Experimental Characterization of the Underwater Pulsed Electric Discharge Tetiana Tmenova

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Characterization of the Underwater Pulsed Electric Discharge Tetiana Tmenova Experimental characterization of the underwater pulsed electric discharge Tetiana Tmenova To cite this version: Tetiana Tmenova. Experimental characterization of the underwater pulsed electric discharge. Plas- mas. Université Paul Sabatier - Toulouse III, 2019. English. NNT : 2019TOU30248. tel-02651366 HAL Id: tel-02651366 https://tel.archives-ouvertes.fr/tel-02651366 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. To my grandparents, parents, and Eduardo. Acknowledgements First and foremost, I thank my dissertation advisors, professors Yann Cressault and Anatoly Veklich, for bringing the idea of joint French- Ukrainian thesis supervision into life, for assigning me this pioneering role, and for their valuable guidance and support. I would like to express special gratitude to my French co-supervisor, M. Flavien Valensi, for his endless patience and motivation, direction and articulation throughout the course of this work. His interest in this work and his style of advising has motivated me to put in my best effort. I would also like to thank my committee members Prof. Pellerin, Prof. Anisimov, Mme Rond and M. Tsiolko for serving on my committee. I would also like to thank my Ukrainian co-supervisor, M. Viacheslav Boretskij, for his valuable practical inputs regarding the research, equipment and spectroscopy in general. Special thanks to all my colleagues from Kiev and Toulouse, both inside and outside the lab. Many of them have become much more than that. I would like to acknowledge the support of the Prof. Lopatko from the National University of Life and Environmental Sciences of Ukraine. I would never have gone this far without him teaching me how to run a synthesis reactor and sharing many of interesting ideas. Last but not the least, I want to thank my family and friends for supporting my PhD endeavor. Thanks to my parents, my sisters and my very special "new" family for their encouragement, motivation and support in the moments of need. 7 Abstract Although electric spark dispersion processes have been known for a while, the plasma created during this process is not well-studied and understood. The complexity of the phenomena occurring during the underwater electric discharges brings additional obstacles to experimental characterization of such plasmas imposed by as small sizes of plasma and their often-short duration, difficult environment of the discharge, its stochastic nature and poor reproducibility. The main objective of this thesis was set on the investigation of the plasma occurring during the synthesis of metal colloids by an electrospark dispersion generator. The first success of this work was simply to show the applicability of optical emission spectroscopy diagnostics to such discharges. The efforts made for the development of the effective experimental approach in order to meet this research objective have been well rewarded. The results obtained in this work allow to draw interesting conclusions about the physical properties of the underwater pulsed electric discharge plasma of the considered configuration. Discharge ignites from the short circuit and molten bridge mechanism. Ignition of the arc is characterized by formation of bubble resulting from a pressure shockwave. High-speed imaging allowed to distinguish two phases in the discharge lifetime: plasma in water, and plasma in bubble formed afterwards. From the vapor condensation point of view, these two phases presumably lead to different quenching conditions, and, consequently, to the different synthesis conditions. In the case of discharge generated between molybdenum electrodes, there is a slowly-decaying light emission after the end of the discharge which can be attributed to the ejection of eroded metallic particles. The energy dissipation on the electrodes was found to be different for copper and molybdenum: due to the lower thermal conductivity of molybdenum, smaller portion of energy transferred to the electrodes results in higher energy input into the arc column. Spectroscopic measurements allowed to establish that plasma density (~ 1017 cm−3) and moderate temperature (0.6 – 0.95 eV) correspond to a pressure greater than 1 bar. Moreover, plasma presents several non-ideal effects, such as broadening and the asymmetrical shape of the Hα line and absence of Hβ line. In general, plasma properties were found to be relatively insensitive to most of the discharge parameters, such as the discharge current or the type of liquid 8 with the main differences being associated to the used electrodes material. Key words: electric discharge, plasma in liquid, emission spectroscopy 9 Résumé Bien que le procède de dispersion par arc électrique soit connu depuis un certain temps, le plasma formé durant ce procédé est encore peu étudié et compris. La complexité des phénomènes se produisant durant les décharges immergées génèrent de nouveaux obstacles à la caractérisation de tels plasmas, du fait de la faible taille et de la durée souvent très courte, les difficultés liées à l’environnement de la décharge, leur nature stochastique et la faible reproductibilité. Le principal objectif de cette thèse est l’étude du plasma se formant lors de la synthèse de colloïdes métalliques par un générateur de dispersion par étincelle électrique. Le premier résultat concluant de ce travail a été de démontrer la faisabilité de la spectroscopie optique d’émission pour le diagnostic de telles décharges. Les efforts réalisés pour le développement d’une approche expérimentale ont permis d’atteindre les objectifs de recherche. Les résultats obtenus au cours de ce travail permettent de tirer des conclusions intéressantes sur les propriétés physiques des plasmas de décharge électrique pulsée dans la configuration étudiée. La décharge est créée à partir d’un court-circuit et d’un amorçage par pont fondu. L’allumage de l’arc est caractérisé par la formation d’une bulle causée par une onde de choc de pression. L’imagerie rapide a permis de distinguer deux phases dans la durée de vie de la décharge : d’abord un plasma dans l’eau, puis un plasma à l’intérieur d’une bulle de gaz formée par la suite. Du point de vue de la condensation de la matière vaporisée, on peut s’attendre à ce que ces deux phases conduisent à des conditions de trempe différentes, et en conséquence des conditions de synthèse différentes. Dans le cas d’une décharge générée entre des électrodes en molybdène, une émission de lumière décroissant lentement après la fin de la décharge se produit, ce qui peut être attribué à l’éjection de particules métalliques érodées. La dissipation de l’énergie aux électrodes s’est avérée être différente pour le cuivre et le molybdène : du fait d’une conductivité thermique plus faible pour le molybdène, une part plus faible de l’énergie transférée aux électrodes conduit à une part plus importante de l’énergie fournie à la colonne d’arc. Les mesure par spectroscopie optique d’émission ont permis d’établir que la densité (~ 1017 cm−3) et la température modérée (0.6 – 0.95 eV) du plasma correspondent à une pression supérieure à 1 bar. Il présente donc 10 quelques effets non-idéaux, tels que l’élargissement et la forme asymétrique de la raie Hα et l’absence de la raie Hβ. En général, les paramètres du plasma se sont avérés être relativement insensibles à la plupart des paramètres de la décharge, tels que le courant de décharge ou le type d’eau, les principales différences étant liées aux matériaux des électrodes utilisées. Mots-clés : décharge électrique, plasma immergé, spectroscopie d’émission 11 Table of Contents Acknowledgements 7 Abstract 8 Résumé 10 List of figures 14 List of tables 19 1. Introduction 23 1.1 Context and motivation 23 1.2 Objectives and structure of the thesis 27 References to chapter I 30 2. Discharges in liquid: state of the art 35 2.1 Introduction 35 2.2 The wide variety of plasma-liquid reactors 35 2.3 Plasma generation in liquid for nanomaterial synthesis 38 2.4 Direct in-liquid discharge between two electrodes 39 2.5 Plasma diagnostics of electric discharges in water 44 2.5.1 Electric Discharge Machining (EDM) – a perfect case of a low- voltage underwater electric discharge plasma 45 2.5.2 EDM discharge plasma imaging and visualization 48 2.5.3 EDM discharge plasma diagnostics 53 2.6 Conclusions 62 References to chapter II 65 3. Experimental setups and methodology 73 3.1 Introduction 73 3.2 Experimental setup for multiple-pulse underwater electric discharge investigation 75 3.2.1 Electric spark dispersion of metals 75 3.2.2 Experimental setup description 75 3.2.3 Plasma emission registration 80 3.3 Experimental setup for single-pulse underwater electrical discharge investigation 83 3.3.1 General description 83 3.3.2 Impulse generator and electrical measurements 84 12 3.3.3 Optical characterization: high-speed imaging and spectroscopy 88 3.3.4 Electrodes and liquid media 91 3.4 Optical emission spectroscopy of the underwater electric discharge plasma 92 3.4.1 Sensitivity calibration 92 3.4.2 Abel inversion 94 3.4.3 Determination of plasma parameters 97
Recommended publications
  • The Ball Lightning Conundrum
    most famous deadis due to ball lightning occun-ed in 1752 or 1753, when die Swedish sci­ entist Professor Georg Wilhelm Richman was The Ball attempting to repeat Benjamin Franklin's observa­ dons with a lightning rcxl. An eyewitness report­ ed that when Richman w;is "a foot away from the iron rod, the] looked at die elecuical indicator Lightning again; just then a palish blue ball of fire, ;LS big as a fist, came out of die rod without any contaa whatst:)ever. It went right to the forehead of die Conundrum professor , who in diat instant fell back without uttering a sound."' Somedmes a luminous globe is said to rapidly descend 6own die path of a linear lightning WILLIAM D STANSFIELD strike and stop near the ground at die impact site. It may dien hover motionless in mid-air or THE EXISTENCE OF BALL UGHTNING HAS move randomly, but most often horizontally, at been questioned for hundreds of years. Today, die relatively slow velocities of walking speed. the phenomenon is a realit>' accepted by most Sometimes it touches or bounces along or near scientists, but how it is foniied and maintiiined the ground, or travels inside buildings, along has yet to be tully explained. Uncritical observers walls, or over floors before being extingui.shed. of a wide variety of glowing atmospheric entities Some balls have been observed to travel along may be prone to call tliem bail lightning. Open- power lines or fences. Wind does not .seem to minded skepdas might wish to delay judgment have any influence on how diese balls move.
    [Show full text]
  • Detailed Investigation of the Electric Discharge Plasma Between Copper Electrodes Immersed Into Water
    atoms Article Detailed Investigation of the Electric Discharge Plasma between Copper Electrodes Immersed into Water Roman Venger 1, Tetiana Tmenova 1,2,*, Flavien Valensi 2, Anatoly Veklich 1, Yann Cressault 2 and Viacheslav Boretskij 1 1 Electronics and Computer Systems, Faculty of Radio Physics, Taras Shevchenko National University of Kyiv, 64, Volodymyrska St., 01601 Kyiv, Ukraine; [email protected] (R.V.); [email protected] (A.V.); [email protected] (V.B.) 2 Université de Toulouse, UPS, INPT; LAPLACE (Laboratoire Plasma et Conversion d’Energie), 118 route de Narbonne, F-31062 Toulouse CEDEX 9, France; [email protected] (F.V.); [email protected] (Y.C.) * Correspondence: [email protected]; Tel.: +38-063-598-5219 Academic Editors: Milan S. Dimitrijevi´cand Luka C.ˇ Popovi´c Received: 11 September 2017; Accepted: 16 October 2017; Published: 23 October 2017 Abstract: A phenomenological picture of pulsed electrical discharge in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying ~350 µs long 100 to 220 V pulses (values of current from 400 to 1000 A, respectively) between the point-to-point copper electrodes submerged into the non-purified tap water. Plasma channel and gas bubble occur between the tips of the electrodes, which are initially in contact with each other. The study includes detailed experimental investigation of plasma parameters of such discharge using the correlation between time-resolved high-speed imaging, electrical characteristics, and optical emission spectroscopic data. Radial distributions of the electron density of plasma is estimated from the analysis of profiles and widths of registered Hα and Hβ hydrogen lines, and Cu I 515.3 nm line, exposed to the Stark mechanism of spectral lines’ broadening.
    [Show full text]
  • Research Paper Commerce Physics Atomic Emission Spectroscopy
    Volume-4, Issue-10, Oct-2015 • ISSN No 2277 - 8160 Commerce Research Paper Physics Atomic Emission Spectroscopy Ramanjeet Kaur Assistant Professor Physics Department, R S D College, Ferozepur City ABSTRACT The atomic emission spectroscopy is method based on the study of light emitted by atoms to determine the proportional quantity of a particular element in a given sample. Three techniques of atomic emission spectroscopy flame emission arc & spark emission and plasma atomic emission spectroscopy, their working, Principle and applications has been discussed in detail. KEYWORDS : -spectroscopy, flame, spark & arc, plasma, qualitative & quantitative analysis INTRODUCTION Atomic spectroscopy is the determination of elemental composition termining the accuracy of the analysis. The most popular sampling by its electromagnetic spectrum. Electrons exist in energy levels with- method is nebulization of a liquid sample to provide a steady flow of in an atom. These levels have well defined energies and electrons aerosol into a flame. An introduction system for liquid samples con- moving between them must absorb or emit energy equal to the dif- sists of three components: (a) a nebulizer that breaks up the liquid ference between them. The wavelength of the emitted radiant ener- into small’ droplets, (b) an aerosol modifier that removes large drop- gy is directly related to the electronic transition which has occurred. lets from the stream, allowing only droplets smaller than a certain Since every element has a unique electronic structure, the wave- size to pass, and (c) the flame or atomizer that converts the anaIyte length of light emitted is a unique property of each individual ele- into free atoms.
    [Show full text]
  • THE ELECTRIC DISCHARGE EXPERIMENTS a Theorist’S Exploration of First Laboratory Plasmas I
    THE ELECTRIC DISCHARGE EXPERIMENTS A Theorist’s Exploration of First Laboratory Plasmas I. INTRODUCTION • Who? • Experimentalists interested in electrical properties of matter • What? • Experiments with electromagnetic fields in low-pressure Gases • Where? • Germany and Britain • When? • Late nineteenth / Early twentieth centuries • Why? • Unify classical theories for light and matter • kinetic theory, electromagnetic theory • “The study of the electrical properties of gases seems to offer the most promising field for investigatinG the Nature of Electricity and Matter, for thanks to the Kinetic Theory of Gases our idea of non-electric processes in gases is much more vivid than they are for liquids or solids”– JJ Thomson [Thomson, 1896] II. RESULTS • Failure to unify classical theories for light and matter • Evidence of complex electromagnetic interactions between light and matter at the sub-atomic level • Experimental basis for Modern Era of Physics • "a New Era has beGun in Physics, in which the electrical properties of gases have played and will play a most important part.“ JJ Thomson [Thomson, 1896] III. DISCHARGE TUBE • DischarGe Tube • Weakly-Conducting Exterior Solid • Weakly-Conducting Interior Gas (WCG) • Strongly-Conducting Interior Gas (SCG) • Applied Interior Pressure (P) • Electrodes (Cathode and Anode) • Model as Ideal Capacitor with Dielectric (D) • Applied Potential Difference (V) • Applied Electric Field (E) • Particle Drifts • Electric field transfers energy to charged particles • Particles scatter in the Gas interior
    [Show full text]
  • Identification of the Electric Spark Electromagnetic Waveform Based on SVM
    Advances in Engineering Research, volume 127 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018) Identification of the Electric Spark Electromagnetic Waveform Based on SVM Tongtong Li1,*, Ziyuan Tong2, Shoufeng Tang1, Xia Qin1, Mingming Tong1 and Zhaoliang Xu3 1China University of Mining and Technology, China 2School of Electrical Engineering and Telecommunications, The University of New South Wales, Australia 3Xuzhou Hanlin Technology Co., Ltd., China *Corresponding author Abstract—Electromagnetic wave of electrical spark is a current. potential cause to eletrical equipment failure. This research focused on identificating and comparative analyzing the different A. Electromagnetic Characteristics Extraction of the Electric types of electromagnetic waveform generated by eletrical Spark equipment failure based on SVM. After analyzing and extracting the features the electromagnetic waveform, a model was built to First, confirm that you have the correct template for your identificate the type of the elctromagnetic waveform. The paper size. This template has been tailored for output on the collected standard electromagnetic waveforms were used as the US-letter paper size. If you are using A4-sized paper, please imput of the train model and the model accuracy was improved close this file and download the file for “MSW_A4_format”. by adjusting training parameters afer analyzing the results, When the distance between the contact closure electrodes When inputting an unknown type of electromagnetic waveform, gradually decreases or a strong electric field occurs[6], the SVM may predict the output of the network according to the current density gradually increases and produces high recognition rule. Then the types of electromagnetic waveforms temperature ionization, then contact and electrode gas will be were identificated by using adjusted models.
    [Show full text]
  • Current-Voltage Characteristics of DC Plasma Discharges Employed In
    IRAQI JOURNAL OF APPLIED PHYSICS Current-Voltage Mohammed K. Khalaf 1 Characteristics of DC Plasma Oday A. Hammadi 2 Firas J. Kadhim 3 Discharges Employed in Sputtering Techniques In this work, the current-voltage characteristics of dc plasma discharges were 1 Ministry of Science studied. The current-voltage characteristics of argon gas discharge at different and Technology, inter-electrode distances and working pressure of 0.7mbar without magnetrons Baghdad, IRAQ 2 were introduced. Then the variation of discharge current with inter-electrode Department of Physics, distance at certain discharge voltages without using magnetron was determined. College of Education, The current-voltage characteristics of discharge plasma at inter-electrode Al-Iraqia University, Baghdad, IRAQ distance of 4cm without magnetron, with only one magnetron and with dual 3 Department of Physics, magnetrons were also determined. The variation of discharge current with inter- College of Science, electrode distance at certain discharge voltage (400V) for the cases without University of Baghdad, magnetron, using one magnetron and dual magnetrons were studied. Finally, the Baghdad, IRAQ discharge current-voltage characteristics for different argon/nitrogen mixtures at total gas pressure of 0.7mbar and inter-electrode distance of 4cm were presented. Keywords: Plasma discharge; Magnetron; Glow discharge; Sputtering 1. Introduction emission effects, which lead to increase the flowing Glow discharge is low-temperature neutral current gradually approaching the breakdown point plasma where the number of electrons is equal to the beyond which the avalanche occurs and the current number of ions despite that local but negligible increases drastically in the Townsend discharge imbalances may exist at walls [1].
    [Show full text]
  • Plasma Discharge in Water and Its Application for Industrial Cooling Water Treatment
    Plasma Discharge in Water and Its Application for Industrial Cooling Water Treatment A Thesis Submitted to the Faculty of Drexel University by Yong Yang In partial fulfillment of the Requirements for the degree of Doctor of Philosophy June 2011 ii © Copyright 2008 Yong Yang. All Rights Reserved. iii Acknowledgements I would like to express my greatest gratitude to both my advisers Prof. Young I. Cho and Prof. Alexander Fridman. Their help, support and guidance were appreciated throughout my graduate studies. Their experience and expertise made my five year at Drexel successful and enjoyable. I would like to convey my deep appreciation to the most dedicated Dr. Alexander Gutsol and Dr. Andrey Starikovskiy, with whom I had pleasure to work with on all these projects. I feel thankful for allowing me to walk into their office any time, even during their busiest hours, and I’m always amazed at the width and depth of their knowledge in plasma physics. Also I would like to thank Profs. Ying Sun, Gary Friedman, and Alexander Rabinovich for their valuable advice on this thesis as committee members. I am thankful for the financial support that I received during my graduate study, especially from the DOE grants DE-FC26-06NT42724 and DE-NT0005308, the Drexel Dean’s Fellowship, George Hill Fellowship, and the support from the Department of Mechanical Engineering and Mechanics. I would like to thank the friendship and help from the friends and colleagues at Drexel Plasma Institute over the years. Special thanks to Hyoungsup Kim and Jin Mu Jung. Without their help I would not be able to finish the fouling experiments alone.
    [Show full text]
  • Electrical Breakdown and Ignition of an Electrostatic Particulate Suspension Tae-U Yu Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Electrical breakdown and ignition of an electrostatic particulate suspension Tae-U Yu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mechanical Engineering Commons Recommended Citation Yu, Tae-U, "Electrical breakdown and ignition of an electrostatic particulate suspension " (1983). Retrospective Theses and Dissertations. 7661. https://lib.dr.iastate.edu/rtd/7661 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Arxiv:1303.1588V2 [Physics.Hist-Ph] 8 Jun 2015 4.4 Errors in the Article
    Translation of an article by Paul Drude in 1904 Translation by A. J. Sederberg1;∗ (pp. 512{519, 560{561), J. Burkhart2;y (pp. 519{527), and F. Apfelbeck3;z (pp. 528{560) Discussion by B. H. McGuyer1;x 1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA 2Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027-5255, USA June 9, 2015 Abstract English translation of P. Drude, Annalen der Physik 13, 512 (1904), an article by Paul Drude about Tesla transformers and wireless telegraphy. Includes a discussion of the derivation of an equivalent circuit and the prediction of nonreciprocal mutual inductance for Tesla transformers in the article, which is supplementary material for B. McGuyer, PLoS ONE 9, e115397 (2014). Contents 1 Introduction 2 2 Bibliographic information 2 3 Translation 3 I. Definition and Integration of the Differential Equations . .3 Figure 1 . .5 II. The Magnetic Coupling is Very Small . .9 III. Measurement of the Period and the Damping . 12 IV. The Magnetic Coupling is Not Very Small . 19 VII. Application to Wireless Telegraphy . 31 Figure 2 . 32 Figure 3 . 33 Summary of Main Results . 39 4 Discussion 41 4.1 Technical glossary . 41 4.2 Hopkinson's law . 41 4.3 Equivalent circuit parameters from the article . 42 arXiv:1303.1588v2 [physics.hist-ph] 8 Jun 2015 4.4 Errors in the article . 42 4.5 Modifications to match Ls with previous work . 42 ∗Present address: Division of Biological Sciences, University of Chicago, 5812 South Ellis Avenue, Chicago, IL 60637, USA. yPresent address: Department of Microsystems and Informatics, Hochschule Kaiserslautern, Amerikastrasse 1, D-66482 Zweibr¨ucken, Germany.
    [Show full text]
  • When Lightning Strikes
    2016 CASE STUDY 1 2 3 4 When Lightning Strikes Lightning is an electrical discharge in the atmosphere. Slow motion video allows scientists to study the build up, release, and dissipation of that discharge. When Lightning Strikes: Florida Institute of Technology Uses High Speed Imagery to Observe Lightning When you were a child, it’s likely your mother urged you to come inside during a storm, especially when there was lightning present. Every year the Earth experiences an average of 25 million lightning strikes during some 100,000 thunderstorms. This equates to more than 100 lightning bolts per second! A typical lightning strike travels at speeds of up to 60 miles per second, and the average length of a single lightning bolt measures between 2-3 miles and can commonly extend as far as 60 miles. A lightning bolt can reach a temperature of roughly 30,000 kelvins – or 53,540 degrees Fahrenheit – hotter than the surface of the sun. This makes lightning one of the most interesting, and dangerous, natural occurrences on our planet. No wonder your mother didn’t want you outside during a thunderstorm. By way of simple definition, lightning is a ‘brilliant electric spark discharge in the atmosphere, occurring within a thundercloud, between clouds, or between a cloud and the ground.’ Scientists around the globe have been studying the phenomena of lightning for decades to understand weather When it’s too fast to see and too important not to.® patterns. Recently, this feat has been made easier with the use of high speed imagery from Vision Research, as demonstrated by Dr.
    [Show full text]
  • On the Plasma and Electrode Erosion Processes in Spark Discharge Nanoparticle Generators
    On the plasma and electrode erosion processes in spark discharge nanoparticle generators Ph.D. Dissertation Attila Kohut Supervisor: Dr. Zsolt Geretovszky associate professor Doctoral School of Physics Department of Optics and Quantum Electronics Faculty of Science and Informatics University of Szeged Szeged 2017 Table of contents List of abbreviations ............................................................................................................................................. 4 1. Introduction ................................................................................................................................................... 5 1.1 Motivation and aims .......................................................................................................................... 5 1.2 Generation of nanoparticles .......................................................................................................... 7 1.3 The electric spark discharge ....................................................................................................... 11 1.3.1 Classification of gas discharges ........................................................................................ 11 1.3.2 Microsecond-long, atmospheric pressure oscillatory spark discharges ........ 13 1.4 Spark discharge nanoparticle generation ............................................................................. 16 1.4.1 General concept .....................................................................................................................
    [Show full text]
  • The Modelling and Characterization of Dielectric Barrier Discharge-Based Cold Plasma Jets
    The Modelling and Characterization of Dielectric Barrier Discharge-Based Cold Plasma Jets The Modelling and Characterization of Dielectric Barrier Discharge-Based Cold Plasma Jets By G. Divya Deepak, Narendra Kumar Joshi and Ram Prakash The Modelling and Characterization of Dielectric Barrier Discharge-Based Cold Plasma Jets By G. Divya Deepak, Narendra Kumar Joshi and Ram Prakash This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by G. Divya Deepak, Narendra Kumar Joshi and Ram Prakash All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-4539-3 ISBN (13): 978-1-5275-4539-7 CONTENTS List of Figures........................................................................................... viii List of Tables ............................................................................................. xii List of Abbreviations ................................................................................ xiii Acknowledgements ................................................................................... xv Preface .....................................................................................................
    [Show full text]