator of the Scala language and a professor at EPFL in Lausanne, Switzerland. -
Concepts in Programming Languages
Concepts in Programming Languages Alan Mycroft1 Computer Laboratory University of Cambridge CST Paper 7: 2017–2018 (Easter Term) www.cl.cam.ac.uk/teaching/1718/ConceptsPL/ 1Acknowledgement: various slides are based on Marcelo Fiore’s 2013/14 course. 1 / 240 Practicalities I Course web page: www.cl.cam.ac.uk/teaching/1718/ConceptsPL/ with lecture slides, exercise sheet and reading material. These slides play two roles – both “lecture notes" and “presentation material”; not every slide will be lectured in detail. I There are various code examples (particularly for JavaScript and Java applets) on the ‘materials’ tab of the course web page. I One exam question. I The syllabus and course has changed somewhat from that of 2015/16. I would be grateful for comments on any remaining ‘rough edges’, and for views on material which is either over- or under-represented. 2 / 240 Main books I J. C. Mitchell. Concepts in programming languages. Cambridge University Press, 2003. I T.W. Pratt and M. V.Zelkowitz. Programming Languages: Design and implementation (3RD EDITION). Prentice Hall, 1999. ? M. L. Scott. Programming language pragmatics (4TH EDITION). Elsevier, 2016. I R. Harper. Practical Foundations for Programming Languages. Cambridge University Press, 2013. 3 / 240 Context: so many programming languages Peter J. Landin: “The Next 700 Programming Languages”, CACM (published in 1966!). Some programming-language ‘family trees’ (too big for slide): http://www.oreilly.com/go/languageposter http://www.levenez.com/lang/ http://rigaux.org/language-study/diagram.html http://www.rackspace.com/blog/ infographic-evolution-of-computer-languages/ Plan of this course: pick out interesting programming-language concepts and major evolutionary trends. -
Fourteen Years of Software Engineering at ETH Zurich Bertrand Meyer Politecnico Di Milano and Innopolis University [email protected] Aug
Fourteen years of software engineering at ETH Zurich Bertrand Meyer Politecnico di Milano and Innopolis University [email protected] Aug. 2017; typo cor- rections, Dec. 2017. Abstract A Chair of Software Engineering existed at ETH Zurich, the Swiss Federal Institute of Technology, from 1 October 2001 to 31 January 2016, under my leadership. Our work, summarized here, covered a wide range of theoretical and practical topics, with object technology in the Eiffel method as the unifying thread1. Overview Computer science (“Informatik”) has a brilliant past at ETH Zurich, most notori- ously illustrated by Niklaus Wirth; but there has not traditionally been, nor is there now, a group or professorship with the name “software engineering”. The Chair of Software Engineering existed from 1 October 2001, when I was appointed on Wirth’s former position with the title of Professor of Software Engineering, until 31 January 2016. Our slogan, covering both the products and processes of software, was “help the world produce better software and produce software better”. This chapter is an account of what the Chair did towards this goal. It is divided into the following sections: 1. Basic data. 2. Conferences, journals, summer school and other outreach. 3. Courses taught. 4. Principle and experience of teaching programming. 5. Pedagogical tools and MOOCs. 6. Methods and tools for distributed software development. 7. Language development and standardization. 8. Software process and methodology, requirements analysis, agile methods. 9. Object persistence. 10. Verification: proofs, tests, automatic bug correction. 11. Concurrent programming. 12. Software for robotics. 13. Assessment. While this order of sections facilitates the presentation it requires some patience from the reader, since the topics that accounted for most of the chair’s attention, resources and scientific results appear from section 10 on. -
Bibliography
Bibliography [Aba94] Martin Abadi. Baby Modula-3 and a theory of objects. Journal of Functional Programming, 4:249–283, 1994. [AC93] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM Trans- actions on Programming Languages and Systems, 15(4):575–631, 1993. [AC95a] Martin Abadi and Luca Cardelli. An imperative object calculus. In P.D. Mosses and M. Nielsen, editors, TAPSOFT '95: Theory and Practice of Software De- velopment, pages 471–485. Springer-Verlag, LNCS 915, 1995. [AC95b] Martin Abadi and Luca Cardelli. On subtyping and matching. In Proceedings ECOOP '95, pages 145–167, 1995. [AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996. [ACV96] Martin Abadi, Luca Cardelli, and Ramesh Viswanathan. An interpretation of objects and object types. In Proc. ACM Symp. on Principles of Programming Lan- guages, pages 396–409, 1996. [AFM97] Ole Ageson, Stephen Freund, and John C. Mitchell. Adding parameterized types to Java. In ACM Symposium on Object-Oriented Programming: Systems, Lan- guages, and Applications, pages 49–65, 1997. [AGH99] Ken Arnold, James Gosling, and David Holmes. The Java Programming Lan- guage. Addison Wesley, third edition, 1999. [Ame87] Pierre America. Inheritance and subtyping in a parallel object-oriented lan- guage. In Jean Bezivin et al., editor, ECOOP '87, pages 234–242. Springer-Verlag, LNCS 276, 1987. [AvdL90] Pierre America and Frank van der Linden. A parallel object-oriented lan- guage with inheritance and subtyping. In OOPSLA-ECOOP '90 Proceedings, pages 161–168. ACM SIGPLAN Notices,25(10), October 1990. [Bac81] J. W. Backus. The history of FORTRAN I, II, and III. In R.