The Piriá Aluminous Lateritic Profile: Mineralogy, Geochemistry and Parent Rock O Perfil Laterítico Aluminoso Do Piriá: Mineralogia, Geoquímica E Rocha Mãe

Total Page:16

File Type:pdf, Size:1020Kb

The Piriá Aluminous Lateritic Profile: Mineralogy, Geochemistry and Parent Rock O Perfil Laterítico Aluminoso Do Piriá: Mineralogia, Geoquímica E Rocha Mãe DOI: 10.1590/2317-4889201620160101 ARTICLE The Piriá aluminous lateritic profile: mineralogy, geochemistry and parent rock O perfil laterítico aluminoso do Piriá: mineralogia, geoquímica e rocha mãe Pabllo Henrique Costa dos Santos1*, Marcondes Lima da Costa2, Alessandro Sabá Leite3 ABSTRACT: Relatively small aluminous lateritic deposits are abundant RESUMO: Depósitos lateríticos de pequeno porte são frequentes no in the northeast and northwest parts of the Pará and Maranhão states, nordeste do Pará e noroeste do Maranhão. A maioria está mineralizada respectively. Most of them hosts aluminum phosphate mineralization for- em fosfatos de alumínio e ocorre em morros e platôs, que se destacam na ming hills and plateaus that stand out in the topography of the undulating planície rebaixada dessa região. A Serra do Piriá é uma dessas feições, plains of this region. The Piriá ridge is one of those topographic features, estando recoberta por couraças ferruginosas, alvo de explotação na década covered by lateritic iron crusts that have been studied in the 1970s as part de 1970 e de recente prospecção de fosfatos. Este trabalho buscou aprofun- of iron ore exploration campaigns and recently for phosphates prospec- dar o conhecimento sobre a evolução laterítica do depósito Piriá e demon- tion. This study improves the knowledge about the evolution of the late- strar sua compatibilidade com os lateritos mais evoluídos da Amazônia, ritic Piriá deposit and demonstrates its relationship with the most evolved conhecidos como maturos, os quais constituem grandes mineralizações laterites of the Amazon, known as mature laterites, which formed major formadas durante o paleógeno. Investigaram-se amostras de um furo de ore deposits during the Paleogene. Samples of a 17 meter-deep borehole sondagem com 17 m de profundidade, por meio de análises mineralógicas were investigated through mineralogical (X-ray diffraction —XRD, opti- (difração de raios x — DRX, microscopia ótica e eletrônica) e químicas cal and electron microscopy) and chemical methods (inductively coupled (espectrometria de massa por plasma acoplado indutivamente — ICP- plasma mass spectrometry — ICP-MS, inductively coupled plasma opti- MS, espectrometria de emissão óptica com plasma indutivamente acop- cal emission spectrometry — ICP-OES and X-ray fluorescence — XRF). lado — ICP-OES e espectrometria de fluorescência de raios X — FRX). The studied lateritic profile comprises a clay bauxitic horizon overlaid by an O perfil compreende horizonte argiloso bauxítico recoberto por crosta fer- aluminous iron crust. Upwardly continuous dissolution of kaolinite occurs roaluminosa. Ascendentemente ocorre contínua dissolução da caulinita with the formation of gibbsite, as the result of intensive leaching, resulting com formação de gibbsita, resultante de intensa lixiviação, de modo que in a higher Al2O3 content in the crust. The continuous formation of he- os teores de Al2O3 são superiores na crosta. Também se verificou contínua matite from goethite resulted from the transition to more arid conditions. formação de hematita a partir de goethita, resultante de transição para Anatase is a newly formed mineral (100–400 nm crystallites), showing a condições mais áridas. Anatásio neoformado (em cristalitos de 100 a 400 gradual increase, following the increase in TiO2 content, which is high nm) apresenta maior abundância em direção ao topo, acompanhando os and indicative of a mafic parent rock, confirmed by the Ti × Zr dispersion teores de TiO2, que são elevados e remetem à rocha mãe, de composição pattern. Prominent zoning in the lateritic profile is characterized by the máfica, confirmada pelo padrão de dispersão Ti × Zr. A mineralização mineralization in bauxite and augelite and abrupt chemical transition be- em bauxita e augelita e a transição composicional brusca entre os hori- tween the horizons, marked by a decrease in Si and increase in Fe content zontes, principalmente quanto aos teores decrescentes de Si e crescentes de from the bottom to the top of the profile. These features are compatible Fe em direção ao topo, demonstram o forte zoneamento típico dos lateritos and indicative of mature laterites formed in Amazon during the Paleogene. maturos, formados na Amazônia durante o paleógeno. KEYWORDS: Gurupi region; mature laterites; bauxite. PALAVRAS-CHAVE: região do Gurupi; lateritos maturos; bauxita. 1Geosciences Museum, Institute of Geosciences, Federal University of Pará – UFPA, Belém (PA), Brazil. E-mails: phsantos@ufpa.br, pabllo-santos@hotmail.com 2Program for Post-graduation in Geology and Geochemistry, Institute of Geosciences, UFPA, Belém (PA), Brazil. E-mails: mlc@ufpa.br, marcondeslc@gmail.com 3Vale Institute of Technology – ITV, Belém (PA), Brazil. E-mails: alessandro.leite@me.com, alessandroleite@oi.com.br *Corresponding author. Manuscript ID: 20160101. Received in: 08/17/2016. Approved in: 09/23/2016. 617 Brazilian Journal of Geology, 46(4): 617-636, December 2016 The Piriá Aluminous laterites INTRODUCTION higher relief in the form of hills or ridges that stand out in the regional undulating plain. Lateritic deposits are found in almost the entire Amazon The Gurupi region’s main lateritic deposits, which host region. Among the main identified Amazonian lateritic phosphate mineralization and are sometimes associated with zones, the Gurupi region (northeastern Pará and northwes- bauxite, include the Sapucaia, Boa Vista, Jandiá, Cansa Perna, tern Maranhão, extending until the coast) stands out for its Itacupim, Pedra Grande, Piriá and Peito de Moça (in the state compositional diversity and metallogenic potential, mainly of Pará); and the Pirocaua, Trauira and Tromaí (in the state of for phosphates, manganese, gold, titanium and aluminum Maranhão) (Fig. 1A). The most significant deposits in terms (Costa 1997). In previous years, geological exploration for of volume and P2O5 content are the Sapucaia (that recently phosphates has intensified because of the Brazilian demand began to be mined) (Leite 2014), Itacupim, Pirocaua and for fertilizers, which depends on large-scale imports. Primary Trauira (Oliveira & Costa 1984). and secondary gold searches continue to occur. Most of the lateritic deposits from the Gurupi region are Physiographic and geological context classified as mature. This term represents evolved laterites Piriá ridge is located along the left border of the homony- with more individualized and complex horizons, recogni- mous river, in the municipality of Vizeu, northeastern Pará. zed by typical textures, structures and mineral-geochemical The ridge comprises a chain of N–S-oriented plateaus, which aspects (Costa 1991). Generally, these deposits comprise are 6 km-long in length and 178 m high, near the border of A 1º00'00"S 1º00'00"S Legend Road City Lateritic deposit River 2º00'00"S 2º00'00"S 48º00'00"W 47º00'00"W 46º00'00"W 45º00'00"W 178 C B 150 Legend Quaternary sediments 150 Tertiary sediments Phillites Elevation (m) Medium grade metamorphic rocks 100 Volcanic rocks Quartz veins Granites, migmatites and gneiss 0 Tonalites, trondhemites and granites -23 Lateritic crust Plateau outline 2.5 km 7.5 km 12.5 km Foliation Village Road River 0 4 km º03'47" º03'47" 1 1 46º21'35" 46º11'13" Figure 1. (A) Phosphate and bauxite deposits located along the coast of northeastern Pará and northwestern Maranhão, with Piriá ridge highlighted (Costa & Sá 1980, Costa 1980; Costa 1990, Costa 1997); (B) three- dimensional Piriá ridge, generated with Global Mapper 14 software from digital elevation model (Shutte Radar Topography Mission); (C) Piriá ridge and its surrounding geology, modified from Costa (1982). 618 Brazilian Journal of Geology, 46(4): 617-636, December 2016 Pabllo Henrique Costa dos Santos et al. Piriá river (Fig. 1B). The overlaying aluminous iron crust was The optical microscopy analyses were conducted with partially mined during the 1980s and 1990s by Cimentos a Zeiss microscope, Axio Lab Pol model, to determine do Brasil S/A (CIBRASA) as iron ore, added to the limes- the textural and some mineral aspects from the lateritic tone that was extracted near Capanema (Pará) to produce profile. The adopted nomenclature for the texture was cement. The altitude in the area of exploitation was 160 m. that proposed by the Atlas of Micromorphology of Mineral The ridge relief is sustained by lateritic crusts. Phyllite, Alteration and Weathering (Delvigne 1999). The mineral schist and local volcanic rocks and quartz veins outcrop and textural aspects were captured with a Canon digital along the ridge slopes (Fig. 1C). This lithotype associa- camera, model A460. tion matches the Aurizona Group, which was defined by The Fe-Al substitution in FeOOH-AlOOH (goethite-dias- Pastana (1995) as a greenschist to amphibolite facies meta- pore) solid solution was determined according to Thiel’s (1963) volcanosedimentary sequence that comprises various schists, method, which evaluates the positioning variations of d111, phyllites, meta-pyroclastic rocks, meta-chert and some meta- d130, d140 and d021 goethite reflections according to the mafic and meta-ultramafic rocks. Klein and Moura (2001) AlOOH molar content. defined 2240 ± 5 Ma as the age for this unit. Anatase is a typical lateritic mineral (Costa et al. 1991, Granites, granodiorites and trondhjemites also occur Oliveira et al. 2013, Giorgis et al. 2014), also present in around Piriá ridge. These rocks match the Tromaí intrusive Piriá ridge deposit. So there was an attempt to make a suite (Klein et al. 2005), which has great geographic exten-
Recommended publications
  • 4.5Making Metamorphic Rock Inferences
    4.5 Making Metamorphic rock inferences How do geologists identify metamorphic rocks? Infer the parent rock Metamorphism (to change form) is a process in which a parent rock undergoes changes in the mineralogy, texture, and sometimes modifies the parent rocks chemical composition. Every metamorphic rock forms from a pre-existing rock, be it a metamorphic, igneous, or sedimentary rock, called the parent rock. Every metamorphic rock has a parent rock, called a “Protolith”. Source: Ohio Oil and Gas Energy Education Program 1. Pull out samples 4B, 13B, 17B, 19B, and 22B. These are all possible Protoliths “Parent Rocks” (sedimentary/ Igneous rocks) to a few of your metamorphic samples found in your kits. Keep these out in front of you. 2. Pull out rock samples 23B, 28B, 29B, and 30B. These are all metamorphic rocks that have undergone metamorphism. Lay the rocks out on the table in front of you. 3. Using dilute hydrochloric acid (HCl) or vinegar put a drop on sample 29B; it should effervesce or “fizz”. That means that the Protolith “parent rock” you choose should also effervesce or “fizz”. If it doesn’t then you will need to go back and try again until you find the correct Protolith. 4. Match the metamorphic rock with its Protolith “parent rock” below: Metamorphic 23B 27B 28B 29B 30B rock Protolith “Parent rock” Reflection Name two primary environmental changes a protolith rock must undergo to transition from its protolith to a metamorphic rock. OHIO OIL & GAS ENERGY EDUCATION PROGRAM oogeep.org 4.5 Making metamorphic rock inferences continued Infer the grade Sometimes the protoliths “parent rocks” are a metamorphic rock and that parent rock is metamorphosed into a new metamorphic rock that has experienced a different grade (intensity) of metamorphism.
    [Show full text]
  • Trolleite Al4(PO4)3(OH)3 C 2001-2005 Mineral Data Publishing, Version 1
    Trolleite Al4(PO4)3(OH)3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Lamellar, massive, to 3 cm. Physical Properties: Cleavage: In two directions, indistinct. Fracture: Even to conchoidal. Hardness = 8.5 D(meas.) = 3.10 D(calc.) = 3.08 Optical Properties: Translucent. Color: Pale green to bright blue. Luster: Vitreous. Optical Class: Biaxial (–). Dispersion: r> v,weak. α = 1.619 β = 1.639 γ = 1.643 2V(meas.) = 49◦ Cell Data: Space Group: I2/c. a = 18.894(5) b = 7.161(1) c = 7.162(2) β =99.99(2)◦ Z=4 X-ray Powder Pattern: Champion mine, California, USA. 3.208 (100), 3.095 (90), 3.075 (50), 2.519 (45), 3.336 (40), 6.667 (35), 1.983 (35) Chemistry: (1) (2) (3) P2O5 46.72 48.00 47.97 Al2O3 43.26 43.87 45.94 Fe2O3 2.75 0.34 CaO 0.97 0.02 H2O 6.23 [7.77] 6.09 Total 99.93 [100.00] 100.00 (1) V¨astan˚amine, Sweden. (2) H¨okens˚as, Sweden; by electron microprobe, total Fe as Fe2O3, H2O by difference. (3) Al4(PO4)3(OH)3. Occurrence: In amphibolite-grade metamorphic rocks. Association: Berlinite, attakolite, augelite, lazulite (V¨astan˚amine, Sweden); scorzalite, augelite, vis´eite(Champion mine, California, USA); montebrasite, scorzalite, bertossaite, brazilianite, apatite, gatumbaite, samuelsonite, wyllieite (Buranga pegmatite, Rwanda). Distribution: In Sweden, from the V¨astan˚amine, near N¨asum,Sk˚ane; at H˚alsj¨oberg, V¨armland;from H¨okens˚as,V¨asterg¨otland.In the Buranga pegmatite, Rwanda.
    [Show full text]
  • Llallagua Tin Ore Deposit (Bolivia)
    resources Article Speculations Linking Monazite Compositions to Origin: Llallagua Tin Ore Deposit (Bolivia) Elizabeth J. Catlos * and Nathan R. Miller Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, 1 University Sta. C9000, EPS 1.130, Austin, TX 78712, USA; nrmiller@jsg.utexas.edu * Correspondence: ejcatlos@jsg.utexas.edu; Tel.: +1-512-471-4762 Received: 3 May 2017; Accepted: 25 July 2017; Published: 29 July 2017 Abstract: Monazite [(Ce,Th)PO4] from the Llallagua tin ore deposit in Bolivia is characterized by low radiogenic element contents. Previously reported field evidence and mineral associations suggest the mineral formed via direct precipitation from hydrothermal fluids. Monazite compositions thus may provide insight into characteristics of the fluids from which it formed. Chemical compositions of three Llallagua monazite grains were obtained using Electron Probe Microanalysis (EPMA, n = 64) and laser ablation mass spectrometry (LA-ICP-MS, n = 56). The mineral has higher amounts of U (123 ± 17 ppm) than Th (39 ± 20 ppm) (LA-ICP-MS, ±1σ). Grains have the highest amounts of fluorine ever reported for monazite (0.88 ± 0.10 wt %, EPMA, ±1σ), and F-rich fluids are effective mobilizers of rare earth elements (REEs), Y, and Th. The monazite has high Eu contents and positive Eu anomalies, consistent with formation in a highly-reducing back-arc environment. We speculate that F, Ca, Si and REE may have been supplied via dissolution of pre-existing fluorapatite. Llallagua monazite oscillatory zoning is controlled by an interplay of low (P + Ca + Si + Y) and high atomic number (REE) elements.
    [Show full text]
  • Winter 2006 Gems & Gemology Gem News
    EDITOR Brendan M. Laurs (blaurs@gia.edu) CONTRIBUTING EDITORS Emmanuel Fritsch, IMN, University of Nantes, France (fritsch@cnrs-imn.fr) Henry A. Hänni, SSEF, Basel, Switzerland (gemlab@ssef.ch) Franck Notari, Geneva, Switzerland (franck.notari@bluewin.ch) Kenneth V. G. Scarratt, GIA Research, Bangkok, Thailand (ken.scarratt@gia.edu) DIAMONDS Angola and the Democratic Republic of Congo. This situ- Update on Diamond Trading in Sierra Leone. During the ation led to the Kimberley Process for certifying dia- decade-long civil war in Sierra Leone, the Revolutionary monds from mine to market, which was implemented in United Front (RUF) rebel army committed widespread 2002. With the signing of the Lomé Peace Agreement atrocities against innocent civilians, drawing global con- between the Sierra Leone government and the RUF earlier demnation by governments, human rights groups, and that year, peace has returned to the country. concerned citizens. The RUF was partially funded by the In August 2006, GIA Education instructor Ric Taylor country’s diamond resources, bringing the issue of con- traveled through the Sierra Leone diamond mining areas of flict diamonds in Sierra Leone to world attention in the Koidu, Tongo, Kenema, and Bo, some of which were once late 1990s. Meanwhile, similar diamond-funded conflicts controlled by the rebels. He saw no evidence of continuing were being waged in other African nations, such as conflict, and residents and journalists in these areas con- firmed that there is no desire to return to war. In the town of Koidu (figure 1), in the diamond mining district of Kono Figure 1. The town of Koidu, in the Kono district of in eastern Sierra Leone, one can still see the bare walls of eastern Sierra Leone, was at the center of the county’s buildings that were looted and burned, but many others protracted conflict because of the area’s diamond have been rebuilt and have roofs of corrugated metal or resources.
    [Show full text]
  • Metamorphic Rocks.Pdf
    Metamorphism & Metamorphic Rocks (((adapted from Brunkel, 2012) Metamorphic Rocks . Changed rocks- with heat and pressure . But not melted . Change in the solid state . Textural changes (always) . Mineralogy changes (usually) Metamorphism . The mineral changes that transform a parent rock to into a new metamorphic rock by exposure to heat, stress, and fluids unlike those in which the parent rock formed. granite gneiss Geothermal gradient Types of Metamorphism . Contact metamorphism – – Happens in wall rock next to intrusions – HEAT is main metamorphic agent . Contact metamorphism Contact Metamorphism . Local- Usually a zone only a few meters wide . Heat from plutons intruded into “cooler” country rock . Usually forms nonfoliated rocks Types of Metamorphism . Hydrothermal metamorphism – – Happens along fracture conduits – HOT FLUIDS are main metamorphic agent Types of Metamorphism . Regional metamorphism – – Happens during mountain building – Most significant type – STRESS associated with plate convergence & – HEAT associated with burial (geothermal gradient) are main metamorphic agents . Contact metamorphism . Hydrothermal metamorphism . Regional metamorphism . Wide range of pressure and temperature conditions across a large area regional hot springs hydrothermal contact . Regional metamorphism Other types of Metamorphism . Burial . Fault zones . Impact metamorphism Tektites Metamorphism and Plate Tectonics . Fault zone metamorphism . Mélange- chaotic mixture of materials that have been crumpled together Stress (pressure) . From burial
    [Show full text]
  • Basic Aggregate Properties Section 1
    Basic Aggregate Properties Section 1: Introduction 1 Aggregate Types Aggregates are divided into 3 categories based on particle size: • Coarse Aggregate Gravel or crushed stone Particle sizes larger than No. 4 sieve (4.75mm) • Fine Aggregate Sand or washed screenings Particle sizes between No. 4 and No. 200 sieve (4.75mm-75µm) •Fines Silt or clay Particle sizes smaller than No. 200 sieve (75µm) Coarse Aggregate Coarse Aggregate can come from several sources. Each of these sources can produce satisfactory aggregates depending on the intended use. Each parent material has advantages and disadvantages associated with it. 2 Coarse Aggregate Natural gravel Crushed stone Lightweight aggregate Recycled and waste products •slag • rubble •mine waste • asphalt and concrete pavement Important Properties of Aggregate All of these properties can have an affect on how the aggregate performs the tasks that are expected of it. •Shape • Surface texture •Gradation • Specific gravity • Absorption •Hardness • Soundness •Strength • Deleterious materials 3 The ideal aggregate is… Strong and hard to resist loads applied Chemically inert so it is not broken down by reactions with substances it comes in contact with Has a stable volume so that it does not shrink or swell Bonds tightly with asphalt and portland cement paste The ideal aggregate… Contains no impurities or weak particles Would be the perfect size and gradation for the application intended Would be locally available and economical 4 Aggregate in Practice There is a wide range in strength and hardness even among aggregates produced from the same type of parent material. Particles have pores that affect their absorption properties and how well they bond with asphalt and Portland cement.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388.
    [Show full text]
  • Topic Xi Formation of Rocks
    UNIT H MINERALS AND ROCKS ROCKS ARE MADE UP OF MINERALS MINERAL - NATURALLY OCCURRING, INORGANIC, CRYSTALLINE SUBSTANCE WITH CHARACTERISTIC PHYSICAL AND CHEMICAL PROPERTIES. ROCK FORMING MINERALS FELDSPAR, QUARTZ, MICA, CALCITE, HORNBLENDE, AUGITE, GARNET, MAGNETITE, OLIVINE, PYRITE AND TALC. THESE MINERALS MAKE UP MORE THAN 90% OF THE ROCKS IN THE LITHOSPHERE IDENTIFYING MINERALS physical properties are determined by the internal arrangement of atoms MINERALS ARE CLASSIFIED BY THE FOLLOWING PHYSICAL PROPERTIES: COLOR STREAK LUSTER HARDNESS SPECIFIC GRAVITY FRACTURE/CLEAVAGE Luster Metallic- looks like shiny metal Non-metallic- all the other ways that a mineral can shine Glassy/vitreous- shines like a piece of broken glass (most common non-metallic) Dull/earthy- no shine at all Resinous/waxy- looks like a piece of plastic or dried glue Pearly- looks oily it may have a slight rainbow like an oil slick on water. Hardness Fingernail 2.5 Penny 3.5 Iron Nail 4.5 Glass Plate 5.5 Steel File 6.5 MOH’S SCALE OF HARDNESS 1-TALC FINGERNAIL SCRATCHES EASILY 2-GYPSUM FINGERNAIL SCRATCHES 3-CALCITE COPPER PENNY SCRATCHES 4-FLUORITE STEEL FILE SCRATCHES EASILY 5-APATITE STEEL FILE SCRATCHES 6-FELDSPAR SCRATCHES WINDOW GLASS 7-QUARTZ HARDEST COMMON MINERAL; SCRATCHES GLASS EASILY 8-TOPAZ HARDER THAN ANY COMMON MINERAL 9-CORUNDUM SCRATCHES TOPAZ 10- DIAMOND HARDEST OF ALL MINERALS MINERAL FAMILIES SILICATES - MADE OF SILICON AND OXYGEN ABOUT 60% OF ALL MINERALS ARE SILICATES THE SILICON - OXYGEN TETRAHEDRON - ONE SILICON ATOM AND 4 OXYGEN ATOMS. A VERY STRONG STRUCTURE SILICATE FAMILY OLIVINE ISOLATED TETRAHEDRA GREENISH COLOR, NO CLEAVAGE PLANES ASBESTOS CHAIN TETRAHEDRA FIBERLIKE MICA SHEET TETRAHEDRA QUARTZ NETWORK TETRAHEDRA ALL SILICON-OXYGEN TETRAHEDRA CARBONATE MINERALS CARBON ATOM IN COMBINATION WITH 3 OXYGEN ATOMS CALCITE IRON OXIDES AND SULFIDES AN OXIDE IS A MINERAL CONSISTING OF A METAL ELEMENT COMBINED WITH OXYGEN.
    [Show full text]
  • Lehigh Preserve Institutional Repository
    Lehigh Preserve Institutional Repository An experimental determination of the stability and thermochemical properties of the mineral trolleite. Bass, Jay David 1977 Find more at https://preserve.lib.lehigh.edu/ This document is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu. AN EXPERIMENTAL DETERMINATION OF THE STABILITY AND THERMOCHEMICAL PROPERTIES OF THE MINERAL TROLLEITE by Jay David Bass A Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in Geological Sciences Lehigh University 1977 ProQuest Number: EP76368 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest EP76368 Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 This thesis is accepted and approved in partial fulfillment of the requirements for the degree of Master of Science. d/^ii^ / / / / Professor in Charge Chairman of Department 11 Acknowledgments I would like to thank Dr. C. B. Sclar for proposing the problem discussed in this thesis and for his continual encour- agement and inspiration during the completion of this project.
    [Show full text]
  • Chapter 10. Metamorphism & Metamorphic Rocks
    Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 10. Metamorphism & Metamorphic Rocks Adapted by Karla Panchuk from Physical Geology by Steven Earle Figure 10.1 Grey and white striped metamorphic rocks (called gneiss) at Pemaquid Point were transformed by extreme heat and pressure during plate tectonic collisions. Source: Karla Panchuk (2018) CC BY 4.0. Photos by Joyce McBeth (2009) CC BY 4.0. Map by Flappiefh (2013), derivative of Reisio (2005), Public Domain. Learning Objectives After reading this chapter and answering the review questions at the end, you should be able to: • Summarize the factors that influence the nature of metamorphic rocks. • Explain how foliation forms in metamorphic rocks. • Classify metamorphic rocks based on their texture and mineral content, and explain the origins of both. • Describe the various settings in which metamorphic rocks are formed and explain the links between plate tectonics and metamorphism • Describe the different types of metamorphism, including burial metamorphism, regional metamorphism, seafloor metamorphism, subduction zone metamorphism, contact metamorphism, shock metamorphism, and dynamic metamorphism. • Explain how metamorphic facies and index minerals are used to characterize metamorphism in a region. • Explain why fluids are important for metamorphism and describe what happens during metasomatism. Chapter 10. Metamorphism & Metamorphic Rocks 1 Metamorphism Occurs Between Diagenesis And Melting Metamorphism is the change that takes place within a body of rock as a result of it being subjected to high pressure and/or high temperature. The parent rock or protolith is the rock that exists before metamorphism starts.
    [Show full text]
  • Metamorphic Rocks and the Rock Cycle
    Metamorphic Rocks and the Rock Cycle Designed to meet South Carolina Department of Education 2005 Science Academic Standards Table of Contents What are Rocks? (slide 3) (Standard: 3-3.1 (covers slides 3-26)) Major Rock Types (slide 4) The Rock Cycle (slide 5) Metamorphic Rocks (slide 6) Metamorphism (slide 7) Metamorphic Conditions (slide 8) Causes of Metamorphism (slide 9-11) Heat (slide 9) Pressure (slide 10) Chemically Active Fluids (slide 11) The Role of Parent Rocks in Metamorphism (slide 12) Classifying Metamorphic Rocks by Different Textures (slide 13) Foliated Rock Textures: (slide 14-17) Slaty Cleavage (15), Schistocity (16), and Gneissic (17) Foliated Metamorphic Rocks: (slide 18-22) Slate (19), Phyllite (20), Schist (21), and Gneiss (22) Nonfoliated Rock Textures (slide 23) Marble (slide 24) Quartzite (slide 25) Metamorphic Rocks in the Landscape (slide 26) Metamorphic Rocks in South Carolina (slide 27) South Carolina Science Academic Standards (slide 28) Resources and References (slide 29) 2 What are Rocks? Most rocks are an aggregate of one or more minerals, and a few rocks are composed of non-mineral matter. There are three major rock types: 1. Igneous 2. Metamorphic 3. Sedimentary 3 Table of Contents Major Rock Types Igneous rocks are formed by the cooling of molten magma or lava near, at, or below the Earth‟s surface. Sedimentary rocks are formed by the lithification of inorganic and organic sediments deposited at or near the Earth‟s surface. Metamorphic rocks are formed when preexisting rocks are transformed into new rocks by heat and pressure below the Earth‟s surface. 4 Table of Contents The Rock Cycle 5 Table of Contents Metamorphic Rocks Metamorphic rocks are formed when existing parent rocks are transformed (metamorphosed) by heat and pressure deep below the surface of the earth or along the boundary of tectonic plates.
    [Show full text]
  • Table of Contents Abstract
    Table of Contents Abstract ............................................................................................................................................ 1 Introduction ..................................................................................................................................... 2 Chapter I Description of the tropical forest of Puerto Rico ............................................................ 5 1.1 Geologic setting of the study area ......................................................................................... 5 1.2 The El Yunque National Forest ............................................................................................... 8 1.3 Distribution of Temperature and Precipitation ..................................................................... 8 1.4 Soil types in the El Yunque National Forest ......................................................................... 11 Chapter II Field and laboratory work ............................................................................................ 13 Chapter III Polymorphism in kaolinite ........................................................................................... 17 Chapter IV Result and Discussion .................................................................................................. 22 Conclusions .................................................................................................................................... 45 References ....................................................................................................................................
    [Show full text]