Package 'Rattle'

Total Page:16

File Type:pdf, Size:1020Kb

Package 'Rattle' Package ‘rattle’ March 19, 2013 Type Package Title Graphical user interface for data mining in R Version 2.6.26 Date 2013-03-16 Depends R (>= 2.13.0) Suggests RGtk2, pmml (>= 1.2.13), bitops, colorspace, ada, amap,arules, arulesViz, biclust, cairoDe- vice, cba, Deducer, descr,doBy, e1071, ellipse, fBasics, foreign, fpc, gdata, ggden- dro,ggplot2, gplots, graph, grid, gtools, gWidgetsRGtk2, hmeasure,Hmisc, kernlab, latticist, Ma- trix, methods, mice, network,nnet, odfWeave, party, playwith, psych, randomFor- est, RBGL,RColorBrewer, reshape, rggobi, RGtk2Extras, ROCR, RODBC, rpart,rpart.plot, Snow- ball, survival, timeDate, verification,weightedKmeans, XML, pkgDepTools, Rgraphviz Description Rattle (the R Analytic Tool To Learn Easily) provides a Gnome (RGtk2) based interface to R functionality for data mining. The aim is to provide a simple and intuitive interface that allows a user to quickly load data from a CSV file (or via ODBC), transform and explore the data, build and evaluate models, and export models as PMML (predictive modelling markup language) or as scores. All of this with knowing little about R. All R commands are logged and commented through the log tab. Thus they are available to the user as a script file or as an aide for the user to learn R or to copy-and-paste directly into R itself. Rattle also exports a number of utility functions and the graphical user interface, invoked as rattle(), does not need to be run to deploy these. License GPL (>= 2) LazyLoad yes LazyData yes URL http://rattle.togaware.com/ Author Graham Williams [aut, cph, cre], Mark Vere Culp [cph], Ed Cox [ctb], Anthony Nolan [ctb], Denis White [cph], Daniele Medri [ctb], Akbar Waljee [ctb] (OOB AUC for Random Forest) 1 2 R topics documented: Maintainer Graham Williams <[email protected]> NeedsCompilation no X-CRAN-Comment Earlier versions of this package have been removed: it contained copies of copyright code used contrary to its license and with no acknowledgment of copyright. Repository CRAN Date/Publication 2013-03-19 07:27:59 R topics documented: acquireAuditData . .3 asRules . .4 asRules.rpart . .4 audit . .5 binning . .6 calcInitialDigitDistr . .7 calculateAUC . .8 centers.hclust . .9 doRiskChart . 10 drawTreeNodes . 11 drawTreesAda . 12 evaluateRisk . 13 fancyRpartPlot . 14 genPlotTitleCmd . 15 listAdaVarsUsed . 16 listTreesAda . 16 listVersions . 17 modalvalue . 18 plotBenfordsLaw . 18 plotNetwork . 19 plotOptimalLine . 20 plotRisk . 21 printRandomForests . 23 randomForest2Rules . 24 rattle . 25 rattle.print.summary.multinom . 26 rattleInfo . 27 rescale.by.group . 28 riskchart . 29 savePlotToFile . 31 setupDataset . 32 treeset.randomForest . 32 weather . 33 whichNumerics . 35 wine............................................. 36 acquireAuditData 3 Index 38 acquireAuditData Generate the audit dataset. Description Rattle uses an artificial dataset for demonstration purposes. This function retrieves the source data ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/adult.data and then trans- forms the data in a variety of ways. Usage acquireAuditData(write.to.file=FALSE) Arguments write.to.file Whether to generate a colleciton of files based on the data. The files generated include: audit.csv, audit.Rdata, audit.arf, and audit\_missing.csv Details See the function definition for details of the processing done on the data downloaded from the UCI repository. Value By default the function returns a data frame containing the audit dataset. If write.to.file is TRUE then the data frame is returned invisibly. Author(s) <[email protected]> References Package home page: http://rattle.togaware.com See Also audit, rattle. 4 asRules.rpart asRules List the rules corresponding to the rpart decision tree Description Display a list of rules for an rpart decision tree. Usage asRules(model, compact=FALSE, ...) Arguments model an rpart model. compact whether to list cateogricals compactly. ... further arguments passed to or from other methods. Details Traverse a decision tree to generate the equivalent set of rules, one rule for each path from the root node to a leaf node. Author(s) <[email protected]> References Package home page: http://rattle.togaware.com Examples ## Not run: asRules.rpart(my.rpart) asRules.rpart List the rules corresponding to the rpart decision tree Description Display a list of rules for an rpart decision tree. Usage ## S3 method for class ’rpart’ asRules(model, compact=FALSE, ...) audit 5 Arguments model an rpart model. compact whether to list cateogricals compactly. ... further arguments passed to or from other methods. Details Traverse a decision tree to generate the equivalent set of rules, one rule for each path from the root node to a leaf node. Author(s) <[email protected]> References Package home page: http://rattle.togaware.com Examples ## Not run: asRules.rpart(my.rpart) audit Sample dataset for illustration Rattle functionality. Description The audit dataset is an artificially constructed dataset that has some of the characteristics of a true financial audit dataset for modelling productive and non-productive audits of a person’s financial statement. A productive audit is one which identifies errors or inaccuracies in the information pro- vided by a client. A non-productive audit is usually an audit which found all supplied information to be in order. The audit dataset is used to illustrate binary classification. The target variable is identified as TARGET_Adjusted. The dataset is quite small, consisting of just 2000 entities. Its primary purpose is to illustrate modelling in Rattle, so a minimally sized dataset is suitable. The dataset itself is derived from publicly available data (which has nothing to do with audits). See acquireAuditData for details. 6 binning Format A data frame. In line with data mining terminology we refer to the rows of the data frame (or the observations) as entities. The columns are refered to as variables. The entities represent people in this case. We describe the variables here: ID This is a unique identifier for each person. Age The age. Employment The type of employment. Education The highest level of education. Marital Current marital status. Occupation The type of occupation. Income The amount of income declared. Gender The persons gender. Deductions Total amount of expenses that a person claims in their financial statement. Hours The average hours worked on a weekly basis. IGNORE_Accounts The main country in which the person has most of their money banked. Note that the variable name is prefixed with IGNORE. This is recognised by Rattle as the default role for this variable. RISK_Adjustment This variable records the monetary amount of any adjustment to the person’s financial claims as a result of a productive audit. This variable, which should not be treated as an input variable, is thus a measure of the size of the risk associated with the person. TARGET_Adjusted The target variable for modelling (generally for classification modelling). This is a numeric field of class integer, but limited to 0 and 1, indicating non-productive and pro- ductive audits, respectively. Productive audits are those that result in an adjustment being made to a client’s financial statement. binning Perform binning over numeric data Description Perform binning. Usage binning(x, bins=4, method=c("quantile", "wtd.quantile", "kmeans"), labels=NULL, ordered=TRUE, weights=NULL) calcInitialDigitDistr 7 Arguments x the numeric data to bin. bins the number of bins to use. method whether to use "quantile", weighted quantile "wtd.quantile" or "kmeans" bin- ning. labels the labels or names to use for each of the bins. ordered whether to build an ordered factor or not. weights vector of numeric weights for each observation for weighted quantile binning. Details Bin the provided nmeric data into the specified number of bins using one of the supported methods. The bins will have the names specified by labels, if supplied. The result can optionally be an ordered factor. Value A factor is returned. Author(s) Daniele Medri and <[email protected]> References Package home page: http://rattle.togaware.com calcInitialDigitDistr Generate a frequency count of the initial digits Description In the context of Benford’s Law calculate the distribution of the frequencies of the first digit of the numbers supplied as the argument. Usage calcInitialDigitDistr(l, digit=1, split=c("none", "positive", "negative")) Arguments l a vector of numbers. digit the digit to generate frequencies for. split whether and how to split the digits. 8 calculateAUC Author(s) <[email protected]> References Package home page: http://rattle.togaware.com calculateAUC Determine area under a curve (e.g. a risk or recall curve) of a risk chart Description Given the evaluation returned by evaluateRisk, for example, calculate the area under the risk or recall curves, to use as a metric to compare the performance of a model. Usage calculateAUC(x, y) Arguments x a vector of values for the x points. y a vector of values for the y points. Details The area is returned. Author(s) <[email protected]> References Package home page: http://rattle.togaware.com See Also evaluateRisk. centers.hclust 9 Examples ## this is usually used in the context of the evaluateRisk function ## Not run: ev <- evaluateRisk(predicted, actual, risk) ## imitate this output here ev <- data.frame(Caseload=c(1.0, 0.8, 0.6, 0.4, 0.2, 0), Precision=c(0.15, 0.18, 0.21, 0.25, 0.28, 0.30), Recall=c(1.0, 0.95, 0.80, 0.75, 0.5, 0.0), Risk=c(1.0, 0.98, 0.90, 0.77, 0.30, 0.0)) ## Calculate the areas unde the Risk and the Recall curves. calculateAUC(ev$Caseload, ev$Risk) calculateAUC(ev$Caseload, ev$Recall) centers.hclust List Cluster Centers for a Hierarchical Cluster Description Generate a matrix of centers from a hierarchical cluster. Usage centers.hclust(x, h, nclust=10, use.median=FALSE) Arguments x The data used to build the cluster. h A hclust object. nclust Number of clusters.
Recommended publications
  • A Word from Our 2006 Section Chairs
    VOLUME 17, NO 1, JUNE 2006 A joint newsletter of the Statistical Computing & Statistical Graphics Sections of the American Statistical Association A Word from our 2006 Section Chairs PAUL MURRELL STEPHAN R. SAIN GRAPHICS COMPUTING I would like to begin by When Carey Priebe asked me highlighting a couple of to run for one of the section interesting recent offices a couple of years ago, I developments in the area of wasn’t exactly sure what I was Statistical Graphics. getting into. Now that I have There has been a lot of been chair for a couple of activity on the GGobi project months, I’m still not totally lately, with an updated web sure what I’ve gotten into. site, new versions, and The one thing I do know, improved links to R. I though, is that I’m very happy encourage you to (re)visit www.ggobi.org and see what to be involved in the section. they’ve been up to. There are a lot of very interesting things going on and, as always, a lot of opportunity for people who have an The third volume of the Handbook of Computational interest in statistical computing. Statistics, which is focused on Data Visualization, is scheduled for publication at the end of this year and Continues on Page 2.......... there will be a workshop as a satellite of Compstat 2006. This important volume will contain over 30 contributions and will provide a comprehensive overview of all areas of data visualization. Information about this project is available at gap.stat.sinica.edu.tw/ HBCSC.
    [Show full text]
  • The Rattle Package September 30, 2007
    The rattle Package September 30, 2007 Type Package Title A graphical user interface for data mining in R using GTK Version 2.2.64 Date 2007-09-29 Author Graham Williams <[email protected]> Maintainer Graham Williams <[email protected]> Depends R (>= 2.2.0) Suggests RGtk2, ada, amap, arules, bitops, cairoDevice, cba, combinat, doBy, e1071, ellipse, fEcofin, fCalendar, fBasics, foreign, fpc, gdata, gtools, gplots, Hmisc, kernlab, MASS, Matrix, mice, network, pmml, randomForest, rggobi, ROCR, RODBC, rpart, RSvgDevice, XML Description Rattle provides a Gnome (RGtk2) based interface to R functionality for data mining. The aim is to provide a simple and intuitive interface that allows a user to quickly load data from a CSV file (or via ODBC), transform and explore the data, and build and evaluate models, and export models as PMML (predictive modelling markup language). All of this with knowing little about R. All R commands are logged and available for the user, as a tool to then begin interacting directly with R itself, if so desired. Rattle also exports a number of utility functions and the graphical user interface does not need to be run to deploy these. License GPL version 2 or newer URL http://rattle.togaware.com/ R topics documented: audit . 2 calcInitialDigitDistr . 3 calculateAUC . 3 centers.hclust . 4 drawTreeNodes . 5 drawTreesAda . 6 evaluateRisk . 7 1 2 audit genPlotTitleCmd . 8 rattle_gui . 9 listRPartRules . 9 listTreesAda . 10 plotBenfordsLaw . 11 plotNetwork . 11 plotOptimalLine . 12 plotRisk . 14 printRandomForests . 16 randomForest2Rules . 17 rattle . 18 savePlotToFile . 19 treeset.randomForest . 19 Index 21 audit Sample dataset for illustration Rattle functionality.
    [Show full text]
  • Uros2018.Pdf
    Use of R in O cial Statistics 6th International Conference 2018 2018OV010 Eventbanner uRos2018 Rolbanner 100x200_DEF OPTIES .indd 1 23-7-2018 09:58:34 Eventbanner uRos2018 1920x400.jpg Eventbanner uRos2018 1920x400.bb Welcome The global community of R users is growing, and the number of Naonal and Interna- onal Stascal Offices that are adopng R is growing as well. About five years ago, when this conference was organized as an internaonal conference for the first me in Romania, we felt a bit like outlaws using Free and Open Source Soware (FOSS) in an area where commercial packages rule the land. How mes have changed: in the mean me FOSS, and in parcular R is considered a driving force of innovaon in academia, industry and government. The popularity of R is demonstrated by the hundreds of local R user groups, the thousands of R packages, and the RConsorum. The current conference, at Stascs Netherlands, marks the first occasion outside of the place where it was conceived: Romania. We are therefore especially pleased that our keynote speakers have roots in both countries. Alina Matei is a professor of stascs in Switzerland with Romanian roots. She will talk about opmal sample coordinaon using R. An important topic in mes where the reducon of response burden and increasing nonresponse rates force us to use smaller, more complex sampling methods. Not many R users are aware that there is a ‘touch of Dutch’ in R. Since 2017, Jeroen Ooms (UC Berkeley) is the maintainer of both Rtools and R for Windows. He will tell us about what it takes to compile, release, and modernize a system on which more than 12,500 R packages and millions of users rely every day.
    [Show full text]
  • Statcharrms R Version Installation Guide
    StatCharrms R Version Installation Guide 2014-07-14 Written and Programmed By: Joe Swintek, BTS Based off StatCharrms SAS version developed by: Dr. John Green, DuPont Applied Statistics Group, Stine-Haskell Research Center Additional Testing By: Kevin Flynn, USEPA Jon Haselman, USEPA Funded By: USEPA Under Contract EP-D-13-052 Installation StatCharrms is a graphical user interface front end for R, designed for ease of operation that performs the recommended statistical procedure used in the Medaka Extended One Generation Test (MEOGRT) and Larval Amphibian Growth and Development Assay (LAGDA). The statistical procedures implemented within StatCharrms are; the Rao-Scott adjusted Cochran-Armitage trend test by slices (RSCABS), a repeated measures ANVOA using time and treatment as fixed effects, Jonckheere-Terpstra trend test, Dunnett test, Kruskal Wallis, Dunns Test, one way ANOVA, weighted one way ANOVA, mixed effect ANOVA for imbalanced replicate structures, and a mixed effect Cox proportional model for imbalanced replicate structures. StatCharrms is implemented as an R workspace preloaded with the required functions. To Start StatCharrms double click on the R icon labeled StatCharrms-V##.RData. Now the installation of the required packages can begin by typing : Install.StatCharrms() into the R console and then hitting enter. R is case sensitive so you will need to type the command exactly as it is above. Figure one shows what is should look like. Executing the installation command will, by default, create a folder on the C drive called “RLib” that will contain the libraries needed for StatCharrms to run. Figure 1: Next a window asking to select CRAN (Comprehensive R Archive Network) mirror will popup.
    [Show full text]
  • Sexy-Rgtk: a Package for Programming Rgtk2 GUI in a User-Friendly Manner
    sexy-rgtk: a package for programming RGtk2 GUI in a user-friendly manner Damien Lerouxa and Nathalie Villa-Vialaneixa;b a INRA, UR875, MIAT F-31326 Castanet Tolosan - France [email protected] b SAMM, Université Paris 1 F-75634 Paris - France [email protected] Keywords: Gtk2, RGtk2, GUI There are many dierent ways to program Graphical User Interfaces (GUI) in R.[1] provides an overview of the available methods, describing ways to program R GUI with RGtk2, qtbase and tcltk. More recently, the package shiny, for building interactive web applications, was also released (the rst version has been published on December, 2012). The package RGtk2 [2] is probably one of the most complete packages to program complex and highly customizable GUI. It is based on GTK2 (the GIMP Toolkit, http://www.gtk. org/), which is a multi-platform toolkit for creating Graphical User Interfaces. GTK2 oers a complete set of widgets and can be used to develop complete application suites working on Linux, Windows and Mac OS X. Although very exible, each RGtk2 interface results in a long script that has a counterintuitive syntax for most R users. For instance, the simple window of Figure1 1 is obtained with the command lines provided in Figure2 (left). Figure 1: A simple GUI interface made with RGtk2. One attempt to overcome the diculty of the RGtk2 syntax is the package gWidgets but, quoting its reference manual The excellent RGtk2 package opens up the full power of the GTK2 toolkit, only a fraction of which is available though gWidgetsRGtk2.
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • December 2016, Volume 34 No.2
    ISSN 0735-1348 Department of Physics, East Carolina University, 1000 East 5th Street, Greenville, NC 27858, USA http://www.ecu.edu/cs-cas/physics/ancient-timeline/ December 2016, Volume 34 No.2 IRSL dating of fast-fading sanidine feldspars from Sulawesi, Indonesia 1 Bo Li, Richard G. Roberts, Adam Brumm, Yu-Jie Guo, Budianto Hakim, Muhammad Ramli, Maxime Aubert, Rainer Grün, Jian-xin Zhao, E. Wahyu Saptomo Bayesian statistics in luminescence dating: The ‘baSAR’-model and its 14 implementation in the R package ‘Luminescence’ Norbert Mercier, Sebastian Kreutzer, Claire Christophe, Guillaume Guérin, Pierre Guibert, Christelle Lahaye, Philippe Lanos, Anne Philippe, and Chantal Tribolo RLumShiny - A graphical user interface for the R Package ‘Luminescence’ 22 Christoph Burow, Sebastian Kreutzer, Michael Dietze, Margret C. Fuchs, Manfred Fischer, Christoph Schmidt, Helmut Brückner Thesis abstracts 33 Bibliography 36 Ancient TL Started by the late David Zimmerman in 1977 EDITOR Regina DeWitt, Department of Physics, East Carolina University, Howell Science Complex, 1000 E. 5th Street Greenville, NC 27858, USA; Tel: +252-328-4980; Fax: +252-328-0753 ([email protected]) EDITORIAL BOARD Ian K. Bailiff, Luminescence Dating Laboratory, Univ. of Durham, Durham, UK ([email protected]) Geoff A.T. Duller, Institute of Geography and Earth Sciences, Aberystwyth University, Ceredigion, Wales, UK ([email protected]) Sheng-Hua Li, Department of Earth Sciences, The University of Hong Kong, Hong Kong, China ([email protected]) Shannon Mahan, U.S. Geological Survey, Denver Federal Center, Denver, CO, USA ([email protected]) Richard G. Roberts, School of Earth and Environmental Sciences, University of Wollongong, Australia ([email protected]) REVIEWERS PANEL Richard M.
    [Show full text]
  • Une Interface Graphique Pour Analyser Des Données Distantes Sous R
    Accéder aux données Des méthodes d'analyse dans une interface graphique Application à des mesures biologiques Perspectives et limites Une interface graphique pour analyser des données distantes sous R Raphaël Coudret(1), Gilles Durrieu(2), Jérôme Saracco(1) (1)Équipe CQFD, INRIA Bordeaux - Sud-Ouest et IMB, Université de Bordeaux (2)LMBA, Université de Bretagne Sud 1ères Rencontres R, 2 Juillet 2012, Bordeaux Les packages RMySQL et RGtk2 Coudret, Durrieu, Saracco 1/15 Accéder aux données Des méthodes d'analyse dans une interface graphique Application à des mesures biologiques Perspectives et limites Sommaire Accéder aux données Les fonctionnalités de MySQL Utiliser des commandes SQL sous R Des méthodes d'analyse dans une interface graphique Les fenêtres et les boutons de Gtk+ ... ... disponibles sous R Application à des mesures biologiques Contexte Un estimateur de densité particulier Les packages RMySQL et RGtk2 Coudret, Durrieu, Saracco 2/15 Accéder aux données Accéder aux données Des méthodes d'analyse dans une interface graphique Les fonctionnalités de MySQL Application à des mesures biologiques Utiliser des commandes SQL sous R Perspectives et limites Les fonctionnalités de MySQL I Mise en ordre de grands jeux de données ! Tables, bases, index I Connexion sécurisée à la base de données ! Droits de lecture, d'écriture, de création de tables I Interopérabilité ! Systèmes d'exploitation, langages de programmation Exploitation des données, travail en groupe, diusion de résultats Les packages RMySQL et RGtk2 Coudret, Durrieu, Saracco
    [Show full text]
  • NAMJOSHI-DISSERTATION-2017.Pdf
    Copyright by Sanjeev Vinayak Namjoshi 2017 The Dissertation Committee for Sanjeev Vinayak Namjoshi Certifies that this is the approved version of the following dissertation: Bioinformatic Approaches to Screening the Molecular Framework Underlying Local Dendritic mRNA Translation Committee: Johann Hofmann Supervisor Kimberly F. Raab-Graham Co- Supervisor Nigel S. Atkinson Edward M. Marcotte Christopher S. Sullivan Bioinformatic Approaches to Screening the Molecular Framework Underlying Local Dendritic mRNA Translation by Sanjeev Vinayak Namjoshi, B.S.Bio Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2017 Dedication I dedicate this work to all those who have been patient and supportive of me for over half a decade. To Dr. Kimberly Raab-Graham for her guidance and vision which has nurtured me into the scientist I am today. To the Raab-Graham lab for listening to my rambling discourse, bad music, and being a clarifying force in moments of confusion. To my mother for her unending supply of wisdom and council so I could better understand myself. To my father for questioning my own assumptions so that I could become a better scientist. To my sister for helping me realize what it is I believe. To my friends: Ariana, Alex & Alex, Jennifer, Kalen, Leslie, Peter, and Rick, who always inquired about my progress and emboldened me to move forward. To Elissa Jo for her constant encouragement and unwavering optimism at the most difficult moments. Finally, I dedicate the following quote to all the rodents whose heads have been sacrificed for my projects: “The world to which we have belonged offers nothing to love outside of each individual insufficiency: its existence is limited to utility […] Existence is not only an agitated void, it is a dance that forces one to dance with fanaticism.
    [Show full text]
  • Univerzita Pardubice Fakulta Elektrotechniky a Informatiky Porovnání Grafických Knihoven Na Vestavěném Zařízení Jan Ší
    Univerzita Pardubice Fakulta elektrotechniky a informatiky Porovnání grafických knihoven na vestavěném zařízení Jan Šíma Bakalářská práce 2009 Prohlášení autora Prohlašuji: Tuto práci jsem vypracoval samostatně. Veškeré literární prameny a informace, které jsem v práci využil, jsou uvedeny v seznamu použité literatury. Byl jsem seznámen s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorský zákon, zejména se skutečností, že Univerzita Pardubice má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Pardubice oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše. Souhlasím s prezenčním zpřístupněním své práce v Univerzitní knihovně. V Pardubicích dne 29. 4. 2009 Jan Šíma Poděkování Na této stránce, která je učená pro poděkování, bych chtěl poděkovat hlavně Mgr. Tomáši Hudcovi, který mi velmi pomohl při zpracování bakalářské práce. Dále bych chtěl poděkovat Jarmile Šímové při pomoci s opravou českého pravopisu. Dále Ing. Janu Kroulíkovi, „embedded Linux developerovi“, ze společnosti MIKRO- ELEKTRONIKA spol. s r. o.. Všem zmíněným děkuji za pomoc při mé práci. Anotace a klíčová slova Anotace Práce je věnována paměťové a časové náročnosti grafických knihoven pro X Window se zaměřením na multiplatformní knihovny. Věnuje se knihovnám Qt, GTK+, wxWidgets, FLTK, Fast Toolkit. Zabývá se jejich porovnáním mezi sebou a následnému testování jednotlivých knihoven. Klíčová slova GTK+, Qt, FLTK, wxWidgets, Fast Toolkit, grafické knihovny, paměť, čas, Unix, RAM TITLE Comparison of graphic libraries for embedded device ANNOTATION This work is dedicated to measure the memory and time performance of graph- ics libraries for X Window with a focus on multi-platform library.
    [Show full text]
  • Kurt Hornik I
    R faq Frequently Asked Questions on R Version 2.7.2008-04-18 ISBN 3-900051-08-9 Kurt Hornik i Table of Contents 1 Introduction ............................... 1 1.1 Legalese ................................................ 1 1.2 Obtaining this document................................. 1 1.3 Citing this document .................................... 1 1.4 Notation................................................ 1 1.5 Feedback ............................................... 2 2 R Basics .................................. 3 2.1 What is R? ............................................. 3 2.2 What machines does R run on?........................... 3 2.3 What is the current version of R?......................... 4 2.4 How can R be obtained? ................................. 4 2.5 How can R be installed? ................................. 4 2.5.1 How can R be installed (Unix) ................... 4 2.5.2 How can R be installed (Windows) ............... 5 2.5.3 How can R be installed (Macintosh).............. 5 2.6 Are there Unix binaries for R? ........................... 6 2.7 What documentation exists for R? ........................ 7 2.8 Citing R................................................ 8 2.9 What mailing lists exist for R? ........................... 9 2.10 What is cran? ....................................... 10 2.11 Can I use R for commercial purposes? .................. 11 2.12 Why is R named R? ................................... 11 2.13 What is the R Foundation? ............................ 11 3 R and S .................................
    [Show full text]
  • Bioinformatics Applications in Life Sciences and Technologies
    BioMed Research International Bioinformatics Applications in Life Sciences and Technologies Guest Editors: Sílvia A. Sousa, Jorge H. Leitão, Raul C. Martins, João M. Sanches, Jasjit S. Suri, and Alejandro Giorgetti Bioinformatics Applications in Life Sciences and Technologies BioMed Research International Bioinformatics Applications in Life Sciences and Technologies GuestEditors:SílviaA.Sousa,JorgeH.Leitão, Raul C. Martins, João M. Sanches, Jasjit S. Suri, and Alejandro Giorgetti Copyright © 2016 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Bioinformatics Applications in Life Sciences and Technologies Sílvia A. Sousa, Jorge H. Leitão, Raul C. Martins, João M. Sanches, Jasjit S. Suri, and Alejandro Giorgetti Volume 2016, Article ID 3603827, 2 pages -Index for Differentiating Complex Dynamic Traits Jiandong Qi, Jianfeng Sun, and Jianxin Wang Volume 2016, Article ID 5761983, 13 pages Advancements in RNASeqGUI towards a Reproducible Analysis of RNA-Seq Experiments Francesco Russo, Dario Righelli, and Claudia Angelini Volume 2016, Article ID 7972351, 11 pages Identification of Gene Expression Pattern Related to Breast Cancer Survival Using Integrated TCGA Datasets and Genomic Tools Zhenzhen Huang, Huilong Duan, and Haomin Li Volume 2015,
    [Show full text]