AMOR IX, LLC Soda Lake Repower Property/Sales & Use Tax

Total Page:16

File Type:pdf, Size:1020Kb

AMOR IX, LLC Soda Lake Repower Property/Sales & Use Tax AMOR IX, LLC Soda Lake Repower Property/Sales & Use Tax Abatements Application October 2018 Compiled By: Cory Draper 136 S Main St STE 600 Salt Lake City, UT 84101 (O) – 801.875.4200 [email protected] 136 South Main Street Suite 600 Salt Lake City, UT 84101 (P) – 801.875.4200 [email protected] (F) – 801.875.4299 AMOR IX, LLC Table of Contents 1. Facility Information a. Description of Technology and Facility b. Legal Descriptions & Maps c. Business Plan d. Tax Records e. Business License 2. Facility Permits 3. Contractors & Subcontractors 4. Employment Information 5. Supplemental Information 6. Tax Schedules 7. Letter regarding Power Purchase Agreement 8. Signature & Attestation 9. Confidential Information 136 South Main Street Suite 600 Salt Lake City, UT 84101 (P) – 801.875.4200 [email protected] (F) – 801.875.4299 AMOR IX, LLC State of Nevada Renewable Energy Tax Abatement Application AFN: CHECKLIST - PLEASE ATTACH: 1 Description of the Technology and Complete Facility including generation, transmission or distribution, the physical point at which the ownership of energy is transferred and nature of the connection to the transmission grid 2 Complete and legal description of the location of the proposed facility, including a regional facility map that identifies the location, county boundaries and state boundaries of the proposed facility or a reference to any such map of appropriate scale 3 Description of any natural or nonrenewable resources that will be affected by or required to be used in the construction or operation of the proposed facility, N/A including statement of any areas of mitigation, controversy, issue or concern 4 Summary of the PUC and FERC Dockets if any PUC and FERC filing have started 5 Copy of the Business Plan for the Nevada Facility 6 For Expansion Applications, Copy of the most recent assessment schedule and tax bill from the County Assessor's Office or the Department of Taxation 7 Website link to company profile 8 Copy of the Current Nevada State Business License 9 Facility Information Form 10 Employment Information, construction, and permanent employee salary schedules 11 Supplemental Information Form 12 Taxation Reporting Forms (Summary Sheet and Schedules 1 through 8) 13 Names and contact information for construction company, contractors, subcontractors 14 Letter from the utility or company describing the highlights of PPA, LOI, or MOU. 15 Confidential Information Identification Form 1 Last Revised 03/17/2016 Attachment 1 Description of Technology & Facility The repowered facility at Soda Lake will consist of 1 Ormat Energy Converter (OEC) unit. The inlet geothermal brine flows through the level I vaporizer where heat energy is extracted and used to convert the motive fluid to high pressure vapors which drive the level I turbine. This reduced temperature brine enters the level II vaporizer where it converts the motive fluid to vapors at lower pressure which drive the level II turbine. Both the level I and II turbines are directly coupled to the ends of the Synchronous Generator. The balance of the process consists of air-cooled condensers which condense the spent motive fluid vapors, and the preheaters and recuperator which optimize the thermodynamic process. 136 South Main Street Suite 600 Salt Lake City, UT 84101 (P) – 801.875.4200 [email protected] (F) – 801.875.4299 AMOR IX, LLC L Attachment 2 Legal Descriptions & Maps 136 South Main Street Suite 600 Salt Lake City, UT 84101 (P) – 801.875.4200 [email protected] (F) – 801.875.4299 AMOR IX, LLC 2-1 Legal Description and Map of Proposed Facility Legal Description: S 1/2 SE1/4, NE 1/4 SE 1/4, E 1/2 NW 1/4 SE 1/4 SEC. 29, T. 20N, R.28E; N 1/2 SEC. 28, T. 20N, R.28E; S 1/2 SEC. 28, T.20N, R.28E; SEC. 31, T. 20N, R28E; APN 00939117 BLM N-1173 ' j/ < ---, �-­ 5 LEGEND Source: USGS 7.5"' Map Soda Lake East, NV Facility Boundary --- Parcel Boundary 0 1000 2000 3000 meters Attachment 4 PUC & FERC Dockets Summary AMOR IX, LLC intends to file for Market Based Rate Authority with FERC in March 2019. No PUC Filings will be necessary 136 South Main Street Suite 600 Salt Lake City, UT 84101 (P) – 801.875.4200 [email protected] (F) – 801.875.4299 AMOR IX, LLC Attachment 5 Business Plan 136 South Main Street Suite 600 Salt Lake City, UT 84101 (P) – 801.875.4200 [email protected] (F) – 801.875.4299 AMOR IX, LLC BUSINESS PLAN Upcoming Construction AMOR IX, LLC (Soda Lake) is a geothermal facility consisting primarily of geothermal resource, geothermal power plant, transmission line and ancillary equipment. The geothermal resource has demonstrated stable production over the past approximate 30 years and is anticipated to do so well into the future. The existing geothermal power plant was installed in 1988 and expanded in 1991. The efficiency of geothermal power plants has improved since the installment of the existing Soda Lake geothermal power plant. Soda Lake has decided to Repower the Soda Lake facility with current day, higher efficiency geothermal power plant which will increase generation from the existing geothermal resources. Without the Repower, output would be significantly lower and the continued operation of the facility over the long term may not be economically viable. Towards that end, Soda Lake has executed an EPC Contract with Ormat Nevada, Inc (Ormat) for the Soda Lake Geothermal Repower Project. A Full Notice to Proceed was issued to Ormat on July 27, 2018. The scheduled Commercial Operations Date is January 1, 2020. Power Purchase Agreement Soda Lake has executed a Renewable Energy Contract (Schedule 32) with PacifiCorp (dba Rocky Mountain Power) for all the generation from the Soda Lake Repower. Soda Lake will deliver generation from the Repowered Soda Lake Geothermal Power Plant to PacifiCorp who will ultimately deliver it to the University of Utah. The term of the Renewable Energy Contract is well in excess of the 10-year criterion as required by the Renewable Energy Property Tax Abatement. Financial Performance Soda Lake expects to generate revenues in excess of $100 Million and sufficient cashflow to pay all expenses, keep the plant operating for the term of the Renewable Energy Contract and support an acceptable return to its investors. Attachment 6 Tax Records 136 South Main Street Suite 600 Salt Lake City, UT 84101 (P) – 801.875.4200 [email protected] (F) – 801.875.4299 AMOR IX, LLC ! "# $%&'()1(%3)45&$%&'()67789@8A9AB C5'%35D cdD(&ef3g E!FGHFIHFG Yi"pPihqEPa PhTab T PQP RPaPrpRpa !!FUIHV" PR R!!SPtuutRh"rPaREE" hT#!s! VP" ha VvawGxyIHG W!X!! EY` ES!! bs! abYER Yi"pPihqEPa EShTab RPaPrpRpa "b` w!S vY`S R b 1(e'&3g35D gg&%3e%))%ee343'%35De PuIUIII qI PSPUIII "PUIII VEiVxI VW g&5((De !SH I I aHT!Si!I YbY# b! # UII !SV""FI !SH I RW!sbs`I !UI b! P# "H!r "H!vFIy R!H h!S!V!v !S#v I I rS qUUUI b! i! RW!sbI !ÿ`I P#ÿ# Vÿpb ÿVIGÿHÿiÿW!ÿb! T!Si!I Y!!Sÿ ÿqI "!ÿ ÿqI Ybÿ ÿqI Yb b XbÿE! ÿ I q!!#ÿYbÿqI YbY# UII ee(ee(ÿ%)%235D d%e%f)(ÿ%)%235D Pÿw FIGHxFIyHGFIuHy Wÿw FIGHx FIyHG FIuHy ÿÿE ÿÿuutIÿÿÿÿuutIÿÿÿÿuutIÿÿ ÿÿE ÿÿxIIIÿÿÿÿxIIIÿÿÿÿxIIIÿÿ ÿÿb Xb ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿb Xb ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿPSÿE ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿPSÿE ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿpb ! ÿÿuutIÿÿÿÿuutIÿÿÿÿuutIÿÿ ÿÿpb ! ÿÿxIIIÿÿÿÿxIIIÿÿÿÿxIIIÿÿ ÿÿ(2ÿee(ee(ÿ%)( ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿ(2ÿd%e%f)(ÿ%)( ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿ ÿ ÿaTÿwÿÿÿ ÿaTÿwÿ ÿ ÿ ÿÿE ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿE ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿb Xb ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿb Xb ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ Y`ÿÿ#ÿE! ! "# $%&'()1(%3)45&$%&'()67789@8A9AB C5'%35D deD(&fg3h E!FGHFIHFP QiUbc ip qE ib "i`q"qQE QRQ U S!!TQsÿSQ"Etbu"EEi iU#!r! !!FVIHW" QS QRiUvGwPbpQEbxu"iyqQyq QbuQ`"qEWQGvHFvFP cr! X!Y!! E`a ET!! ETiUbc ip qE ib "i`q"qQE bc y!T t`aT S c "ca 1(f'&3h35D hh&%3f%))%ff343'%35Df Q IVIII I QTQVIII p"QVIII WExWII WX h&5((Df !TH I I bHU!Tx!I `c`# c! # VII !TWQI !TH I SX!rcraI !VI c! Q# "H!u w "H!tFI S!H i!T!W!tp!T#t I pI uT VVVI c! x! SX!rcI !ÿaI Q#ÿ# U!Tx!I `!!Tÿ ÿI "!ÿ ÿI `cÿ ÿI `c c YcÿE! ÿ I !!#ÿ`cÿI `c`# VII ff(ff(ÿ%)%235D e%f%g)(ÿ%)%235D Qÿy FIPHGFIHPFIH Xÿy FIPHG FIHP FIH ÿÿE ÿÿwPvIÿÿÿÿwPvIÿÿÿÿwPvIÿÿ ÿÿE ÿÿIIIÿÿÿÿIIIÿÿÿÿIIIÿÿ ÿÿc Yc ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿc Yc ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿQTÿE ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿQTÿE ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿqc ! ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿqc ! ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿd(2ÿff(ff(ÿ%)( ÿÿwPvIÿÿÿÿwPvIÿÿÿÿwPvIÿÿ ÿÿd(2ÿe%f%g)(ÿ%)( ÿÿIIIÿÿÿÿIIIÿÿÿÿIIIÿÿ ÿ ÿ ÿbUÿyÿÿÿ ÿbUÿyÿ ÿ ÿ ÿÿE ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿE ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿc Yc ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿc Yc ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ `aÿÿ#ÿE! ÿ ÿ ÿÿ ! "ÿ# $%&'()ÿ1(2%3)ÿ45&ÿ$%&'()ÿ6ÿÿ7789@AB9CD E5'%235F qrF(&st3u ÿG!HHIIÿPQÿGQRSÿ" "vaRSSÿaQ"Pf QÿPWÿfg W QTÿQ ""ÿ ÿ !!XYIÿ`ÿaÿÿ" QÿU U!!VÿQÿPÿdPwÿxyH PW#! ÿi! ÿ ÿÿQGGPfÿfÿ I`xyHÿ b!c!!ÿÿÿGÿÿÿÿdeÿ GVÿ! ! ÿ ÿ ÿgÿi! ÿfgUQhUQÿPQÿGQRSÿhSPiS"UQG ÿ "vaRSSÿaQ"Pf GVÿPWÿfg ÿ ""ÿ "gePQÿGQRSÿaSGGÿPp S" !VÿÿÿÿÿÿÿÿÿÿÿdeÿÿVÿ U ÿgÿÿÿÿÿÿÿÿÿÿÿÿXx I 1(s'&3u235F uu&%3s%)ÿ)%ss343'%235Fs ÿQy YxI ÿI ÿ QVÿQYIII p"ÿQYIII aÿGÿvÿayIÿÿaÿb u&5((F2s ÿ !V` I I f`W!Vÿv!I dgd# g!ÿ# YII !VaQxI !V` I Ub!ÿigÿie I !YI g!ÿQ# "`!h y "`!XIx U! ` P!V!a!p!V# I pI hV YYYI g!ÿv! Ub!ÿigI !ÿeI Q#ÿÿ# aÿSg ÿaIÿ`ÿÿÿa#!b W!Vÿv!I d!!Vÿ ÿI "!ÿ ÿI dgÿ ÿI dg g cgÿG! ÿ I !!#ÿdgÿI dgd# YII ss(ss(dÿe%)f%235F h%i%j)(ÿe%)f%235F Qÿ XIx`x XIx`x XIx`x bÿ XIx`x XIx`x XIx`x ÿÿG ÿÿXXXXHÿÿÿÿXXXXHÿÿÿÿXXXXHÿÿ ÿÿG ÿÿyHIIÿÿÿÿyHIIÿÿÿÿyHIIÿÿ ÿÿg cg ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿg cg ÿÿIÿÿÿÿIÿÿ ÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿ ÿÿIÿÿ ÿÿQVÿG ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿQVÿG ÿÿIÿÿÿÿIÿÿ ÿÿIÿÿ ÿÿSg ! ÿÿXXXXHÿÿÿÿXXXXHÿÿÿÿXXXXHÿÿ ÿÿSg ! ÿÿyHIIÿÿÿÿyHIIÿÿÿÿyHIIÿÿ ÿÿg(2ÿss(ss(dÿe%)f( ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿg(2ÿh%i%j)(ÿe%)f( ÿÿIÿÿÿÿIÿÿ ÿÿIÿÿ ÿ ÿ ÿfWÿÿÿÿ ÿfWÿÿÿÿ ÿÿG ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿG ÿÿIÿÿÿÿIÿÿ ÿÿIÿÿ ÿÿg cg ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿg cg ÿÿIÿÿÿÿIÿÿ ÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿÿÿIÿÿ ÿÿÿ ÿÿIÿÿÿÿIÿÿ ÿÿIÿÿ deÿÿ#ÿG! STATE OF NEVADA DEPARTMENT OF TAXATION DIVISION OF LOCAL GOVERNMENT SERVICIES 1550 E.
Recommended publications
  • Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: a Critical Review of Current Knowledge
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 12-2013 Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge Danielle Barandiaran Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Soil Science Commons Recommended Citation Barandiaran, Danielle, "Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge" (2013). All Graduate Plan B and other Reports. 332. https://digitalcommons.usu.edu/gradreports/332 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. METHYLMERCURY FATE IN THE HYPERSALINE ENVIRONMENT OF THE GREAT SALT LAKE: A CRITICAL REVIEW OF CURRENT KNOWLEDGE By Danielle Barandiaran A paper submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Soil Science Approved: Astrid Jacobson Jeanette Norton Major Professor Committee Member - Paul Grossl Teryl Roper Committee Member Department Head UTAH STATE UNIVERSITY Logan, Utah 2013 Copyright © Danielle Barandiaran 2013 All Rights Reserved iii ABSTRACT Methylmercury Fate in the Hypersaline Environment of the Great Salt Lake: A Critical Review of Current Knowledge by Danielle Barandiaran, Master of Science Utah State University, 2013 Major Professor: Dr. Astrid R. Jacobson Department: Plants, Soils & Climate Methylmercury (MeHg) is a highly potent neurotoxic form of the environmental pollutant Mercury (Hg).
    [Show full text]
  • The Great Salt Lake Osmotic Power Potential
    The Great Salt Lake Osmotic Power Potential Maher Kelada MIK Technology 2100 West Loop South, Suite 900 Houston, Texas, USA 77027 [email protected] Abstract: This is a proposal to develop a new source of renewable energy relying on hypersaline osmotic power generation technology that has been developed by MIK Technology, potentially for generating up to 400 megawatts of sustainable power from the Great Salt Lake, Utah, operating isothermally without generating any emissions. The proposed technology would reduce Utah State’s demand for coal by 10% or natural gas by 50%, using a clean and safe renewable source of energy. I. Osmotic Power Generation Concept Osmosis is nature’s gift to life. It is the vehicle that transports fluids in all living cells and without it, all biological functions and all forms of life cease to exist! Osmosis is the spontaneous movement of water, through a semi-permeable membrane that is permeable to water but impermeable to solute. Water moves from a solution in which solute is less concentrated to a solution in which solute is more concentrated. The driving force of the flow movement is the difference in the chemical potential on the two sides of the semi-permeable membrane, with the solvent moving from a region of higher potential (generally of a lower solute concentration) to the region of lower potential (generally of a higher solute concentration). The term “Chemical Potential” at times can be ambiguous and elusive. In fact, it is one of the most important partial molal quantities. It is the energy source associated with the activity of the ions of an ionizable substance.
    [Show full text]
  • The Importance of the Salton Sea and Other Terminal Lakes in Supporting
    The Importance of the Salton Sea and Other Terminal Lakes in Supporting Birds of the Pacific Flyway Terminal lakes, so called because they have no outlet, are characteristic water features of the Great Basin of the Intermountain West. Through the process of continued evaporation, minerals and salts that flow into these water bodies are retained and concentrated over time. The salinity of the water varies considerably among terminal lakes, depending on the quality of the source water and the length of time the lake has been in existence. Several of these, including the Great Salt Lake, Mono Lake, and the Salton Sea, have become more saline than the ocean. While all of these lakes support unique physical characteristics and aquatic ecosystems, one characteristic common to all is the importance they play in sustaining birds using the Pacific Flyway and portions of the Central Flyway. Physical and Biological Characteristics of Terminal Lakes in the West Terminal lakes along the Pacific Flyway (Exhibit 1) vary widely in their physical and biological characteristics. Elevations range from 6,381 feet at Mono Lake to -227 feet at the Salton Sea. They also vary greatly in depth and salinity, as shown in Exhibits 2 and 3. Most of these lakes are shallow with seasonal water input and high evaporation in the summer. Water quality is typically characterized by hard water and saline conditions, an artifact of dissolved constituents accumulating and increasing in concentration over time. While water quality in terminal lakes limits the diversity of the aquatic community to salt-tolerant organisms, these lakes often are very productive, and provide an ample food supply for waterbirds.
    [Show full text]
  • Consequences of Drying Lake Systems Around the World
    Consequences of Drying Lake Systems around the World Prepared for: State of Utah Great Salt Lake Advisory Council Prepared by: AECOM February 15, 2019 Consequences of Drying Lake Systems around the World Table of Contents EXECUTIVE SUMMARY ..................................................................... 5 I. INTRODUCTION ...................................................................... 13 II. CONTEXT ................................................................................. 13 III. APPROACH ............................................................................. 16 IV. CASE STUDIES OF DRYING LAKE SYSTEMS ...................... 17 1. LAKE URMIA ..................................................................................................... 17 a) Overview of Lake Characteristics .................................................................... 18 b) Economic Consequences ............................................................................... 19 c) Social Consequences ..................................................................................... 20 d) Environmental Consequences ........................................................................ 21 e) Relevance to Great Salt Lake ......................................................................... 21 2. ARAL SEA ........................................................................................................ 22 a) Overview of Lake Characteristics .................................................................... 22 b) Economic
    [Show full text]
  • Great Salt Lake Brine Chemistry Database, 1966–2011
    GREAT SALT LAKE BRINE CHEMISTRY DATABASE, 1966–2011 by Andrew Rupke and Ammon McDonald OPEN-FILE REPORT 596 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 2012 GREAT SALT LAKE BRINE CHEMISTRY DATABASE, 1966–2011 by Andrew Rupke and Ammon McDonald Cover photo: The Southern Pacific Railroad rock causeway. The view is to the east, and the north arm of Great Salt Lake is on the left. OPEN-FILE REPORT 596 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 2012 STATE OF UTAH Gary R. Herbert, Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map & Bookstore 1594 W. North Temple Salt Lake City, UT 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP website: mapstore.utah.gov email: [email protected] UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, UT 84116 telephone: 801-537-3300 website: geology.utah.gov This open-file release makes information available to the public that may not conform to UGS technical, edito- rial, or policy standards; this should be considered by an individual or group planning to take action based on the contents of this report. Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product.
    [Show full text]
  • Great Salt Lake FAQ June 2013 Natural History Museum of Utah
    Great Salt Lake FAQ June 2013 Natural History Museum of Utah What is the origin of the Great Salt Lake? o After the Lake Bonneville flood, the Great Basin gradually became warmer and drier. Lake Bonneville began to shrink due to increased evaporation. Today's Great Salt Lake is a large remnant of Lake Bonneville, and occupies the lowest depression in the Great Basin. Who discovered Great Salt Lake? o The Spanish missionary explorers Dominguez and Escalante learned of Great Salt Lake from the Native Americans in 1776, but they never actually saw it. The first white person known to have visited the lake was Jim Bridger in 1825. Other fur trappers, such as Etienne Provost, may have beaten Bridger to its shores, but there is no proof of this. The first scientific examination of the lake was undertaken in 1843 by John C. Fremont; this expedition included the legendary Kit Carson. A cross, carved into a rock near the summit of Fremont Island, reportedly by Carson, can still be seen today. Why is the Great Salt Lake salty? o Much of the salt now contained in the Great Salt Lake was originally in the water of Lake Bonneville. Even though Lake Bonneville was fairly fresh, it contained salt that concentrated as its water evaporated. A small amount of dissolved salts, leached from the soil and rocks, is deposited in Great Salt Lake every year by rivers that flow into the lake. About two million tons of dissolved salts enter the lake each year by this means. Where does the Great Salt Lake get its water, and where does the water go? o Great Salt Lake receives water from four main rivers and numerous small streams (66 percent), direct precipitation into the lake (31 percent), and from ground water (3 percent).
    [Show full text]
  • Soda Springs, a Small San Bernardino County Desert Oasis, Eight Miles South of Interstate 15 and Baker, Between Barstow And
    Volume XX, 1980 SODA SPRINGS, SAN BERNARDINO COUNTY: SEQUENTIAL LAND USE Stephen T. Glass* Soda Springs, a small San Bernardino County desert oasis, eight miles south of Interstate 15 and Baker, between Barstow and Las Vegas, goes unnoticed by the thousands of travelers that pass daily through the Mohave Desert by car, bus, or train. (Fig. 1) Little rem:ains to indicate Soda Spring's former importance to the region's development. Only faint remnants of the former Mojave Road and the Tonopah and Tidewater Railroad are noticeable to the perspicacious rock climber or air traveler. The historical succession of land uses in Soda Springs has recently been continued by the addition of the Desert Research Center, under the auspices of the California State University and Coliege System. Before European Settlement Soda Spring's strategic location in the eastern Mojave has had a major effect on the commerce and, as importantly, on human survival in the region. Before the advent of European explorers, ancient trade trails led some 283 miles from the Mojave Valley on the Colorado River to the Pacific Coast. The nomadic Mojave Indians maintained a large permanent village north of present day Needles. Acting as middle-men *Mr. Glass is Head, Office of Noise Control, Environmental Health Division, City of Long Beach. 10 T \ ..\ (�.�� Yt ";; t�.J� Ei9-:>-. /">�:��- K.'f!l�" .. ; .. - ·· . • �.t '•',, ,;:..:.\ .... .. � . (, .... ... • .. -�� ;f .. ,. .. , .":' ···' . : . ..(\ ' 0 . i k . .. -�,. r.·�·) . u_::?r��(�:}.. ts?�. } " :)�). ::/ ;"''\ . , · '*SoliS't ; ' \,_..""'••' • I /J� _,,,-.,- �--<>:>l . .' i •••••' •• • .. � .. \ ; . ( " ..·· • ..,,_ .,.,., ·-�v :. - .,«, TBI.OJIIIIOD .... ··. ' •J . �r(-·r: )·,' r'i;-·-!.{ ' , ., AND OTHER EARLY WAGON ROADS (y' (::./ OF THE ���� �;_...� ��: ,��r .
    [Show full text]
  • Brine Shrimp (Cysts, Nauplii and Adults) (Larvae, Pupae and Adults
    OVERVIEW OF 2008 GREAT SALT LAKE MERCURY ECOSYSTEM ASSESSMENT Photograph Courtesy of Charles Uibel - greatsaltlakephotos.com Jodi Gardberg, Great Salt Lake Watershed Coordinator Utah Department of Environmental Quality/Division of Water Quality In 2003, USGS measured some of the highest levels of Hg found in U.S. surface waters Waterfowl Advisories Northern Shoveler Common Goldeneye Cinnamon Teal Average 3.22 ppm THg Average 2.01 ppm THg Average 0.42 ppm THg Adults should not eat more that 1 8-oz meal per month and pregnant women and children should not eat at all www.waterfowladvisories.utah.gov/advisories.htm Mercury in Wintering Waterfowl J. L. Vest, Utah State University M. R. Conover, Utah State University C. Perschon, Utah Division of Wildlife Resources J. Luft, Utah Division of Wildlife Resources 100.0 50.0 30.0 20.0 10.0 5.0 g/g ww) 3.0 2.0 Hg ( Hg 1.0 0.5 0.3 0.2 0.1 COGO NSHO GWTE 2008 Ecosystem Assessment of Mercury in the Great Salt Lake Assess Mercury concentrations in the sediment, water column, avian tissues and food-chain biota Great Salt Lake Food Web (open waters, Gilbert Bay) Birds Brine Fly Brine Shrimp (cysts, nauplii and adults) (larvae, pupae and adults Periphyton Phytoplankton Sediment Water (deep brine and shallow layers) Great Salt Lake Food Web (impounded wetlands) Birds Submerged Aquatic Macroinvertebrates Vegetation Phytoplankton Sediment Water Mercury in the Water Column and Sediment Dave Naftz, US Geological Survey THg water column Total: 48 samples Shallow brine: 36 samples Deep brine: 12 samples
    [Show full text]
  • Assessment of Potential Costs of Declining Water Levels in Great Salt Lake
    Assessment of Potential Costs of Declining Water Levels in Great Salt Lake Revised November 2019 Prepared for: Great Salt Lake Advisory Council KOIN Center 222 SW Columbia Street Suite 1600 Portland, OR 97201 503-222-6060 Salt Lake City, Utah This page intentionally blank ECONorthwest ii Executive Summary The purpose of this report is to assess the potential costs of declining water levels in Great Salt Lake and its wetlands. A multitude of people, systems, and wildlife rely on Great Salt Lake and value the services it provides. Declines in lake levels threaten current uses, imposing risks to livelihoods and lake ecosystems. This report synthesizes information from scientific literature, agency reports, informational interviews, and other sources to detail how and to what extent costs could occur at sustained lower lake levels. Water diversions from the rivers that feed Great Salt Lake have driven historical declines in lake levels. Current and future water stressors, without intervention to protect or enhance water flows to Great Salt Lake, have the potential to deplete water levels even further. Declines in lake levels threaten the business, environmental, and social benefits that Great Salt Lake provides and could result in substantial costs to surrounding local communities and the State of Utah. This report traces the pathways and resulting costs that could arise due to declines in water levels in Great Salt Lake. The potential costs evaluated in this report include those caused by reduced lake effect, increased dust, reduced lake access, increased salinity, habitat loss, new island bridges, and the spread of invasive species. Summary of Costs Each of the effects and resulting costs of declining water levels in Great Salt Lake are described in detail in this report.
    [Show full text]
  • Decline of the World's Saline Lakes
    PERSPECTIVE PUBLISHED ONLINE: 23 OCTOBER 2017 | DOI: 10.1038/NGEO3052 Decline of the world’s saline lakes Wayne A. Wurtsbaugh1*, Craig Miller2, Sarah E. Null1, R. Justin DeRose3, Peter Wilcock1, Maura Hahnenberger4, Frank Howe5 and Johnnie Moore6 Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world’s large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes. arge saline lakes represent 44% of the volume and 23% of the of migratory shorebirds and waterfowl utilize saline lakes for nest- area of all lakes on Earth1.
    [Show full text]
  • Origin of Arsenolipids in Sediments from Great Salt Lake
    CSIRO PUBLISHING Environ. Chem. 2019, 16, 303–311 Rapid Communication https://doi.org/10.1071/EN19135 Origin of arsenolipids in sediments from Great Salt Lake Ronald A. Glabonjat, A,D Georg Raber,A Kenneth B. Jensen,A Florence Schubotz,B Eric S. Boyd C and Kevin A. FrancesconiA AInstitute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria. BMARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany. CDepartment of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA. DCorresponding author. Email: [email protected] Environmental context. Arsenic is a globally distributed element, occurring in various chemical forms with toxicities ranging from harmless to highly toxic. We examined sediment samples from Great Salt Lake, an extreme salt environment, and found a variety of organoarsenic species not previously recorded in nature. These new compounds are valuable pieces in the puzzle of how organisms detoxify arsenic, and in our understanding of the global arsenic cycle. Abstract. Arsenic-containing lipids are natural products found predominantly in marine organisms. Here, we report the detection of known and new arsenolipids in sediment samples from Great Salt Lake, a hypersaline lake in Utah, USA, using high-performance liquid chromatography in combination with both elemental and molecular mass spectrometry. Sediments from four investigated sites contained appreciable quantities of arsenolipids (22–312 ng As gÀ1 sediment) comprising several arsenic-containing hydrocarbons and 20 new compounds shown to be analogues of phytyl 2-O-methyl dimethylarsinoyl riboside. We discuss potential sources of the detected arsenolipids and find a phytoplanktonic origin most plausible in these algal detritus-rich salt lake sediments.
    [Show full text]
  • Microbial Diversity of Soda Lake Habitats
    Microbial Diversity of Soda Lake Habitats Von der Gemeinsamen Naturwissenschaftlichen Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Susanne Baumgarte aus Fritzlar 1. Referent: Prof. Dr. K. N. Timmis 2. Referent: Prof. Dr. E. Stackebrandt eingereicht am: 26.08.2002 mündliche Prüfung (Disputation) am: 10.01.2003 2003 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaftlichen Fakultät, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Baumgarte, S., Moore, E. R. & Tindall, B. J. (2001). Re-examining the 16S rDNA sequence of Halomonas salina. International Journal of Systematic and Evolutionary Microbiology 51: 51-53. Tagungsbeiträge Baumgarte, S., Mau, M., Bennasar, A., Moore, E. R., Tindall, B. J. & Timmis, K. N. (1999). Archaeal diversity in soda lake habitats. (Vortrag). Jahrestagung der VAAM, Göttingen. Baumgarte, S., Tindall, B. J., Mau, M., Bennasar, A., Timmis, K. N. & Moore, E. R. (1998). Bacterial and archaeal diversity in an African soda lake. (Poster). Körber Symposium on Molecular and Microsensor Studies of Microbial Communities, Bremen. II Contents 1. Introduction............................................................................................................... 1 1.1. The soda lake environment .................................................................................
    [Show full text]