Stratified Tonal Changes in Shaoguan Dialect of Northern Guangdong Lin

Total Page:16

File Type:pdf, Size:1020Kb

Stratified Tonal Changes in Shaoguan Dialect of Northern Guangdong Lin Stratified Tonal Changes in Shaoguan Dialect of Northern Guangdong Lin Deng University of Washington [email protected] Abstract The dialect under discussion is locally referred to as Bencheng sheng 本城聲, “native tongue of the city.” It is a dialect that had been spoken among native residents in the old town area of modern Shaoguan city, the northernmost major city in Guangdong province. Shaoguan dialect and a handful others in northern Guangdong are collectively named as Yuebei tuhua, “aboriginal dialects in Northern Guangdong.” With untypical mixture of features, these dialects remain a challenge to dialect classification. In the current paper, the author intends to touch upon this open problem from the perspective of stratification attested in tonal development, focusing on three sound changes occurred to original yangshang tone in Chinese dialectology convention. By identifying nature of each stratum, the author will come to conclude that the native layer reflects a change from yangshang into yinqu tone, and two other strata resulted from borrowing, one from either Cantonese or standard language, and the other from a shared layer between Gan and Hakka. To explore the nature of the native stratum, this paper will invoke the concept of “Proto-Gan”, which put forward in Sagart (2002), analyze the significance of the merger of yangshang and yinqu tone in terms of its geographical distribution among Chinese dialects, and raise a concern to the already vexing Gan- Hakka relationship. Possible factors that might have contributed to the native change will also be explored. Data in the paper is based on the author’s investigation, supported by the China Studies Program of the JSIS at University of Washington, in 2003. .
Recommended publications
  • Appendix 1: Rank of China's 338 Prefecture-Level Cities
    Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan
    [Show full text]
  • Analysis of CO2 Emission in Guangdong Province, China
    Feasibility Study of CCUS-Readiness in Guangdong Province, China (GDCCSR) Final Report: Part 1 Analysis of CO2 Emission in Guangdong Province, China GDCCSR-GIEC Team March 2013 Authors (GDCCSR-GIEC Team) Daiqing Zhao Cuiping Liao Ying Huang, Hongxu Guo Li Li, Weigang Liu (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China) For comments or queries please contact: Prof. Cuiping Liao [email protected] Announcement This is the first part of the final report of the project “Feasibility Study of CCS-Readiness in Guangdong (GDCCSR)”, which is funded by the Strategic Programme Fund of the UK Foreign & Commonwealth Office joint with the Global CCS Institute. The report is written based on published data mainly. The views in this report are the opinions of the authors and do not necessarily reflect those of the Guangzhou Institute of Energy Conversion, nor of the funding organizations. The complete list of the project reports are as follows: Part 1 Analysis of CO2 emission in Guangdong Province, China. Part 2 Assessment of CO2 Storage Potential for Guangdong Province, China. Part 3 CO2 Mitigation Potential and Cost Analysis of CCS in Power Sector in Guangdong Province, China. Part 4 Techno-economic and Commercial Opportunities for CCS-Ready Plants in Guangdong Province, China. Part 5 CCUS Capacity Building and Public Awareness in Guangdong Province, China Part 6 CCUS Development Roadmap Study for Guangdong Province, China Analysis of CO2 Emission in Guangdong Province Contents Background for the Report .........................................................................................2
    [Show full text]
  • HONG KONG and SOUTH CHINA: a BRIEF CHRONOLOGY (From Various Sources)
    HONG KONG AND SOUTH CHINA: A BRIEF CHRONOLOGY (from various sources) 214 BCE Guangzhou established in the Northern Pearl River delta and walled by Emperor Qin Shi Huang of the Qin dynasty (221-206 BCE). Area becomes a center for industry and trade. Nauyue kings of Western Han dynasty rule there (206 BCE-24 CE; tomb in Guangzhou). By Tang Dynasty (618-907 CCE): Guangzhou is international port, controlling almost all of China's spice trade amid activities of maritime coast. 12th –15th C. Southern Sung (1127-1280) and Yuan Dynasties (1280-1363) Hakka (guest) peoples move southward and settle in marginal areas. Guangzhou less accessible to Southern Sung capital than other centers in Fukien. 1368-1644 Ming Dynasty: consolidation of Chinese Rule. Guangzhou continues to develop, particularly known for silk, crafts and trade. Local intellectuals explore Cantonese culture. After 1431, however, China cuts off trade and contact with the world. 1513 Portuguese Jorge Alvares reaches mouth of the Pearl river on board a rented Burmese vessel and realizes he has located "Cathay" building upon a Portuguese route around Africa, India and Indonesia. In 1517 Tomas Pires, ambassador from Portugal, arrives with fleet in Canton. After waiting two years, meets the emperor in Nanjing, but treaties fail in Beijing when the Emperor Chang Te dies. After further misunderstandings on land and a sea battle with the fleet, relations deteriorate. Pires and his mission die in prison. 1540 Portuguese settle at Liampo on the Pearl River and begin lucrative trade with the Japanese, whom they find by accident in 1542. Liampo sacked by Chinese in 1549 and Portuguese retreat to the island of Sanchuang.
    [Show full text]
  • Complicated HCV Subtype Expansion Among Drug Users in Guangdong
    Infection, Genetics and Evolution 73 (2019) 139–145 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper Complicated HCV subtype expansion among drug users in Guangdong province, China T ⁎ Jin Yana, , Xiao-Bing Fua, Ping-Ping Zhoub, Xiang Heb, Jun Liua, Xu-He Huangb, Guo-Long Yua, Xin-Ge Yana, Jian-Rong Lia, Yan Lia, Peng Lina a Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Panyu District, Guangzhou 511430, Guangdong, China b Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Panyu District, Guangzhou 511430, Guangdong, China ARTICLE INFO ABSTRACT Keywords: Guangdong Province is one of the most developed and populous provinces in southern China. The subtype HCV situation of hepatitis C virus (HCV) in Guangdong remains unknown. The aim of this study was to investigate Subtype and estimate the HCV subtypes in drug users (DU) using a city-based sampling strategy to better understand the Drug users characteristics of HCV transmission in Guangdong. Archived plasma samples (n = 1074) from DU who were Molecular epidemiology anti-HCV positive in 2014 were selected randomly from 20 cities in Guangdong Province. Subtypes were de- Guangdong termined based on core and/or E1 sequences using phylogenetic analysis. The distributions of HCV subtypes in DU and different regions were analyzed. A total of 8 genotypes were identified. The three main HCV subtypes in DU in Guangdong were 6a (63.0%), 3a (15.2%), and 3b (11.8%). Significant differences were discovered among different registered residency and regions but not among genders, marital status, education level, or drug use patterns.
    [Show full text]
  • Guangdong Province, 2019
    China CDC Weekly Preplanned Studies Co-Administration of Multiple Childhood Vaccines — Guangdong Province, 2019 Hai Li1,2; Yanqiu Tan1,3; Haiying Zeng1,3; Fengmei Zeng1,4; Xing Xu1,5; Yu Liao1,6; Qi Zhu6; Meng Zhang1,6; Xuguang Chen1,6; Min Kang1,6; Fujie Xu7; Huizhen Zheng1,6,# This policy could save about 1137.62 RMB for each Summary child during their first 2 years of life. To provide scope, What is already known about this topic? 1.8 million infants in Guangdong received the first The Co-Administration of Multiple Vaccines were dose of Hepatitis B vaccine in 2018; based on the implemented in many countries and have been shown number of children, this policy could therefore save up to significantly reduce many times of visiting the to 2.0 billion RMB for families in Guangdong vaccination clinic. Province for this single vaccination event. The Co- What is added by this report? Administration of Multiple Vaccines Policy can It is the first time to calculate the cost of visiting significantly reduce vaccination costs for children’s vaccination clinic from transportation and work- families and can greatly improve the social cost- effectiveness of childhood vaccinations. Our findings absence for children’s families in Guangdong. suggest that Co-Administration of Multiple Vaccines What are the implications for public health should be implemented as soon as possible. practice? This study estimated the cost incurred by the We demonstrated the importance of Co- families with children under 2 years old in Guangdong Administration of Multiple Vaccines that reduce the Province during the process of inoculation.
    [Show full text]
  • ATTACHMENT 1 Barcode:3800584-02 C-570-107 INV - Investigation
    ATTACHMENT 1 Barcode:3800584-02 C-570-107 INV - Investigation - Chinese Producers of Wooden Cabinets and Vanities Company Name Company Information Company Name: A Shipping A Shipping Street Address: Room 1102, No. 288 Building No 4., Wuhua Road, Hongkou City: Shanghai Company Name: AA Cabinetry AA Cabinetry Street Address: Fanzhong Road Minzhong Town City: Zhongshan Company Name: Achiever Import and Export Co., Ltd. Street Address: No. 103 Taihe Road Gaoming Achiever Import And Export Co., City: Foshan Ltd. Country: PRC Phone: 0757-88828138 Company Name: Adornus Cabinetry Street Address: No.1 Man Xing Road Adornus Cabinetry City: Manshan Town, Lingang District Country: PRC Company Name: Aershin Cabinet Street Address: No.88 Xingyuan Avenue City: Rugao Aershin Cabinet Province/State: Jiangsu Country: PRC Phone: 13801858741 Website: http://www.aershin.com/i14470-m28456.htmIS Company Name: Air Sea Transport Street Address: 10F No. 71, Sung Chiang Road Air Sea Transport City: Taipei Country: Taiwan Company Name: All Ways Forwarding (PRe) Co., Ltd. Street Address: No. 268 South Zhongshan Rd. All Ways Forwarding (China) Co., City: Huangpu Ltd. Zip Code: 200010 Country: PRC Company Name: All Ways Logistics International (Asia Pacific) LLC. Street Address: Room 1106, No. 969 South, Zhongshan Road All Ways Logisitcs Asia City: Shanghai Country: PRC Company Name: Allan Street Address: No.188, Fengtai Road City: Hefei Allan Province/State: Anhui Zip Code: 23041 Country: PRC Company Name: Alliance Asia Co Lim Street Address: 2176 Rm100710 F Ho King Ctr No 2 6 Fa Yuen Street Alliance Asia Co Li City: Mongkok Country: PRC Company Name: ALMI Shipping and Logistics Street Address: Room 601 No.
    [Show full text]
  • Research on the Image Perception of Shaoguan Tourism Food Based on Kelly Grid Technology
    E3S Web of Conferences 251, 03025 (2021) https://doi.org/10.1051/e3sconf/202125103025 TEES 2021 Research on the Image Perception of Shaoguan Tourism Food Based on Kelly Grid Technology Li Yanfen1, * Guangzhou International Economics College, Baiyun District, Guangzhou City, Guangdong Province, China Abstract. This study takes Shaoguan City, Guangdong Province as an example to study tourists' perception of local tourist food image. The research method uses the Kelly grid technique. Through interviews with 24 tourists who have travelled to Shaoguan, 36 key constructs are obtained, and they are divided into cognitive and emotional constructs. Seven final representative constructs are presented. After sub-analysis, it was found that Shaoguan's tourism food development is lagging behind, the food environment needs to be improved, and the lack of representative food in the city, etc., and proposed to establish representative tourism food, improve dietary hygiene awareness, and use the Internet to increase publicity and other optimization development suggestions. attractiveness; from the perspective of tourism economy, tourism food can increase tourism income; from the 1 Introduction perspective of tourists, tourism food can enrich the In 2021, due to the impact of the new crown pneumonia tourism experience. epidemic, international travel will be restricted, and Therefore, this research starts with tourist food, domestic tourism and short-distance travel will increase analyzes tourists’ perception of Shaoguan’s food image, during the normalization and control phase of the finds problems, finds out countermeasures, and improves epidemic in China. the tourist attraction of Shaoguan. Shaoguan is located in the northern part of Guangdong Province, and Shaoguan has unique tourism resources.
    [Show full text]
  • First Records of Hypsugo Cadornae (Chiroptera: Vespertilionidae) in China Harrison 1987)
    Mammalia 2021; 85(2): 189–192 Short note Huan-Wang Xie, Xingwen Peng, Chunlan Zhang, Jie Liang, Xiangyang He, Jian Wang, Junhua Wang, Yuzhi Zhang and Libiao Zhang* First records of Hypsugo cadornae (Chiroptera: Vespertilionidae) in China https://doi.org/10.1515/mammalia-2020-0029 Harrison 1987). In 2005, Bates et al. described Hypsugo Received March 25, 2020; accepted August 4, 2020; published online pulveratus as a species morphologically similar to H. cador- August 27, 2020 nae (Bates et al. 2005). Whereas H. pulveratus is widely distributed in China (IUCNredlist, Wilson and Reeder 2005), Abstract: Hypsugo cadornae bats have been found in In- H. cadornae was not found there yet. dia, Myanmar, Thailand, Vietnam, Laos, and Cambodia. In H. cadornae was first discovered in north-eastern India 2017 and 2018, 15 medium size Hypsugo bats were collected (Thomas 1916) and later found in India, Myanmar (Bates from Shaoguan, Guangzhou, and Huizhou in Guangdong, and Harrison 1997), Thailand (Hill and Thonglongya 1972), China. Molecular and morphological examinations iden- Vietnam (Kruskop and Shchinov 2010), Laos (Görföl et al. tified them as H. cadornae. This is the first record of 2014), and Cambodia (Furey et al. 2012). In 2017 and 2018, H. cadornae in China. Morphological and ultrasonic char- we captured 15 medium size Hypsugo bats from Shaoguan, acteristics of H. cadornae were compared with its close Guangzhou, and Huizhou in Guangdong, China. Three relative, Hypsugo pulveratus. individuals from the three different cities were carefully Keywords: echolocation calls; Hypsugo; morphology; examined. phylogeny. Nine body and 12 skull morphological features were measured using a vernier caliper (0.01 mm) according to Hypsugo cadornae was formerly classified as a subspecies of Bates and Harrison (1997); Furey et al.
    [Show full text]
  • International System Summary: CHINA
    International System Summary: CHINA UIC Map of China’s High-Speed Rail Lines China is the fourth largest country in the world and domestic product (GDP) per capita of $8,400 ranks 120th. ranks first in total population. Bordering a total of 14 dif- Facing congested passenger and freight rail conditions, ferent countries, including Russia, India, Kazakhstan, and China chose to invest in capacity improvements on the ex- Vietnam, China has a widely diverse land use, terrain, and isting rail system and develop a dedicated high-speed rail climate. Maintaining several significant urban centers, network connecting the major population centers. The including Shanghai with 16.6 million people and Beijing figure above displays the International Union of Railways (capital) with 12.2 million people, the country is listed as (UIC) map of the 6,300 km (3,900 miles) of current and 47 percent urban. The country’s GDP of $11.29 trillion 7,200 km (4,500 miles) of planned high-speed rail network ranks as the third largest economy, following the Euro- lines in China. pean Union as a whole and the United States.. Its gross INTERNATIONAL HIGH-SPEED RAIL SYSTEM SUMMARY: CHINA | 1 SY STEM DESCRIPTION AND HISTORY Speed Year Length Stage According to the UIC, the first high-speed rail line seg- km/h mph Opened km miles ment in the China opened in 2003 between Qinhuangdao Under Consturction: Guangzhou – Zhuhai 160 100 2011 49 30 and Shenyang. The 405 km (252 mile) segment operates (include Extend Line) at a speed of 200 km/h (125 mph) is now part of a 6,299 Wuhan – Yichang 300 185 2011 293 182 km (3,914 mile) network of high-speed rail lines stretching Tianjin – Qinhuangdao 300 185 2011 261 162 across China operating at maximum operating speeds of Nanjing – Hangzhou 300 185 2011 249 155 at least 160 km/h (100 mph) as shown in the table below.
    [Show full text]
  • Spatiotemporal Analysis of the Dengue Outbreak in Guangdong Province, China Guanghu Zhu1,2,3†, Jianpeng Xiao2†,Taoliu2, Bing Zhang2, Yuantao Hao3 and Wenjun Ma2*
    Zhu et al. BMC Infectious Diseases (2019) 19:493 https://doi.org/10.1186/s12879-019-4015-2 RESEARCH ARTICLE Open Access Spatiotemporal analysis of the dengue outbreak in Guangdong Province, China Guanghu Zhu1,2,3†, Jianpeng Xiao2†,TaoLiu2, Bing Zhang2, Yuantao Hao3 and Wenjun Ma2* Abstract Background: Dengue is becoming a major public health concern in Guangdong (GD) Province of China. The problem was highlighted in 2014 by an unprecedented explosive outbreak, where the number of cases was larger than the total cases in previous 30 years. The present study aimed to clarify the spatial and temporal patterns of this dengue outbreak. Methods: Based on the district/county-level epidemiological, demographic and geographic data, we first used Moran’s I statistics and Spatial scan method to uncover spatial autocorrelation and clustering of dengue incidence, and then estimated the spatial distributions of mosquito ovitrap index (MOI) by using inverse distance weighting. We finally employed a multivariate time series model to quantitatively decompose dengue cases into endemic, autoregressive and spatiotemporal components. Results: The results indicated that dengue incidence was highly spatial-autocorrelated with the inclination of clustering and nonuniformity. About 12 dengue clusters were discovered around Guangzhou and Foshan with significant differences by district/county, where the most likely cluster with the largest relative risk located in central Guangzhou in October. Three significant high-MOI areas were observed around Shaoguan, Qingyuan, Shanwei and Guangzhou. It was further found the districts in Guagnzhou and Foshan were prone to local autoregressive transmission, and most region in southern and central GD exhibited higher endemic components.
    [Show full text]
  • Strongly Heterogeneous Transmission of COVID–19 in Mainland China: Local and Regional Variation
    medRxiv preprint doi: https://doi.org/10.1101/2020.03.10.20033852; this version posted March 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Strongly heterogeneous transmission of COVID–19 in mainland China: local and regional variation Yuke Wang, MSc1, Peter Teunis, PhD1 March 10, 2020 Summary Background The outbreak of novel coronavirus disease 2019 (COVID-19) started in the city of Wuhan, China, with a period of rapid initial spread. Transmission on a regional and then national scale was promoted by intense travel during the holiday period of the Chinese New Year. We studied the variation in transmission of COVID-19, locally in Wuhan, as well as on a larger spatial scale, among different cities and even among provinces in mainland China. Methods In addition to reported numbers of new cases, we have been able to assemble detailed contact data for some of the initial clusters of COVID-19. This enabled estimation of the serial interval for clinical cases, as well as reproduction numbers for small and large regions. Findings We estimated the average serial interval was 4·8 days. For early transmission in Wuhan, any infectious case produced as many as four new cases, transmission outside Wuhan was less in- tense, with reproduction numbers below two. During the rapid growth phase of the outbreak the region of Wuhan city acted as a hot spot, generating new cases upon contact, while locally, in other provinces, transmission was low.
    [Show full text]
  • Rice Terraces Systems in Subtropical China -- Chongyi Hakka Terraces
    GIAHS Proposal Chongyi Hakka Terraces, China Annex 1. Rice Terraces Systems in Subtropical China -- Chongyi Hakka Terraces Location: Chongyi County, Jiangxi Province, China The People’s Government of Chongyi County, Jiangxi Province August, 2016 GIAHS Proposal Chongyi Hakka Terraces, China SUMMARY INFORMATION Name/Title of the Agricultural Heritage System (local Name and Translation, if necessary): Rice Terraces Systems in Subtropical China -- Chongyi Hakka Terraces Recommending/applying organization: The People’s Government of Chongyi County, Jiangxi Province, P. R. China Country/location/Site: The Chongyi Hakka Terraces is located in Chongyi County, Ganzhou City, Jiangxi Province, China. Bordered by Hunan and Guangdong Province, it is between longitude 113°55′-114°38′ E and latitude 25°24′ - 25°55′ N. Across the county, there are 6 towns, 10 townships, 3 community committees and 124 administrative villages. Heritage Area: 2206.27 km2 (73 km from east to west, and 59 km from north to south) Core Area: 521.15 km2 Agro-Ecological Zone: Rice cropping terrace of hilly area in Southern China Topographic Features: Varied landforms, mainly mountains and hills, accounting for 92.73% of the total land area. Climate Type: Subtropical monsoon humid climate I GIAHS Proposal Chongyi Hakka Terraces, China Approximate Population: 211,500 within heritage area (including agricultural population of 175,000) Accessibility of the Site to Capital City or Major Cities: Chongyi Hakka Terraces are 65 km away from the center of Ganzhou city and 63 km from Golden Airport in Ganzhou, connected by an expressway. Xia-Rong Expressway crosses Chongyi and connects it with Chenzhou and other cities in Hunan Province.
    [Show full text]