TERAPIA ANTIBACTERIANĂ, ANTIFUNGICĂ Şl ANTIVIRALĂ ÎN STOMATOLOGIE

Total Page:16

File Type:pdf, Size:1020Kb

TERAPIA ANTIBACTERIANĂ, ANTIFUNGICĂ Şl ANTIVIRALĂ ÎN STOMATOLOGIE MIHAI NECHIFOR TERAPIA ANTIBACTERIANĂ, ANTIFUNGICĂ Şl ANTIVIRALĂ ÎN STOMATOLOGIE [Editura Russando Chimioterapia antibacteriană, antifungică şi antivirală în stomatologie Autor: Prof. univ. dr. Mihai Nechifor, Universitatea de Medicină şi Farmacie „Gr. T. Popa“ Iaşi România GLISSANDO IASI, 2002 Redactor: Silviu Labeş Tehnoredactare: Cătălin Pavel Copyright © 2002 by Glissando S.R.L. Iaşi Editura Glissando, Str. Sf. Lazär 22, Iasi, Tel. +40-32-237.686 Descrierea CIP a Bibliotecii Nationale a României: NECHIFOR, MIHAI Chimioterapia antibacteriană, antifungică şi antiviraiâ în stomatologie / prof. univ. dr. Mihai Nechifor. - Iaşi; Glissando, 2002. 151 p.; 19,5 X 27 cm Bibliogr. ISBN 973-99851-5-7 616.31 ;615.31 Tipărit în ROMÂNIA Motto „Adevăratele cuceriri, singurele care nu stârnesc nici un regret sunt cele pe care le obţinem asupra ignoranţei“ Napoleon Bonaparte CUPRINS 1. Introducere....................................................................................................................... 9 2. Chimioterapia antibacteriană........................................................................................... 11 a) Sulfamide.................................................................................................................... 12 b) Metronidazol şi substanţe înrudite............................................................................ 15 c) Betalactame................................................................................................................ 16 - Ci) Peniciline______________________________________________ _____ - 18 - C2 ) Cefalosporine--------------------------------------------------- ----------------------- 23 - c3) Carbapeneme.................................................................................................... 29 - C4 ) Monobactame.................................................................................................... 32 d) Inhibitori de beta-lactamaze..................................................................................... 33 e) Aminoglicozide.......................................................................................................... 36 f) Macrolide.................................................................................................................... 40 g) Tetracicline_______________________________________________________ 43 h) Lincozamine............................................................................................................... 45 i) Polipeptide.................................................................................................................. 49 j) Glicopeptide................................. ............................................................................. 50 k) Grupa cloramfenicololui........................................................................................... 52 1) Chinolone.................................................................................................................... 54 m) Rifampicină............ ................................................................................................. 59 n) Efectul postantibiotic________________________________________________ 60 o) Penetraţia intracelulară a antibioticelor.................................................................... 63 p) Efectele secundare ale chimioterapiei antibacteriene la nivelul cavităţii orale....... 6 6 q) Ameliorarea prescrierii şi utilizării chimioterapiei antibacteriene.......................... 67 3. Rezistenţa bacterianâ la antibiotice................................................................................. 73 4. Interacţiuni farmacologice şi asociaţii medicamentoase................................................ 83 5. Chimioterapia antifungică şi tratamentul micozelor orale............................................ 92 6 . Chimioterapia antivirală_______________________________________ ________ 101 a) Chimioterapice antivirale................................................... -....... .............................. 101 b) Infecţia cu HIV şi implicaţii în practica stomatologică............................................ 105 7. Chimioterapia antibacteriană în periodontologie şi odontologie.................................... 110 8 . Chimioterapia antibacteriană şi antifungică în chirurgia maxilo-buco-facială şi orală.... 129 9. Farmacoterapia în timpul sarcinii şi alăptării................................................................. 141 10. Farmacoterapia la persoanele în vârstă............................... ........................................... 145 11. Complianţa terapeutică____________________________________________ _____ 148 C himioterapia antibacteriană , a n t if u n g ic A şi a n t iv ir a l ă LA PREFAŢĂ Medicina stomatologică actuală nu poate fi concepută în afara unui tratament antiin- fecţios care să apeleze la cele mai noi realizări ale industriei medicamentului. „Medicamentul mo­ dern este un produs performant, un produs de vîrf al minţii umane iar realizarea unui nou medica­ ment cere investiţii de 200 - 300 milioane de dolari şi circa 10 ani de muncă a unor echipe com­ plexe de specialişti. Pentru a realiza beneficiul pe care pacientul, omul suferind, îl aşteaptă de la medicament, acesta trebuie corect utilizat... Fără permanenta actualizare a informaţiei despre medicament şi fără o înţelegere a principiilor de acţiune şi a particularităţilor medicaţiei este imposibil de obţinut eficienţa terapeutică“, afirmă prof. dr Mihai Nechifor în deschiderea cărţii sale „Terapia antibacteriană, antifungică şi antivirală în stomatologie“. Sînt aduse, de asemeni, în discuţie aspecte importante ale chimioterapiei: efectul postantibiotic, penetraţia intracelulară a antibioticelor, efectele secundare. Reţin, de asemenea, atenţia indicaţiile practice privind amelio­ rarea prescrierii şi utilizării chimioterapiei antibacteriene, cartea constituindu-se astfel într-un preţios ghid al medicului stomatolog. Dacă adăugăm informaţiile cu privire la rezistenţa bacter­ iană la antibiotice, farmacoterapia la persoanele în vîrstă, interacţiunile farmacologice şi asociaţiile medicamentoase, obţinem o viziune actuală asupra problematicii chimioterapiei antibacteriene. Cartea aduce în discuţie cele mai modeme achiziţii din domeniul terapiei antivi­ rale, dezvoltînd un capitol special despre infecţia cu HIV şi implicaţiile acesteia în practica stom­ atologică. Sîntem în faţa unui tratat care aduce pe masa medicului practician cele mai noi infor­ maţii despre chimioterapia modernă, un adjuvant preţios în tratamentul bolii parodontale, a infecţiilor cavităţii orale abordate pe baza celor mai modeme achiziţii ale cercetării în domeniu. Prof. Dr. Emilian Hutu, preşedinte al Societăţii Române de Stomatologie, şeful Catedrei Proteză Dentară Mobilă UMF „Carol Davila“, Bucureşti C himioterapia antibacteriană , antifungică şi a n t tv ir a l A LI CUVÂNT ÎNAINTE Medicamentul constituie în acest moment unul dintre principalele mijloace prin care medicina modernă luptă cu boala. La o piaţă de medicamente de peste 400 miliarde dolari în anul 2 0 0 0 , se poate aprecia că medicamentul reprezintă o mare problemă economică pentru toate ţările lumii şi mai ales pentru cele mai puţin bogate. Medicamentul modem este un produs foarte per­ formant, un produs de vârf al minţii umane şi realizarea unui nou medicament cere investiţii de 200-300 milioane de dolari şi circa 10 ani de muncă a unor echipe complexe şi foarte calificate. Dar pentru a se realiza beneficiul pe care pacientul, omul suferind, îl aşteaptă de la medicament el trebuie corect utilizat. între 7 şi 8 % din totalul medicamentelor folosite în lume se utilizează în practica stomatologică. De aici rezultă responsabilitatea mare a medicului stomatolog pentru corecta prescriere şi utilizare a medicamentului. Procesul prescrierii raţionale pleacă de la problematica şi caracteristicile pacientului şi sfârşeşte cu monitorizarea de către medic a farmacoterapiei prescrise. Medicina tinde să devină o ştiinţă tot mai exactă, iar farmacoterapia modernă se bazează pe reguli stricte şi este tot mai algoritmizată. Problema informării permanente a medicului, în domeniu, este imperioasă. O mare parte dintre medicamentele. prescrise în practica stomatologică (între 20 şi 30%) sunt chimioterapice antibacteriene, antifungice şi antivirale. Această chimioterapie trebuie corect aplicată unui mare număr de pacienţi cu variate probleme şi cu destul de mari diferenţe în ceea ce priveşte natura microorganismelor patogene implicate, cât şi pe fondul unei rezistenţe bac­ teriene în evoluţie. Fără permanenta actualizare a informaţiei despre medicament şi fără o înţelegere a principiilor de acţiune şi a particularităţilor medicaţiei este imposibil de obţinut eficienţa terapeutică. Relaţiile cost-beneficiu şi beneficiu-risc sunt coordonate importante de care medicul tre­ buie să ţină seama tot aşa cum numai o viziune farmacocinetica - farmacodinarnică asupra medica­ mentului poate creşte şansele de reuşită a farmacoterapiei şi diminuarea frecvenţei insucceselor. Din creşterea permanentă a numărului şi complexităţii medicamentelor a apărut şi creşterea rolului farmacologiei clinice care, aşa după cum arată prof. John Reid (Glasgow), „făcând joncţiunea între ştiinţa de laborator şi practica medicală are ca principal scop pro­ movarea unei utilizări sigure şi eficiente a medicamentului“. La aceasta am adăuga şi faptul că, fără a fi direct măsurabilă, suferinţa umană nu este deloc neglijabilă şi că fiecare eşec terapeutic
Recommended publications
  • WO 2015/179249 Al 26 November 2015 (26.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/179249 Al 26 November 2015 (26.11.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/11 (2006.01) A61K 38/08 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2015/031213 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 15 May 2015 (15.05.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/000,43 1 19 May 2014 (19.05.2014) US kind of regional protection available): ARIPO (BW, GH, 62/129,746 6 March 2015 (06.03.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicants : GELLER, Bruce, L.
    [Show full text]
  • General Items
    Essential Medicines List (EML) 2019 Application for the inclusion of imipenem/cilastatin, meropenem and amoxicillin/clavulanic acid in the WHO Model List of Essential Medicines, as reserve second-line drugs for the treatment of multidrug-resistant tuberculosis (complementary lists of anti-tuberculosis drugs for use in adults and children) General items 1. Summary statement of the proposal for inclusion, change or deletion This application concerns the updating of the forthcoming WHO Model List of Essential Medicines (EML) and WHO Model List of Essential Medicines for Children (EMLc) to include the following medicines: 1) Imipenem/cilastatin (Imp-Cln) to the main list but NOT the children’s list (it is already mentioned on both lists as an option in section 6.2.1 Beta Lactam medicines) 2) Meropenem (Mpm) to both the main and the children’s lists (it is already on the list as treatment for meningitis in section 6.2.1 Beta Lactam medicines) 3) Clavulanic acid to both the main and the children’s lists (it is already listed as amoxicillin/clavulanic acid (Amx-Clv), the only commercially available preparation of clavulanic acid, in section 6.2.1 Beta Lactam medicines) This application makes reference to amendments recommended in particular to section 6.2.4 Antituberculosis medicines in the latest editions of both the main EML (20th list) and the EMLc (6th list) released in 2017 (1),(2). On the basis of the most recent Guideline Development Group advising WHO on the revision of its guidelines for the treatment of multidrug- or rifampicin-resistant (MDR/RR-TB)(3), the applicant considers that the three agents concerned be viewed as essential medicines for these forms of TB in countries.
    [Show full text]
  • Alphataxin, an Orally Available Small Molecule, Decreases LDL Levels in Mice As a Surrogate for the LDL-Lowering Activity of Alpha-1 Antitrypsin in Humans
    ORIGINAL RESEARCH published: 09 June 2021 doi: 10.3389/fphar.2021.695971 Alphataxin, an Orally Available Small Molecule, Decreases LDL Levels in Mice as a Surrogate for the LDL-Lowering Activity of Alpha-1 Antitrypsin in Humans Cynthia L. Bristow 1,2* and Ronald Winston 1,2 1Alpha-1 Biologics, Long Island High Technology Incubator, Stony Brook University, Stony Brook, NY, United States, 2Institute for Human Genetics and Biochemistry, Vesenaz, Switzerland Edited by: Guanglong He, University of Wyoming, United States The abundant blood protein α1-proteinase inhibitor (α1PI, Alpha-1, α1-antitrypsin, Reviewed by: SerpinA1) is known to bind to the active site of granule-associated human leukocyte Hua Zhu, α The Ohio State University, elastase (HLE-G). Less well known is that binding of 1PI to cell surface HLE (HLE-CS) United States induces lymphocyte locomotion mediated by members of the low density lipoprotein Adam Chicco, receptor family (LDL-RFMs) thereby facilitating low density lipoprotein (LDL) clearance. LDL Colorado State University, United States and α1PI were previously shown to be in negative feedback regulation during transport and *Correspondence: clearance of lipoproteins. Further examination herein of the influence of α1PI in lipoprotein Cynthia L. Bristow regulation using data from a small randomized, double-blind clinical trial shows that cynthia.bristow@ α alpha1biologics.com treatment of HIV-1-infected individuals with 1PI plasma products lowered [email protected] apolipoprotein and lipoprotein levels including LDL. Although promising, plasma- orcid.org/0000-0003-1189-5121 purified α1PI is limited in quantity and not a feasible treatment for the vast number of Specialty section: people who need treatment for lowering LDL levels.
    [Show full text]
  • B-Lactams: Chemical Structure, Mode of Action and Mechanisms of Resistance
    b-Lactams: chemical structure, mode of action and mechanisms of resistance Ru´ben Fernandes, Paula Amador and Cristina Prudeˆncio This synopsis summarizes the key chemical and bacteriological characteristics of b-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum b-lactamases and AmpC b-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump b-lactams out of the bacterial cell. Keywords: b-lactams, chemical structure, mechanisms of resistance, mode of action Historical perspective Alexander Fleming first noticed the antibacterial nature of penicillin in 1928. When working with Antimicrobials must be understood as any kind of agent another bacteriological problem, Fleming observed with inhibitory or killing properties to a microorganism. a contaminated culture of Staphylococcus aureus with Antibiotic is a more restrictive term, which implies the the mold Penicillium notatum. Fleming remarkably saw natural source of the antimicrobial agent. Similarly, under- the potential of this unfortunate event. He dis- lying the term chemotherapeutic is the artificial origin of continued the work that he was dealing with and was an antimicrobial agent by chemical synthesis [1]. Initially, able to describe the compound around the mold antibiotics were considered as small molecular weight and isolates it. He named it penicillin and published organic molecules or metabolites used in response of his findings along with some applications of penicillin some microorganisms against others that inhabit the same [4].
    [Show full text]
  • Beta Lactam Antibiotics Penicillins Pharmaceutical
    BETA LACTAM ANTIBIOTICS PENICILLINS PHARMACEUTICAL CHEMISTRY II PHA386 PENICILLINS Penicillin was discovered in 1928 by Scottish scientist Alexander Fleming, who noticed that one of his experimental cultures of staphylococcus was contaminated with mold (fortuitous accident), which caused the bacteria to lyse. Since mold belonged to the family Penicillium (Penicillium notatum), he named the antibacterial substance Penicillin. Penicillin core structure CHEMICAL STRUCTURE PENAM RING PENICILLIN G 6-APA • 6-APA is the chemical compound (+)-6-aminopenicillanic acid. • It is the core of penicillin. PENAM RING 5 1 • 7-oxo-1- thia-4-azabicylo [3,2,0] heptane 6 2 7 3 4 PENICILLANIC ACID • 2,2–dimethyl penam –3– carboxylic acid • 2,2-dimethyl-7-oxo-1- thia-4-azabicylo [3,2,0]heptane -3-carboxylic acid 6-AMINO PENICILLANIC ACID (6-APA) • 6-amino-2,2–dimethyl penam –3– carboxylic acid • 6-amino-2,2-dimethyl-7-oxo-1- thia-4-azabicylo [3,2,0] heptane-3-carboxylic acid PENISILLIN G (BENZYL PENICILLIN) O S CH3 CH2 C NH CH3 N O COO-K+ 6-(2-Phenylacetamino) penicillanic acid potassium salt PENICILLIN G PROCAINE O C 2 H 5 ‐ H N C H 2 C H 2 O C N H 2 C 2 H 5 PENICILLIN G BENZATHINE ‐ ‐ C H 2 C H 2 H N C H 2 C H 2 N H H H PENICILLIN V (PHENOXYMETHYL PENICILLIN) PHENETHICILLIN PROPACILLIN METHICILLIN SODIUM OCH3 S CH3 CONH CH3 N - + OCH3 O COO Na 6-[(2,6-dimethoxybenzoyl)amino] penicillanic acid sodium salt NAFCILLIN SODIUM 6-(2-ethoxy-1-naphtylcarbonylamino) penicillanic acid sodium salt OXACILLIN SODIUM 6-[(5-methyl-3-phenylizoxazole-4-yl)-carbonylamino] sodium
    [Show full text]
  • 2-Substituted Methyl Penam Derivatives 2-Substituierte Methyl-Penam-Derivate Dérivés 2-Substitués Du Méthyl Pénam
    (19) TZZ ZZ _T (11) EP 2 046 802 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: C07D 499/87 (2006.01) C07D 499/21 (2006.01) of the grant of the patent: C07D 499/28 (2006.01) C07D 499/32 (2006.01) 21.08.2013 Bulletin 2013/34 A61K 31/431 (2006.01) A61P 31/00 (2006.01) (21) Application number: 07804590.3 (86) International application number: PCT/IB2007/001941 (22) Date of filing: 11.07.2007 (87) International publication number: WO 2008/010048 (24.01.2008 Gazette 2008/04) (54) 2-SUBSTITUTED METHYL PENAM DERIVATIVES 2-SUBSTITUIERTE METHYL-PENAM-DERIVATE DÉRIVÉS 2-SUBSTITUÉS DU MÉTHYL PÉNAM (84) Designated Contracting States: • SRIRAM, Rajagopal AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Chennai, Tamil Nadu 600 119 (IN) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • PAUL-SATYASEELA, Maneesh SI SK TR Chennai, Tamil Nadu 600 119 (IN) • SOLANKI, Shakti, Singh (30) Priority: 12.07.2006 IN CH12172006 Chennai, Tamil Nadu 600 119 (IN) • DEVARAJAN, Sathishkumar (43) Date of publication of application: Chennai, Tamil Nadu 600 119 (IN) 15.04.2009 Bulletin 2009/16 (74) Representative: Murphy, Colm Damien et al (73) Proprietor: Allecra Therapeutics GmbH Ipulse 79539 Lörrach (DE) Carrington House 126-130 Regent Street (72) Inventors: London W1B 5SE (GB) • UDAYAMPALAYAM, Palanisamy, Senthilkumar Chennai, Tamil Nadu 600 119 (IN) (56) References cited: • GNANAPRAKASAM, Andrew EP-A1- 0 097 446 EP-A1- 0 367 124 Chennai, Tamil Nadu 600 119 (IN) JP-A- 60 215 688 US-A1- 2005 070 705 • GANAPATHY, Panchapakesan US-A1- 2005
    [Show full text]
  • Β-Lactam Antibiotics Renaissance
    Antibiotics 2014, 3, 193-215; doi:10.3390/antibiotics3020193 OPEN ACCESS antibiotics ISSN 2079-6382 www.mdpi.com/journal/antibiotics Review β-Lactam Antibiotics Renaissance Wenling Qin 1, Mauro Panunzio 1,* and Stefano Biondi 2,* 1 ISOF-CNR Department of Chemistry ―G. Ciamician‖, Via Selmi, 2 I-40126 Bologna, Italy; E-Mail: [email protected] 2 Allecra Therapeutics SAS, 13, rue de Village-Neuf, F-68300 St-Louis, France * Authors to whom correspondence should be addressed; E-Mails: [email protected] (M.P.); [email protected] (S.B.); Tel./Fax: +39-051-209-9508 (M.P.); Tel.:+33-389-689-876 (S.B.). Received: 5 March 2014; in revised form: 30 April 2014 / Accepted: 4 May 2014 / Published: 9 May 2014 Abstract: Since the 1940s β-lactam antibiotics have been used to treat bacterial infections. However, emergence and dissemination of β-lactam resistance has reached the point where many marketed β-lactams no longer are clinically effective. The increasing prevalence of multidrug-resistant bacteria and the progressive withdrawal of pharmaceutical companies from antibiotic research have evoked a strong reaction from health authorities, who have implemented initiatives to encourage the discovery of new antibacterials. Despite this gloomy scenario, several novel β-lactam antibiotics and β-lactamase inhibitors have recently progressed into clinical trials, and many more such compounds are being investigated. Here we seek to provide highlights of recent developments relating to the discovery of novel β-lactam antibiotics and β-lactamase inhibitors. Keywords: β-lactam antibiotics; β-lactamase inhibitors; bacterial infections 1. Introduction The emergence and spread of resistance to antibiotics always has accompanied their clinical use.
    [Show full text]
  • Thienamycin**, a /3-Lactam Antibiotic with the Unique Structure Shown in Fig
    THIENAMYCIN, A NEW 8-LACTAM ANTIBIOTIC 1. DISCOVERY, TAXONOMY, ISOLATION AND PHYSICAL PROPERTIES* J. S. KAHAN, F. M. KAHAN, R. GOEGELMAN, S. A. CURRIE, M. JACKSON, E. O. STAPLEY, T. W. MILLER, A. K. MILLER, D. HENDLIN, S. MOCHALESt, S. HERNANDEZt, H. B. WOODRUFF and J. BIRNBAUM Merck Institute for Therapeutic Research, Mcrck Sharp & Dohme Research Laboratories Rahway, New Jersey, U.S.A. 07065 tCompania Espanola de ]a Penicilina y Antibioticos S. A., Madrid, Spain (Received for publication September 5, 1978) A new //-lactam antibiotic, named thienamycin, was discovered in culture broths of Streptomyces MA4297. The producing organism, subsequently determined to be a hitherto unrecognized species, is designated Streptomyces cattleya (NRRL 8057). The antibiotic was isolated by adsorption on Dowex 50, passage through Dowex 1, further chromatography on Dowex 50 and Bio-Gel P2, and final purification and desalting on XAD-2. Thienamycin is zwitterionic, has the elemental composition CuHIGN2O4S(M.W.=272.18) and possesses a distinctive UV absorption (Amax=297 nm, e=7,900). Its /3-lactam is unusually sensitive to hydrolysis above pH 8 and to reaction with nucleophiles such as hydroxylamine, cysteine and, to a lesser degree, the primary amine of the antibiotic itself. The latter reaction results in accelerated inactivation at high antibiotic concentrations. Thienamycin**, a /3-lactam antibiotic with the unique structure shown in Fig. 11,2) was dis- covered in the course of screening soil microorganisms for production of inhibitors of peptidoglycan synthesisin Gram-positive and Gram-negative bacteria. Taxonomic studies of the producing organism MA4297 resulted in its assignment to a new streptomycete species which has been named Strepto- myces cattleya.
    [Show full text]
  • Characterization of the Pseudomonas Aeruginosa Penicillin-Binding Proteins 3 And3x: Gene Cloning, Expression and Role in Susceptibility to Pmactam Antibiotics By
    Characterization of the Pseudomonas aeruginosa penicillin-binding proteins 3 and3x: gene cloning, expression and role in susceptibility to pMactam antibiotics by XIAOWEN LIAO B.Sc. (Microbiology), Xiamen University, 1984 M.Sc. (Biology), Dalhousie University, 1991 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF MICROBIOLOGY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October, 1996 © Xiaowen Liao, 1996 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada Date DE-6 (2/88) ABSTRACT Two degenerate oligonucleotides primers were synthesized based on the amino acid sequences found in the conserved SXXK and KTG motifs of Escherichia coli high-molecular-weight PBPs and Nesseria gonorrhoeae PBP2. The primers were subsequently used in a PCR amplification experiment using Pseudomonas aeruginosa PAOl chromosomal DNA as the template. Five of the resulting PCR products were cloned and sequenced: two products that translated to sequences with strong homology to E. coli PBP3 and N. gonorrhoeae PBP2 were subsequently used as probes to clone the completepbpB and pbpC genes; the other three PCR products were identified as the homologues of the E.
    [Show full text]
  • Cyclobutanone Analogues of Β-Lactam Antibiotics: Β-Lactamase
    Cyclobutanone analogues of ‐lactam antibiotics: ‐lactamase inhibitors with untapped potential? Prarthana Devi and Peter J. Rutledge* Dr Prarthana Devi, Prof. Dr. P. J. Rutledge, School of Chemistry, The University of Sydney, Sydney, NSW 2006 Australia, E‐mail: [email protected]; Tel.: +61 2 9351 5020; Fax: +61 2 9351 3329. Abstract ‐Lactam antibiotics have been used for many years to treat bacterial infections. However the effective treatment of an increasing range of microbial infections is threatened by bacterial resistance to ‐lactams: the prolonged, widespread and at times reckless use of these drugs has spawned widespread resistance, which renders them ineffective against many bacterial strains. The cyclobutanone ring system is isosteric with ‐lactam: in cyclobutanone analogues, the eponymous cyclic amide is replaced with an all‐carbon ring, the amide N substituted by a tertiary C–H to a ketone. Cyclobutanone analogues of various ‐lactam antibiotics have been investigated over the last thirty‐five years, initially as prospective antibiotics in their own right and inhibitors of the ‐lactamase enzymes that impart resistance to ‐lactams, more recently as inhibitors of other serine proteases and mechanistic probes of ‐lactam biosynthesis. Cyclobutanone analogues of the penam ring system are the first reversible inhibitors to demonstrate moderate activity against all classes of ‐lactamase, while other compounds from this family inhibit Streptomyces R61 DD‐carboxypeptidase/transpeptidase, human neutrophil elastase (HNE) and porcine pancreatic elastase (PPE). But has their potential as enzyme inhibitors been fully exploited? Challenges in synthesising diversely functionalised derivatives mean only a limited number and structural diversity of cyclobutanone ‐lactam analogues have been made and evaluated to date.
    [Show full text]
  • Metagenomics-Based Analysis of the Age-Related Cumulative Effect of Antibiotic Resistance Genes in Gut Microbiota
    antibiotics Article Metagenomics-Based Analysis of the Age-Related Cumulative Effect of Antibiotic Resistance Genes in Gut Microbiota Lei Wu 1,2,† , Xinqiang Xie 2,†, Ying Li 2,†, Tingting Liang 1,2, Haojie Zhong 3 , Jun Ma 1,2, Lingshuang Yang 2, Juan Yang 1,2, Longyan Li 2, Yu Xi 2, Haixin Li 2, Jumei Zhang 2, Xuefeng Chen 1, Yu Ding 4,* and Qingping Wu 2,* 1 School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; [email protected] (L.W.); [email protected] (T.L.); [email protected] (J.M.); [email protected] (J.Y.); [email protected] (X.C.) 2 Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; [email protected] (X.X.); [email protected] (Y.L.); [email protected] (L.Y.); [email protected] (L.L.); [email protected] (Y.X.); [email protected] (H.L.); [email protected] (J.Z.) 3 The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China; [email protected] 4 Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China * Correspondence: [email protected] (Y.D.); [email protected] (Q.W.); Tel.: +86-020-87688132 (Q.W.) † These authors contributed equally to this work. Citation: Wu, L.; Xie, X.; Li, Y.; Liang, Abstract: Antibiotic resistance in bacteria has become a major global health problem. One of the T.; Zhong, H.; Ma, J.; Yang, L.; Yang, J.; main reservoirs of antibiotic resistance genes is the human gut microbiota.
    [Show full text]
  • MBL) Or Class C (Ampc) Cephalosporinases
    β-λακταμικά αντιβιοτικά για νοσοκομειακή χρήση ΓΕΩΡΓΙΟΣ ΠΑΝΟΣ BSc (Biomed. Eng.), CEng, MIET, MD, PhD, DTM&H(Lon), FRCP(Lon) Ειδικός Παθολόγος - Λοιμωξιολόγος • β-lactam antibiotics (beta-lactam antibiotics) are antibiotics that contain a beta- lactam ring in their molecular structure. • This includes penicillin derivatives (penams), cephalosporins (cephems), monobactams, carbapenems[1] and carbacephems. • Most β-lactam antibiotics work by inhibiting cell wall biosynthesis in the bacterial organism and are the most widely used group of antibiotics. • Until 2003, when measured by sales, more than half of all commercially available antibiotics in use were β-lactam compounds. • The first β-lactam antibiotic discovered, penicillin, was isolated from a rare variant of Penicillium notatum (since renamed Penicillium chrysogenum). • [Picture] • By definition, all β-lactam antibiotics have a β-lactam ring in their structure. Skeletal formulae of the basic structures of penicillin (1) and cephalosporin (2) antibiotics, highlighting the beta-lactam ring (red). Bacteria often develop resistance to β-lactam antibiotics by synthesizing a β-lactamase, an enzyme that attacks the β-lactam ring. • Bacteria often develop resistance to β-lactam antibiotics by synthesizing a β- lactamase, an enzyme that attacks the β-lactam ring. • To overcome this resistance, β-lactam antibiotics can be given with β-lactamase inhibitors such as clavulanic acid.[6] Modes of resistance • The effectiveness of these antibiotics relies on their ability to reach the PBP intact and their ability to bind to the PBP. • Hence, there are two main modes of bacterial resistance to β-lactams: I. Enzymatic hydrolysis of the β-lactam ring II. Possession of altered penicillin-binding proteins I.
    [Show full text]