Cell Cycle- and DNA Repair Pathway-Specific Effects of Apoptosis on Tumor Suppression

Total Page:16

File Type:pdf, Size:1020Kb

Cell Cycle- and DNA Repair Pathway-Specific Effects of Apoptosis on Tumor Suppression Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression Steven S. Fostera, Saurav Dea, Linda K. Johnsonb, John H. J. Petrinia,1, and Travis H. Strackera,c,1 aMolecular Biology Program, Sloan-Kettering Institute, New York, NY 10021; bCenter of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021; and cOncology Programme, Institute for Research in Biomedicine, 08028 Barcelona, Spain Edited by James E. Haber, Brandeis University, Waltham, MA, and approved May 8, 2012 (received for review January 12, 2012) The DNA damage response comprises DNA repair, cell-cycle check- required for subsequent activation of ATM, an apical kinase in point control, and DNA damage-induced apoptosis that collectively the DDR (2). ATM and related kinases are estimated to modify promote genomic integrity and suppress tumorigenesis. Previ- more than 700 substrates in response to DNA damage on con- ously, we have shown that the Chk2 kinase functions indepen- sensus SQ/TQ sites (6, 7). Among these substrates are key regu- dently of the Mre11 complex (Mre11, Rad50, and Nbs1) and ATM lators of cell-cycle checkpoints, DNA repair factors, and proteins in apoptosis and suppresses tumorigenesis resulting from hypo- that regulate apoptosis and senescence, accounting for the broad morphic alleles of Mre11 or Nbs1. Based on this work, we have physiological impact of DDR functions (8). proposed that Chk2 limits the oncogenic potential of replication- Arguably one of the most important ATM substrates is the associated DNA damage. Here we further address the role of Chk2 tumor suppressor p53. p53 controls the G1/S cell-cycle check- and damage-induced apoptosis in suppressing the oncogenic po- point and is required for both apoptosis and senescence in various cellular contexts (9). Deficiency of p53 results in severe predis- tential of chromosome breaks. We show that loss of Chk2 or a position to lymphoma in the mouse (10, 11). Mice harboring a mutation in p53 (R172P), which selectively impairs its function in separation-of-function mutation in p53, p53R172P, in which its apoptosis, rescued the lethality of mice lacking Lig4, a ligase re- apoptotic function is abolished but its influence on the G1/S quired for nonhomologous end-joining (NHEJ) repair of DNA dou- − − − − − − checkpoint and the induction of senescence remain intact, have ble-strand breaks in G0/G1. In contrast to Lig4 / p53 / mice, Lig4 / −/− −/− R172P/R172P been established. The spectrum and kinetics of tumor de- Chk2 and Lig4 p53 mice were not prone to organ- velopment in p53R172P/R172P mice are markedly distinct from GENETICS specific, rapid tumorigenesis. Although the severe NHEJ deficiency −/− R172P/R172P −/− those of p53 mice (12). p53 mice have a late-onset of Lig4 was a less potent initiator of tumorigenesis in the tumor phenotype, exhibiting lymphomas and a variety of solid R172P/R172P −/− p53 and Chk2 backgrounds, where p53 cell-cycle func- tumors, suggesting that senescence and G1/S checkpoint func- tions are largely intact, even mild defects in the intra-S and G2/M tions delay tumorigenesis in the context of apoptotic deficiency. checkpoints caused by mutations in Nbs1 are sufficient to influence Consistent with this view, the p53R172P allele retards the de- malignancy in p53R172P/R172P mice. We conclude that the oncogenic velopment of lymphomas resulting from Myc overexpression potential of double-strand breaks resulting from NHEJ deficiency is compared with p53 heterozygosity (13). Together, these data in- highly restricted by nonapoptotic functions of p53, such as the G1/S dicate that the apoptotic functions of p53 are not sufficient for its checkpoint or senescence, suggesting that the particular facets of role as a tumor suppressor. the DNA damage response required for tumor suppression are dic- p53 functions are activated by DSBs induced in G1 cells, leading to the activation of apoptotic as well as nonapoptotic tated by the proliferative status of the tumor-initiating cell. − − − − responses. Lig4 / and Xrcc4 / mice, which lack key compo- chromosome instability | kinase signaling | tumor suppressor nents of the NHEJ machinery, exhibit perinatal lethality and are associated with high levels of DSBs in areas of the brain con- taining differentiated and largely nondividing cell populations ollowing the detection of DNA lesions, the DNA damage re- −/− (14, 15). p53 deficiency rescues the lethality of Lig4 and sponse (DDR) coordinates DNA repair, cell-cycle checkpoints, −/− −/− −/− −/− −/− F Xrcc4 mice, but Lig4 p53 and Xrcc4 p53 mice have and specialized programs, such as apoptosis and senescence, to rapid onset of pro– and pre–B-cell lymphomas as well as me- prevent genomic instability (1). DDR genes frequently are mutated dulloblastomas with complete penetrance (16, 17). These data in chromosome instability and cancer predisposition syndromes, highlighting the role of the DDR in suppressing malignancy (2). indicate that defective NHEJ-mediated repair of DSBs arising in Markers of DDR activation are observed readily in premalignant G1 cells, such as those induced during antigen-receptor gene lesions, leading to the hypothesis that the DDR is an inducible assembly and in differentiated CNS components, are highly on- barrier to tumorigenesis (3). Indices of DDR activation are re- cogenic when p53 functions are lost (4). duced as tumors evolve, suggesting that selection against aspects of Previously, we provided evidence that the Chk2 kinase sup- DNA damage signaling accompany tumor progression (1). pressed the oncogenic potential of DNA replication-associated DNA damage through crosses with mice harboring mutations in DNA double-strand breaks (DSBs) are physiologically im- ATLD1/ATLD1 ΔB/ΔB portant lesions, because they can be cytotoxic or cytostatic and Mre11 (Mre11 ) and Nbs1 (Nbs1 ) (18). This in- generate oncogenic translocations (2, 4). Two major pathways of terpretation was based on the fact that those Mre11 complex DSB repair are used in the cell: nonhomologous end-joining alleles primarily affect the DDR in the S and G2 phases of the (NHEJ) and homology-directed repair (HDR). The use of HDR cell cycle and exhibit marked tumor predisposition in the context is cell cycle dependent, regulated by the activity of cyclin-de- pendent kinases and, in some cases, by the cell cycle-dependent expression or stability of required factors (5). HDR preferen- Author contributions: S.S.F., J.H.J.P., and T.H.S. designed research; S.S.F., S.D., and T.H.S. tially uses the sister chromatid as a template and thus is sub- performed research; S.S.F., S.D., L.K.J., J.H.J.P., and T.H.S. analyzed data; and S.S.F., J.H.J.P., stantially less error-prone than NHEJ, which typically results in and T.H.S. wrote the paper. the deletion or addition of DNA sequences at the junction of The authors declare no conflict of interest. repair. Deficiencies in both pathways have been linked to chro- This article is a PNAS Direct Submission. mosomal instability, DNA damage sensitivity, and cancer pre- Freely available online through the PNAS open access option. disposition, reflecting the hazards posed by DSBs (1). 1To whom correspondence may be addressed. E-mail: [email protected] or travis. The DDR is initiated by the recognition of DSBs that is me- [email protected]. diated primarily by the Mre11 complex, consisting of Mre11, This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Rad50, and Nbs1. DSB engagement by the Mre11 complex is 1073/pnas.1120476109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1120476109 PNAS Early Edition | 1of6 Downloaded by guest on September 28, 2021 of Chk2 deficiency (19, 20). In contrast, Chk2 deficiency did not of DNA damage associated with DNA replication (12). We Δ enhance tumorigenesis in PrkdcScid mice, in which DSBs induced combined p53R172P/R172P with two Nbs1 mutants, Nbs1 B and Δ in G1 cells during antigen-receptor gene assembly are not re- Nbs1 C, which impair the response to DNA damage in S phase. paired (18). These data support the view that Chk2 tumor-sup- The N terminus of Nbs1 contains a Forkhead-associated (FHA) pressive activity may be relevant primarily for DNA damage that and tandem Brca1 C-terminal (BRCT) phosphopeptide binding arises during S or G2 phase (18). motifs, and the C terminus of Nbs1 contains a conserved domain In this study, we examine genetic contexts in which defective that contributes to the physical interaction between the Mre11 Δ apoptotic responses resulting from either p53 or Chk2 mutation complex and ATM (2, 21, 22). The Nbs1 C mutant lacks the C- are juxtaposed with DDR mutations that increase DNA damage terminal domain and exhibits an intra–S-phase checkpoint de- Δ in G1, S, or G2/M phases of the cell cycle. G1 DNA damage is fect, as well as a defect in apoptosis, whereas the Nbs1 B mutant, − − − − − − − − enhanced in Lig4 / mice. Unlike Lig4 / p53 / mice, Lig4 / lacking the FHA and first BRCT domain, is defective in both the − − − − Chk2 / and Lig4 / p53R172P/R172P mice were not highly prone intra-S and G2/M checkpoints but is competent for apoptosis to the rapid development of lymphoma and medulloblastoma. (19, 23). Δ Δ Together, these outcomes suggest that the oncogenic potential of Relative to p53R172P/R172P alone, both p53R172P/R172P Nbs1 C/ C Δ Δ breaks generated by NHEJ deficiency is restricted by non- and p53R172P/R172P Nbs1 B/ B double mutants exhibited reduced apoptotic p53 functions such as senescence or the imposition of survival, a more rapid onset of tumorigenesis, and alterations in Δ Δ the G1/S checkpoint. In contrast, Nbs1 C and Nbs1 B mutations, tumor spectrum (Fig. 1 A–D and Tables S1–S7). These results which impair the intra–S-phase and G2/M checkpoints, en- reveal that the intra–S-phase checkpoint defects associated with Δ Δ hanced tumorigenesis in p53R172P/R172P mice.
Recommended publications
  • Plugged Into the Ku-DNA Hub: the NHEJ Network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou
    Plugged into the Ku-DNA hub: The NHEJ network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou To cite this version: Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou. Plugged into the Ku-DNA hub: The NHEJ network. Progress in Biophysics and Molecular Biology, Elsevier, 2019, 147, pp.62-76. 10.1016/j.pbiomolbio.2019.03.001. hal-02144114 HAL Id: hal-02144114 https://hal.archives-ouvertes.fr/hal-02144114 Submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Progress in Biophysics and Molecular Biology xxx (xxxx) xxx Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Plugged into the Ku-DNA hub: The NHEJ network * Philippe Frit a, b, Virginie Ropars c, Mauro Modesti d, e, Jean Baptiste Charbonnier c, , ** Patrick Calsou a, b, a Institut de Pharmacologie et Biologie Structurale, IPBS, Universite de Toulouse, CNRS, UPS, Toulouse, France b Equipe Labellisee Ligue Contre
    [Show full text]
  • DNA Ligase IV Syndrome; a Review Thomas Altmann1 and Andrew R
    Altmann and Gennery Orphanet Journal of Rare Diseases (2016) 11:137 DOI 10.1186/s13023-016-0520-1 REVIEW Open Access DNA ligase IV syndrome; a review Thomas Altmann1 and Andrew R. Gennery1,2* Abstract DNA ligase IV deficiency is a rare primary immunodeficiency, LIG4 syndrome, often associated with other systemic features. DNA ligase IV is part of the non-homologous end joining mechanism, required to repair DNA double stranded breaks. Ubiquitously expressed, it is required to prevent mutagenesis and apoptosis, which can result from DNA double strand breakage caused by intracellular events such as DNA replication and meiosis or extracellular events including damage by reactive oxygen species and ionising radiation. Within developing lymphocytes, DNA ligase IV is required to repair programmed DNA double stranded breaks induced during lymphocyte receptor development. Patients with hypomorphic mutations in LIG4 present with a range of phenotypes, from normal to severe combined immunodeficiency. All, however, manifest sensitivity to ionising radiation. Commonly associated features include primordial growth failure with severe microcephaly and a spectrum of learning difficulties, marrow hypoplasia and a predisposition to lymphoid malignancy. Diagnostic investigations include immunophenotyping, and testing for radiosensitivity. Some patients present with microcephaly as a predominant feature, but seemingly normal immunity. Treatment is mainly supportive, although haematopoietic stem cell transplantation has been used in a few cases. Keywords: DNA Ligase 4, Severe combined immunodeficiency, Primordial dwarfism, Radiosensitive, Lymphoid malignancy Background factors include intracellular events such as DNA replica- DNA ligase IV deficiency (OMIM 606593) or LIG4 syn- tion and meiosis, and extracellular events including drome (ORPHA99812), also known as Ligase 4 syn- damage by reactive oxygen species and ionising radi- drome, is a rare autosomal recessive disorder ation.
    [Show full text]
  • Cr2007108.Pdf
    npg Michael R Lieber et al. Cell Research (2008) 18:125-133. npg125 © 2008 IBCB, SIBS, CAS All rights reserved 1001-0602/08 $ 30.00 REVIEW www.nature.com/cr Flexibility in the order of action and in the enzymology of the nuclease, polymerases, and ligase of vertebrate non- homologous DNA end joining: relevance to cancer, aging, and the immune system Michael R Lieber1, Haihui Lu1, Jiafeng Gu1, Klaus Schwarz2 1USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Rm 5428, Los Angeles, CA 90089-9176, USA; 2Institute for Clinical Transfusion Medicine & Immunogenetics, Institute for Transfusion Medicine, Univer- sity Hospital, Ulm, Germany Nonhomologous DNA end joining (NHEJ) is the primary pathway for repair of double-strand DNA breaks in hu- man cells and in multicellular eukaryotes. The causes of double-strand breaks often fragment the DNA at the site of damage, resulting in the loss of information there. NHEJ does not restore the lost information and may resect ad- ditional nucleotides during the repair process. The ability to repair a wide range of overhang and damage configura- tions reflects the flexibility of the nuclease, polymerases, and ligase of NHEJ. The flexibility of the individual com- ponents also explains the large number of ways in which NHEJ can repair any given pair of DNA ends. The loss of information locally at sites of NHEJ repair may contribute to cancer and aging, but the action by NHEJ ensures that entire segments of chromosomes are not lost. Keywords: nonhomologous DNA end joining (NHEJ), Ku, DNA-PKcs, Artemis, Cernunnos/XLF, ligase IV, XRCC4, poly- merase µ, polymerase λ Cell Research (2008) 18:125-133.
    [Show full text]
  • Mouse Lig4 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Lig4 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Lig4 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Lig4 gene (NCBI Reference Sequence: NM_176953 ; Ensembl: ENSMUSG00000049717 ) is located on Mouse chromosome 8. 2 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 2 (Transcript: ENSMUST00000095476). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Lig4 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-191P3 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Null homozygotes die late in gestation with extensive CNS apoptosis, blocked lymphopoeiesis and failure of V(D)J joining. Carrier fibroblasts show elevated chromosome breaks. ~40% of homozygous hypomorphs survive, with retarded growth, reduced PBL and progressive loss of hematopoietic stem cells. Exon 2 covers 100.0% of the coding region. Start codon is in exon 2, and stop codon is in exon 2. The size of intron 1 for 5'-loxP site insertion: 2223 bp. The size of effective cKO region: ~3006 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele T A 5' gRNA region G 3' 1 2 Targeting vector T A G Targeted allele T A G Constitutive KO allele (After Cre recombination) Legends Exon of mouse Lig4 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • (XRCC1) Deficiency Enhances Class Switch Recombination and Is
    X-ray repair cross-complementing protein 1 (XRCC1) deficiency enhances class switch recombination and is permissive for alternative end joining Li Han1, Weifeng Mao1,2, and Kefei Yu3 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 Edited* by Frederick W. Alt, Howard Hughes Medical Institute, Harvard Medical School, Children’s Hospital, Immune Disease Institute, Boston, MA, and approved February 10, 2012 (received for review December 15, 2011) DNA double-strand breaks (DSBs) are essential intermediates in Ig the DNA end, the DNA-dependent protein kinase (DNA-PKcs) gene rearrangements: V(D)J and class switch recombination (CSR). that regulates end joining by phosphorylating other proteins (in- In contrast to V(D)J recombination, which is almost exclusively de- cluding itself), and the ligase complex containing XLF, XRCC4, pendent on nonhomologous end joining (NHEJ), CSR can occur in and DNA ligase 4. Also involved is a growing list of auxiliary NHEJ-deficient cells via a poorly understand backup pathway (or factors, including end processing nucleases (e.g., Artemis) and pathways) often termed alternative end joining (A-EJ). Recently, polymerases (μ and λ), polynucleotide kinases, 53BP1, and many several components of the single-strand DNA break (SSB) repair DNA damage response proteins (ATM, H2AX, Chk1, etc.). machinery, including XRCC1, have been implicated in A-EJ. To de- Although both V(D)J and class switch recombination rely on termine its role in A-EJ and CSR, Xrcc1 was deleted by targeted the generation and repair of DSBs, the dependence on NHEJ mutation in the CSR proficient mouse B-cell line, CH12F3.
    [Show full text]
  • Polymerase Δ Promotes Chromosomal Rearrangements and Imprecise Double-Strand Break Repair
    Polymerase δ promotes chromosomal rearrangements and imprecise double-strand break repair Jacob V. Layera, Lydie Debaizea, Alexandria Van Scoyka, Nealia C. Houseb, Alexander J. Brownc, Yunpeng Liud, Kristen E. Stevensone, Michael Hemannd, Steven A. Robertsc, Brendan D. Priceb, David M. Weinstocka,f,g,1, and Tovah A. Dayh,1 aDepartment of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215; bDepartment of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215; cSchool of Molecular Biosciences, Washington State University, Pullman, WA 99164; dThe Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139; eDepartment of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215; fCancer Biology Program, Broad Institute of MIT and Harvard University, Cambridge, MA 02142; gBiological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02215; and hDepartment of Biology, Northeastern University, Boston, MA 02115 Edited by James E. Haber, Brandeis University, Waltham, MA, and approved September 9, 2020 (received for review July 10, 2020) Recent studies have implicated DNA polymerases θ (Pol θ) and β and λ, can also be recruited for end-resection and gap-filling (9, (Pol β) as mediators of alternative nonhomologous end-joining 10). The XRCC4/LIGIV complex is recruited and ligates both (Alt-NHEJ) events, including chromosomal translocations. Here strands (11). we identify subunits of the replicative DNA polymerase δ (Pol δ) The third type of repair, alternative NHEJ (Alt-NHEJ), is as promoters of Alt-NHEJ that results in more extensive intrachro- often described as a back-up end-joining process, as it resolves a mosomal mutations at a single double-strand break (DSB) and greater fraction of DSBs when C-NHEJ is compromised (12).
    [Show full text]
  • Rabbit Anti-Human LIG4 (Phospho-Thr650) Polyclonal Antibody (CABT-L3791) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Rabbit Anti-Human LIG4 (Phospho-Thr650) polyclonal antibody (CABT-L3791) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit Anti-Human HDAC5 (Phospho-Ser498) polyclonal antibody. This antibody detects endogenous levels of DNA Ligase 4 only when phosphorylated at Thr650. Specificity Target Modification: Phospho. Modification Sites: Human: T650 Target Human DNA Ligase 4 (Phospho-Thr650) Immunogen The antiserum was produced against synthesized peptide derived from human DNA Ligase 4 around the phosphorylation site of Thr650. Immunogen range: 616-665 Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Affinity Purified Conjugate Unconjugated Applications WB, IHC, ELISA Molecular Weight 103 kDa Preparation The antibody was purified from rabbit antiserum by affinity-chromatography using phospho peptide. The antibody against non-phospho peptide was removed by chromatography using corresponding non-phospho peptide. Format Liquid Concentration Lot specific Buffer Rabbit IgG in PBS (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl and 50% glycerol. Preservative 0.02% Sodium Azide Storage Stable at -20°C for at least 1 year. Ship Wet ice Warnings For research use only. 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved BACKGROUND Introduction The protein encoded by this gene is a DNA ligase that joins single-strand breaks in a double- stranded polydeoxynucleotide in an ATP-dependent reaction. This protein is essential for V(D)J recombination and DNA double-strand break (DSB) repair through nonhomologous end joining (NHEJ).
    [Show full text]
  • Sister Chromatid, but Not NHEJ-Mediated Inter-Chromosomal Telomere
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Sister chromatid, but not NHEJ-mediated inter-chromosomal telomere fusions, occur independently of DNA ligases 3 and 4 Kate Liddiard,1 Brian Ruis,2 Taylor Takasugi,2 Adam Harvey,2 Kevin E. Ashelford, 1 Eric A. Hendrickson2¶ and Duncan M. Baird1¶ ¶ Joint senior authors 1Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, United Kingdom. 2 Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA. Corresponding author: Duncan Baird, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK. Email: [email protected] Running title: A- and C-NHEJ of dysfunctional human telomeres Keywords: Telomere, genome instability, DNA repair, inter-chromosomal, intra- chromosomal, non-homologous end-joining (NHEJ), DNA ligase, microhomology, crisis, double-stranded DNA break (DSB) 1 Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Telomeres shorten with each cell division and can ultimately become substrates for non-homologous end-joining repair, leading to large-scale genomic rearrangements of the kind frequently observed in human cancers. We have characterised over 1400 telomere fusion events at the single-molecule level, using a combination of high- throughput sequence analysis together with experimentally-induced telomeric double-stranded DNA breaks. We show that a single chromosomal dysfunctional telomere can fuse with diverse non-telomeric genomic loci, even in the presence of an otherwise stable genome, and that fusion predominates in coding regions.
    [Show full text]
  • Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III
    Genes 2015, 6, 385-398; doi:10.3390/genes6020385 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III Hiroshi Arakawa 1,* and George Iliakis 2 1 IFOM-FIRC Institute of Molecular Oncology Foundation, IFOM-IEO Campus, Via Adamello 16, Milano 20139, Italy 2 Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen 45122, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-2-574303306; Fax: +39-2-574303231. Academic Editor: Peter Frank Received: 31 March 2015 / Accepted: 18 June 2015 / Published: 23 June 2015 Abstract: Higher eukaryotes have three types of DNA ligases: DNA ligase 1 (Lig1), DNA ligase 3 (Lig3) and DNA ligase 4 (Lig4). While Lig1 and Lig4 are present in all eukaryotes from yeast to human, Lig3 appears sporadically in evolution and is uniformly present only in vertebrates. In the classical, textbook view, Lig1 catalyzes Okazaki-fragment ligation at the DNA replication fork and the ligation steps of long-patch base-excision repair (BER), homologous recombination repair (HRR) and nucleotide excision repair (NER). Lig4 is responsible for DNA ligation at DNA double strand breaks (DSBs) by the classical, DNA-PKcs-dependent pathway of non-homologous end joining (C-NHEJ). Lig3 is implicated in a short-patch base excision repair (BER) pathway, in single strand break repair in the nucleus, and in all ligation requirements of the DNA metabolism in mitochondria. In this scenario, Lig1 and Lig4 feature as the major DNA ligases serving the most essential ligation needs of the cell, while Lig3 serves in the cell nucleus only minor repair roles.
    [Show full text]
  • Suppression of Non-Homologous End Joining Does Not Rescue DNA Repair Defects
    bioRxiv preprint doi: https://doi.org/10.1101/151472; this version posted June 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Suppression of non-homologous end joining does not rescue DNA repair defects in Fanconi anemia patient cells Supawat Thongthip*, Brooke A. Conti*, Francis P. Lach and Agata Smogorzewska# Laboratory of Genome Maintenance, The Rockefeller University, New York, New York 10065, USA *These authors contributed equally to this paper #Correspondence: [email protected] Keywords: Fanconi anemia, non-homologous end joining, FANCA, DNA-PKcs, LIGIV, KU70, KU80, 53BP1, mitomycin C. 1 bioRxiv preprint doi: https://doi.org/10.1101/151472; this version posted June 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Severe cellular sensitivity and aberrant chromosomal rearrangements in response to DNA interstrand crosslink (ICL) inducing agents are hallmarks of Fanconi anemia (FA) deficient cells. These phenotypes have previously been ascribed to inappropriate activity of non-homologous end joining (NHEJ) rather than a direct consequence of DNA ICL repair defects. Here we used chemical inhibitors, RNAi, and Clusterd Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 to inactivate various components of NHEJ in cells from FA patients. We show that suppression of DNA-PKcs, DNA Ligase IV and 53BP1 is not capable of rescuing ICL-induced proliferation defects and only 53BP1 knockout partially suppresses the chromosomal abnormalities of FA patient cells.
    [Show full text]
  • End-Joining Repair of Double-Strand Breaks in Drosophila Melanogaster Is Largely DNA Ligase IV Independent
    Copyright 2004 by the Genetics Society of America DOI: 10.1534/genetics.104.033902 End-Joining Repair of Double-Strand Breaks in Drosophila melanogaster Is Largely DNA Ligase IV Independent Mitch McVey,*,†,1 Dora Radut* and Jeff J. Sekelsky*,‡ *Department of Biology, †SPIRE Program and ‡Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599 Manuscript received July 23, 2004 Accepted for publication August 26, 2004 ABSTRACT Repair of DNA double-strand breaks can occur by either nonhomologous end joining or homologous recombination. Most nonhomologous end joining requires a specialized ligase, DNA ligase IV (Lig4). In Drosophila melanogaster, double-strand breaks created by excision of a P element are usually repaired by a homologous recombination pathway called synthesis-dependent strand annealing (SDSA). SDSA requires strand invasion mediated by DmRad51, the product of the spn-A gene. In spn-A mutants, repair proceeds through a nonconservative pathway involving the annealing of microhomologies found within the 17-nt overhangs produced by P excision. We report here that end joining of P-element breaks in the absence of DmRad51 does not require Drosophila LIG4. In wild-type flies, SDSA is sometimes incomplete, and repair is finished by an end-joining pathway that also appears to be independent of LIG4. Loss of LIG4 does not increase sensitivity to ionizing radiation in late-stage larvae, but lig4 spn-A double mutants do show heightened sensitivity relative to spn-A single mutants. Together, our results suggest that a LIG4- independent end-joining pathway is responsible for the majority of double-strand break repair in the absence of homologous recombination in flies.
    [Show full text]
  • Two Hits in One: Whole Genome Sequencing Unveils LIG4 Syndrome
    Fadda et al. BMC Medical Genetics (2016) 17:84 DOI 10.1186/s12881-016-0346-7 CASE REPORT Open Access Two hits in one: whole genome sequencing unveils LIG4 syndrome and urofacial syndrome in a case report of a child with complex phenotype Abeer Fadda1, Fiza Butt2, Sara Tomei3, Sara Deola3, Bernice Lo3, Amal Robay4, Alya Al-Shakaki4, Noor Al-Hajri4, Ronald Crystal5, Marios Kambouris6,7, Ena Wang3, Francesco M. Marincola3, Khalid A. Fakhro3,4 and Chiara Cugno3,8* Abstract Background: Ligase IV syndrome, a hereditary disease associated with compromised DNA damage response mechanisms, and Urofacial syndrome, caused by an impairment of neural cell signaling, are both rare genetic disorders, whose reports in literature are limited. We describe the first case combining both disorders in a specific phenotype. Case presentation: We report a case of a 7-year old girl presenting with a complex phenotype characterized by multiple congenital abnormalities and dysmorphic features, microcephaly, short stature, combined immunodeficiency and severe vesicoureteral reflux. Whole Genome Sequencing was performed and a novel ligase IV homozygous missense c.T1312C/p.Y438H mutation was detected, and is believed to be responsible for most of the clinical features of the child, except vesicoureteral reflux which has not been previously described for ligase IV deficiency. However, we observed a second rare damaging (nonsense) homozygous mutation (c.C2125T/p.R709X) in the leucine-rich repeats and immunoglobulin-like domains 2 gene that encodes a protein implicated in neural cell signaling and oncogenesis. Interestingly, this mutation has recently been reported as pathogenic and causing urofacial syndrome, typically displaying vesicoureteral reflux.
    [Show full text]