Biological Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Cereal Remains from Archaeological Sites 2Nd Edition 2006
Identification of cereal remains from archaeological sites 2nd edition 2006 Spikelet fork of the “new glume wheat” (Jones et al. 2000) Stefanie JACOMET and collaborators Archaeobotany Lab IPAS, Basel University English translation partly by James Greig CEREALS: CEREALIA Fam. Poaceae /Gramineae (Grasses) Systematics and Taxonomy All cereal species belong botanically (taxonomically) to the large family of the Gramineae (Poaceae). This is one of the largest Angiosperm families with >10 000 different species. In the following the systematics for some of the most imporant taxa is shown: class: Monocotyledoneae order: Poales familiy: Poaceae (= Gramineae) (Süssgräser) subfamily: Pooideae Tribus: Triticeae Subtribus: Triticinae genera: Triticum (Weizen, wheat); Aegilops ; Hordeum (Gerste; barley); Elymus; Hordelymus; Agropyron; Secale (Roggen, rye) Note : Avena and the millets belong to other Tribus. The identification of prehistoric cereal remains assumes understanding of different subject areas in botany. These are mainly morphology and anatomy, but also phylogeny and evolution (and today, also genetics). Since most of the cereal species are treated as domesticated plants, many different forms such as subspecies, varieties, and forms appear inside the genus and species (see table below). In domesticates the taxonomical category of variety is also called “sort” (lat. cultivar, abbreviated: cv.). This refers to a variety which evolved through breeding. Cultivar is the lowest taxonomic rank in the domesticated plants. Occasionally, cultivars are also called races: e.g. landraces evolved through genetic isolation, under local environmental conditions whereas „high-breed-races“ were breed by strong selection of humans. Anyhow: The morphological delimitation of cultivars is difficult, sometimes even impossible. It needs great experience and very detailed morphological knowledge. -
ATTACHMENT 8N Works Approval Application – Desktop Assessment – Supporting Flora and Fauna Information (Golder, 2017) (1777197-020-R-Rev0)
ATTACHMENT 8 Additional Supplementary Information ATTACHMENT 8N Works Approval Application – Desktop Assessment – Supporting Flora and Fauna Information (Golder, 2017) (1777197-020-R-Rev0) July 2017 Reference No. 1777197-015-L-Rev0 DATE 19 July 2017 REFERENCE No. 1777197-020-M-Rev0 TO Sam Mangione Alkina Holdings Pty Ltd CC FROM Jaclyn Ennis-John EMAIL [email protected] WORKS APPROVAL APPLICATION – DESKTOP ASSESSMENT SUPPORTING FLORA AND FAUNA INFORMATION 1.0 INTRODUCTION This technical memorandum presents a desktop summary of publicly available flora and fauna assessment information for the Great Southern Landfill Site. The Great Southern Landfill Site, outside York, Western Australia, was previously referred to as Allawuna Farm Landfill (AFL), and a Works Approval Application (WAA) was prepared by SUEZ and granted by the Department of Environment Regulation (DER) (now the Department of Water and Environmental Regulation, DWER) on 17 March 2016; it was subsequently withdrawn by SUEZ. The WAA by SUEZ is publicly available on the DWER website. 2.0 PUBLICALLY AVAILABLE INFORMATION 2.1 WAA data The supporting works approval application provided the following information related to flora and fauna: Allawuna Landfill Vegetation and Fauna Assessment, ENV Australia Pty Ltd (October, 2012) (provided in Attachment A) 2.2 Summary of Information 2.2.1 Flora Golder (2015) summarised: A comprehensive Level 2 flora investigation of the proposed landfill area was undertaken by ENV Australia (2012) (Appendix K). The proposed landfill footprint differs to that considered in the flora assessment, although not significantly. The results and conclusions contained in the 2012 Vegetation and Fauna Assessment Report remain valid for the proposed landfill. -
Creating Jobs, Protecting Forests?
Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements The Wilderness Society. 2020, Creating Jobs, Protecting Forests? The State of the Nation’s RFAs, The Wilderness Society, Melbourne, Australia Table of contents 4 Executive summary Printed on 100% recycled post-consumer waste paper 5 Key findings 6 Recommendations Copyright The Wilderness Society Ltd 7 List of abbreviations All material presented in this publication is protected by copyright. 8 Introduction First published September 2020. 9 1. Background and legal status 12 2. Success of the RFAs in achieving key outcomes Contact: [email protected] | 1800 030 641 | www.wilderness.org.au 12 2.1 Comprehensive, Adequate, Representative Reserve system 13 2.1.1 Design of the CAR Reserve System Cover image: Yarra Ranges, Victoria | mitchgreenphotos.com 14 2.1.2 Implementation of the CAR Reserve System 15 2.1.3 Management of the CAR Reserve System 16 2.2 Ecologically Sustainable Forest Management 16 2.2.1 Maintaining biodiversity 20 2.2.2 Contributing factors to biodiversity decline 21 2.3 Security for industry 22 2.3.1 Volume of logs harvested 25 2.3.2 Employment 25 2.3.3 Growth in the plantation sector of Australia’s wood products industry 27 2.3.4 Factors contributing to industry decline 28 2.4 Regard to relevant research and projects 28 2.5 Reviews 32 3. Ability of the RFAs to meet intended outcomes into the future 32 3.1 Climate change 32 3.1.1 The role of forests in climate change mitigation 32 3.1.2 Climate change impacts on conservation and native forestry 33 3.2 Biodiversity loss/resource decline 33 3.2.1 Altered fire regimes 34 3.2.2 Disease 35 3.2.3 Pest species 35 3.3 Competing forest uses and values 35 3.3.1 Water 35 3.3.2 Carbon credits 36 3.4 Changing industries, markets and societies 36 3.5 International and national agreements 37 3.6 Legal concerns 37 3.7 Findings 38 4. -
Salmon Gum Country (Eucalyptus Salmonophloia)
This publication is designed to assist land Contents managers to identify the different vegetation and soil types that make up the Central and 2 Introduction Eastern Wheatbelt and enable them to best 3 Using This Guide decide the most suitable species when Find out how planning biodiverse revegetation. to prepare 4 Preparation and your site for Establishment Of Your Site regeneration 7 Revegetation Timeline 8 Red Morell Country 10 Gimlet Country 12 Salmon Gum Country Choose your soil type 14 Jam or York Gum Country 16 Tammar Country 18 White Gum Country 20 Mallee Country All flower, tree and landscape Introductory pages written Thanks to all Shire Natural 22 Sandplain or Wodjil photographs have been by Tracey Hobbs, Natural Resource Management kindly donated by Stephen Resource Management Officers in the Central Fry, Natural Resource Officer, Kellerberrin. and Eastern Wheatbelt for 24 Sandy Saline Systems Management Officer, Revegetation pages written edits and advice throughout Bruce Rock. by Stephen Fry, Natural the publishing process of Resource Management this book. Officer, Bruce Rock For further information This publication has been Publication designed Ken Hodgkiss & or assistance please contact funded by the Australian by Juliette Dujardin. friend, John Butcher, the Natural Resource Government’s Clean Energy Lawry Keeler & Management Officer Future Biodiversity Fund. Merrilyn Temby at your local Shire. 1 This publication has been written from a practical The Avon Catchment of WA has less than on-ground perspective for landholders to identify 10% of its original vegetation remaining. their own soil/vegetation types and the best species to use for their revegetation project. -
Table of Contents Below) with Family Name Provided
1 Australian Plants Society Plant Table Profiles – Sutherland Group (updated August 2021) Below is a progressive list of all cultivated plants from members’ gardens and Joseph Banks Native Plants Reserve that have made an appearance on the Plant Table at Sutherland Group meetings. Links to websites are provided for the plants so that further research can be done. Plants are grouped in the categories of: Trees and large shrubs (woody plants generally taller than 4 m) Medium to small shrubs (woody plants from 0.1 to 4 m) Ground covers or ground-dwelling (Grasses, orchids, herbaceous and soft-wooded plants, ferns etc), as well as epiphytes (eg: Platycerium) Vines and scramblers Plants are in alphabetical order by botanic names within plants categories (see table of contents below) with family name provided. Common names are included where there is a known common name for the plant: Table of Contents Trees and Large shrubs........................................................................................................................... 2 Medium to small shrubs ...................................................................................................................... 23 Groundcovers and other ground‐dwelling plants as well as epiphytes. ............................................ 64 Vines and Scramblers ........................................................................................................................... 86 Sutherland Group http://sutherland.austplants.com.au 2 Trees and Large shrubs Acacia decurrens -
Devonian Plant Fossils a Window Into the Past
EPPC 2018 Sponsors Academic Partners PROGRAM & ABSTRACTS ACKNOWLEDGMENTS Scientific Committee: Zhe-kun Zhou Angelica Feurdean Jenny McElwain, Chair Tao Su Walter Finsinger Fraser Mitchell Lutz Kunzmann Graciela Gil Romera Paddy Orr Lisa Boucher Lyudmila Shumilovskikh Geoffrey Clayton Elizabeth Wheeler Walter Finsinger Matthew Parkes Evelyn Kustatscher Eniko Magyari Colin Kelleher Niall W. Paterson Konstantinos Panagiotopoulos Benjamin Bomfleur Benjamin Dietre Convenors: Matthew Pound Fabienne Marret-Davies Marco Vecoli Ulrich Salzmann Havandanda Ombashi Charles Wellman Wolfram M. Kürschner Jiri Kvacek Reed Wicander Heather Pardoe Ruth Stockey Hartmut Jäger Christopher Cleal Dieter Uhl Ellen Stolle Jiri Kvacek Maria Barbacka José Bienvenido Diez Ferrer Borja Cascales-Miñana Hans Kerp Friðgeir Grímsson José B. Diez Patricia Ryberg Christa-Charlotte Hofmann Xin Wang Dimitrios Velitzelos Reinhard Zetter Charilaos Yiotis Peta Hayes Jean Nicolas Haas Joseph D. White Fraser Mitchell Benjamin Dietre Jennifer C. McElwain Jenny McElwain Marie-José Gaillard Paul Kenrick Furong Li Christine Strullu-Derrien Graphic and Website Design: Ralph Fyfe Chris Berry Peter Lang Irina Delusina Margaret E. Collinson Tiiu Koff Andrew C. Scott Linnean Society Award Selection Panel: Elena Severova Barry Lomax Wuu Kuang Soh Carla J. Harper Phillip Jardine Eamon haughey Michael Krings Daniela Festi Amanda Porter Gar Rothwell Keith Bennett Kamila Kwasniewska Cindy V. Looy William Fletcher Claire M. Belcher Alistair Seddon Conference Organization: Jonathan P. Wilson -
Acacia Aphylla Maslin
WATTLE Acacias of Australia Acacia aphylla Maslin Source: Australian Plant Image Index (a.30935). Source: Australian Plant Image Index Source: Australian Plant Image Index ANBG © M. Fagg, 2001 (dig.15223). (dig.31554). ANBG © M. Fagg, 2007 ANBG © M. Fagg, 2013 Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com J. & M. Simmons Source: Australian Plant Image Index (dig.4938). Source: Australian Plant Image Index (dig.4939). Source: Australian Plant Image Index (dig.657). ANBG © M. Fagg, 2007 ANBG © M. Fagg, 2007 ANBG © M. Fagg, 2005 Source: Australian Plant Image Index (dig.31555). ANBG © M. Fagg, 2013 Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com B.R. Maslin B.R. Maslin Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Acacia aphylla occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Common Name Leafless Rock Wattle Family Fabaceae Distribution Known only from one population in the Darling Ra. E of Perth and from near Northam, south-western W.A. Description Divaricately branched shrub to 2.3 m high. Branchlets rigid, terete, very obscurely ribbed, smooth, glaucous, pruinose, glabrous, coarsely pungent. -
Interim Recovery Plan No 62
INTERIM RECOVERY PLAN NO. 293 Guichenotia seorsiflora INTERIM RECOVERY PLAN 2009-2014 September 2009 Department of Environment and Conservation Kensington Interim Recovery Plan for Guichenotia seorsiflora FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in Department of Conservation and Land Management (CALM) Policy Statements Nos. 44 and 50. Note: the Department of CALM formally became the Department of Environment and Conservation (DEC) in July 2006. IRPs outline the recovery actions that are required to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. DEC is committed to ensuring that Threatened taxa are conserved through the preparation and implementation of Recovery Plans (RPs) or IRPs, and by ensuring that conservation action commences as soon as possible and, in the case of Critically Endangered (CR) taxa, always within one year of endorsement of that rank by the Minister. This plan will operate from September 2009 to August 2014 but will remain in force until withdrawn or replaced. It is intended that, if the taxon is still ranked as Critically Endangered (CR), this IRP will be reviewed after five years and the need for further recovery actions assessed. This IRP was given regional approval in October 2009 and was approved by the Director of Nature Conservation in November 2009. The provision of funds identified in this IRP is dependent on budgetary and other constraints affecting DEC, as well as the need to address other priorities. Information in this IRP was accurate at September 2009. IRP PREPARATION This IRP was prepared by Robyn Luu1 and Andrew Brown2. -
How Does Genome Size Affect the Evolution of Pollen Tube Growth Rate, a Haploid Performance Trait?
Manuscript bioRxiv preprint doi: https://doi.org/10.1101/462663; this version postedClick April here18, 2019. to The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv aaccess/download;Manuscript;PTGR.genome.evolution.15April20 license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of genome size on pollen performance 2 3 4 5 How does genome size affect the evolution of pollen tube growth rate, a haploid 6 performance trait? 7 8 9 10 11 John B. Reese1,2 and Joseph H. Williams2 12 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 13 37996, U.S.A. 14 15 16 17 1Author for correspondence: 18 John B. Reese 19 Tel: 865 974 9371 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Premise of the Study – Male gametophytes of most seed plants deliver sperm to eggs via a 24 pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern 25 attributed to more effective haploid selection under stronger pollen competition. Paradoxically, 26 whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms. -
[Cover Page with Artwork]
Adaptation to climate in widespread eucalypt species Final Report Margaret Byrne, Suzanne Prober, Liz McLean, Dorothy Steane, William Stock, Brad Potts and Rene Vaillancourt Adaptation to climate in widespread eucalypt species Climate-resilient revegetation of multi-use landscapes: Exploiting genetic variability in widespread species AUTHORS Margaret Byrne – Department of Environment and Conservation Suzanne Prober – CSIRO Ecosystem Sciences Liz McLean – Department of Environment and Conservation Dorothy Steane – University of Tasmania William Stock – Edith Cowan University Brad Potts – University of Tasmania Rene Vaillancourt – University of Tasmania Published by the National Climate Change Adaptation Research Facility ISBN: 978-1-921609-98-5 NCCARF Publication 27/13 © 2013 The State of Western Australia This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the copyright holder. Please cite this report as: Byrne, M, Prober, SM, McLean, EH, Steane, DA, Stock, WD, Potts, BM & Vaillancourt, RE 2013, Adaptation to climate in widespread eucalypt species, National Climate Change Adaptation Research Facility, Gold Coast, 86 pp. Acknowledgement This work was carried out with financial support from the Australian Government (Department of Climate Change and Energy Efficiency) and the National Climate Change Adaptation Research Facility (NCCARF). The role of NCCARF is to lead the research community in a national interdisciplinary effort to generate the information needed by decision-makers in government, business and in vulnerable sectors and communities to manage the risk of climate change impacts. We thank the Reference Group for their engagement and advice in regard to the operation and effectiveness of this work undertaken in this project: Gary Howling (Great Eastern Ranges Initiative), David Freudenberger (Greening Australia), Neil Riches (WA State NRM), Richard Mazanec (DEC WA). -
Trees, Shrubs, and Perennials That Intrigue Me (Gymnosperms First
Big-picture, evolutionary view of trees and shrubs (and a few of my favorite herbaceous perennials), ver. 2007-11-04 Descriptions of the trees and shrubs taken (stolen!!!) from online sources, from my own observations in and around Greenwood Lake, NY, and from these books: • Dirr’s Hardy Trees and Shrubs, Michael A. Dirr, Timber Press, © 1997 • Trees of North America (Golden field guide), C. Frank Brockman, St. Martin’s Press, © 2001 • Smithsonian Handbooks, Trees, Allen J. Coombes, Dorling Kindersley, © 2002 • Native Trees for North American Landscapes, Guy Sternberg with Jim Wilson, Timber Press, © 2004 • Complete Trees, Shrubs, and Hedges, Jacqueline Hériteau, © 2006 They are generally listed from most ancient to most recently evolved. (I’m not sure if this is true for the rosids and asterids, starting on page 30. I just listed them in the same order as Angiosperm Phylogeny Group II.) This document started out as my personal landscaping plan and morphed into something almost unwieldy and phantasmagorical. Key to symbols and colored text: Checkboxes indicate species and/or cultivars that I want. Checkmarks indicate those that I have (or that one of my neighbors has). Text in blue indicates shrub or hedge. (Unfinished task – there is no text in blue other than this text right here.) Text in red indicates that the species or cultivar is undesirable: • Out of range climatically (either wrong zone, or won’t do well because of differences in moisture or seasons, even though it is in the “right” zone). • Will grow too tall or wide and simply won’t fit well on my property. -
Identification of Wild-Oats Dr Stephen Moss ROTHAMSTED RESEARCH in the UK, There Are Two Main Species Which Occur As Weeds of Arable Crops
® Identification of wild-oats Dr Stephen Moss ROTHAMSTED RESEARCH In the UK, there are two main species which occur as weeds of arable crops. Their relative fequencies, as reported in the Atlas of the British Flora (2002), are given as the (%) of the 2852 10 x 10 km grid squares surveyed in which the species was detected. Avena fatua – common Avena sterilis ssp. ludoviciana or spring wild-oat – winter wild-oat Occurs throughout England; Less common and mainly found more scattered distribution in within 50 – 100 miles of Oxford Scotland and Wales. (55%). where it was first recorded Germinates mainly in spring in the wild in 1910. (10%). (March/April) but with a Probably under-reported due variable, and sometimes to confusion with Avena fatua. considerable, amount of Germinates mainly in autumn autumn germination too (mainly Sept/Oct). and winter, from October to early March, and is more tolerant of freezing conditions than Avena fatua. Both species may occur within a single field, sometimes in mixture but sometimes in separate patches. Why does identification of species matter? Avena sterilis ssp. ludoviciana is generally considered the more challenging species to control, requiring more robust strategies Seedling emergence patterns and winter hardiness differ between the two species so correct identification can help in herbicide decision-making Although herbicide resistance has been found in both species, it is relatively more common in Avena sterilis ssp. ludoviciana. The first cases of resistance in the UK were all found in this species despite its more limited distribution. At the vegetative stage, wild-oats can be identified in cereal crops by: Hairy leaf margins and the absence of auricles Auricles No auricles on wild-oats Wheat - well developed, Barley - large, (or cultivated oats) but hairy auricles (hairs hairless auricles.