Exact Categories in Functional Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Exact Categories in Functional Analysis Script Exact Categories in Functional Analysis Leonhard Frerick and Dennis Sieg June 22, 2010 ii To Susanne Dierolf. iii iv Contents 1 Basic Notions 1 1.1 Categories . 1 1.2 Morphisms and Objects . 5 1.3 Functors . 9 2 Additive Categories 25 2.1 Pre-additive Categories . 25 2.2 Kernels and Cokernels . 27 2.3 Pullback and Pushout . 36 2.4 Product, Coproduct and Biproduct . 42 2.5 Additive Categories . 50 2.6 Semi-abelian Categories . 58 3 Exact Categories 65 3.1 Basic Properties . 65 3.2 E-strict morphisms . 88 4 Maximal Exact Structure 103 4.1 p-strict morphisms . 103 4.2 Maximal Exact Structure . 109 4.3 Quasi-abelian Categories . 115 5 Derived Functors 121 5.1 Exact Functors . 121 5.2 Complexes . 126 5.3 Resolutions . 142 5.4 Derived Functors . 157 5.5 Universal δ-Functors . 171 6 Yoneda-Ext-Functors 181 6.1 Yoneda-Ext1 . 181 6.2 Yoneda-Extn . 195 v vi CONTENTS 7 Appendix 1: Projective Spectra 225 7.1 Categories of Projective Spectra . 225 7.2 The Projective Limit . 231 Preface These lecture notes have their roots in a seminar organized by the authors in the years 2008 and 2009 at the University of Trier. The present notes con- tain much more than the content of the original seminar, which was based on the works of Palamodov [17, 18] and the book of Wengenroth [31]. Over the course of the seminar, due to the research of the second named author for his Ph.D.-thesis, it turned out, that the language of exact categories, as introduced by Quillen [22], is a far more flexible and more useful start- ing point for homological algebra in functional analysis, than the setting of semi-abelian categories used in [17, 18, 31]. For example it allows one not only to treat the classical categories of functional analysis, like locally con- vex spaces, Banach spaches or Fr´echet spaces, but also more complex non semi-abelian categories of current research, like the PLS-spaces introduced by Domanski and Vogt. A homological approach to the splitting theory of these spaces, which uses the homological methods presented in this treatise, can be found in the Ph.D.-thesis of the second named author which is avail- able at http://ubt.opus.hbz-nrw.de/volltexte/2010/572/pdf/SiegDiss.pdf. These notes are aimed at readers who are interested in homological methods for functional analysis, who have some knowledge of functional analysis, but who lack experience in classical homological algebra. Therefore we are not assuming any knowledge of category theory or homological algebra in these notes. The classical introductory textbooks of homological algebra, like [30], always assume the categories to be abelian, which is almost never the case in the interesting categories appearing in functional analysis, hence they are only of limited use for someone who wants to learn about the latter ones. In this notes we treat non-abelian homological algebra completely on its own, without refering to the abelian case, and we prove every assumption in full detail. Furthermore, our examples are always taken from functional analy- sis. It is our philosophy, that the embedding theorems of category theory, like the Freyd-Mitchell full embedding theorem for abelian categories and the Gabriel-Quillen embedding theorem for exact categories, which are often used to transfer assumptions about diagrams into a category of modules and there argue by \diagram chasing", are better used as an intuition than as a direct proof. Therefore, we proof everything directly from the axioms in this text by using the defining universal properties. We are convinced that this vii viii PREFACE approach provides more insight into the subject than \diagram chasing". This text contains part of the work of Wengenroth [31] and also uses much of the content of the survey article about exact categories of B¨uhler[3]. The content of the article [25] of the second named author and Wegner is also completely contained in this text. In addition this text drew much inspira- tion from books on classical homological algebra like Mitchell [16], Weibel [30] and Adamek, Herrlich, Strecker [1]. As a last remark, we want to remind our readers that this text is not written for publication, but only a collection of lecture notes. It is still a work in progress and we are thankful for comments and suggestions. Leonhard Frerick and Dennis Sieg. Chapter 1 Basic Notions 1.1 Categories Definition 1.1. A category is a quadruple C = (Ob(C); HomC; id; ◦) con- sisting of the following data: (1) A class Ob(C), whose members are called objects of C. (2) For each pair (X; Y ) of objects of C, a set HomC(X; Y ), whose elements are called morphisms from X to Y . Morphisms are generally expressed by using arrows; e.g. we will often write \f : X ! Y is a morphism" instead of the statement \f 2 HomC(X; Y )". (3) For each object X 2 Ob(C), a morphism idX : X ! X, called the identity on X. (4) A composition law associating with each morphism f : X ! Y and each morphism g : Y ! Z a morphism g ◦ f : X ! Z, called the composite of f and g. These data have to have the following properties: (C1) The composition is associative; i.e. for morphisms f : X ! Y , g : Y ! Z, and h: Z ! W , the equation h ◦ (g ◦ f) = (h ◦ g) ◦ f holds. (C2) The identities act as neutral elements with respect to the composition; i.e., for a morphism f : X ! Y , we have idY ◦f = f and f ◦ idX = f. (C3) The sets HomC(X; Y ) are pairwise disjoint. Remark 1.2. Let C = (Ob(C); HomC; id; ◦) be a category. i) The class of all morphisms of C is denoted by Mor(C) and is defined to be the union of all the sets HomC(X; Y ) in C. 1 2 CHAPTER 1. BASIC NOTIONS ii) If f : X ! Y is a morphism in C, we call X the domain of f and Y the codomain of f. The property (C3) then guarantees that each morphism has a unique domain and a unique codomain. This is given for technical convenience only, because if the other two properties are satisfied one can just replace each morphism f 2 HomC(X; Y ) with the triple (f; X; Y ) so that (C3) is also satisfied. Therefore when checking that an entity is a category we will only show (C1) and (C2). iii) The composition ◦ is a partial binary operation on the class Mor(C) and for a pair (f; g) of morphisms the composite g ◦ f is defined if and only if the domain of g and the codomain of f coincide. iv) For an object X of C the identity idX : X ! X is uniquely determined because of property (C2). Example 1.3. i) The category (Set) whose objects are sets and which has as morphisms Hom(Set)(X; Y ) the set of all mappings from X to Y . The identity mor- phism idX is the identity mapping on X and ◦ is the usual composition of mappings. ii) An important type of categories are those, whose objects consist of structured sets and whose morphisms are mappings between these sets that preserve the structure. These categories are called constructs. Some examples of constructs are: a) (Ab) the category of abelian groups and group morphisms. b) (T op) the category of topological spaces and continous mappings. c) (Ring1) the category of commutative rings with unity together with the ring morphisms that preserve the unity. d) (F − V ec) the category of vector spaces over a fixed field F and F-linear mappings. e) (TVS) the category of topological vector spaces over a fixed field F 2 fR; Cg and continous F-linear mappings. f) (LCS) the category of (not necessarily Hausdorff) locally convex vector spaces over a fixed field F and continous F-linear mappings. g) (LCS)HD the category of Hausdorff locally convex vector spaces over a fixed field F and continous F-linear mappings. iii) In the case of constructs it is often clear what the morphisms should be once the objects are defined. But this is not always the case: a) There are, at least, three different constructs having metric spaces as objects: 1.1. CATEGORIES 3 • (Met) the category of metric spaces and contractions. • (Metu) the category of metric spaces and uniformly conti- nous mappings. • (Metc) the category of metric spaces and continous map- pings. b) The following two categories are natural constructs having as objects all Banach spaces: • (Ban) the category of Banach spaces and continous linear mappings. • (Banc) the category of Banach spaces and linear contrac- tions. iv) Not all categories consist of structured sets and mappings preserving this structure, as the following examples show: a) (Mat) which has as objects the natural numbers N and for which Hom(Mat)(m; n) is the set of all real (m×n)-matrices, idn : n ! n is the unit matrix, and the composition is defined by A◦B = BA, where BA is the usual multiplication of matrices. b) If (I; ≤) is a preordered set, i.e. I is a set and ≤ is a reflexive and transitive relation on I we can define a category C(I) in the following way: f(i; j)g if i ≤ j Ob(C(I)) = I; Hom (i; j) = ; C(I) ; otherwise as well as idi = f(i; i)g and f(j; k)g ◦ f(i; j)g = f(i; k)g.
Recommended publications
  • Full Text (PDF Format)
    ASIAN J. MATH. © 1997 International Press Vol. 1, No. 2, pp. 330-417, June 1997 009 K-THEORY FOR TRIANGULATED CATEGORIES 1(A): HOMOLOGICAL FUNCTORS * AMNON NEEMANt 0. Introduction. We should perhaps begin by reminding the reader briefly of Quillen's Q-construction on exact categories. DEFINITION 0.1. Let £ be an exact category. The category Q(£) is defined as follows. 0.1.1. The objects of Q(£) are the objects of £. 0.1.2. The morphisms X •^ X' in Q(£) between X,X' G Ob{Q{£)) = Ob{£) are isomorphism classes of diagrams of morphisms in £ X X' \ S Y where the morphism X —> Y is an admissible mono, while X1 —y Y is an admissible epi. Perhaps a more classical way to say this is that X is a subquotient of X''. 0.1.3. Composition is defined by composing subquotients; X X' X' X" \ ^/ and \ y/ Y Y' compose to give X X' X" \ s \ s Y PO Y' \ S Z where the square marked PO is a pushout square. The category Q{£) can be realised to give a space, which we freely confuse with the category. The Quillen if-theory of the exact category £ was defined, in [9], to be the homotopy of the loop space of Q{£). That is, Ki{£)=ni+l[Q{£)]. Quillen proved many nice functoriality properties for his iT-theory, and the one most relevant to this article is the resolution theorem. The resolution theorem asserts the following. 7 THEOREM 0.2. Let F : £ —> J be a fully faithful, exact inclusion of exact categories.
    [Show full text]
  • Van Kampen Colimits As Bicolimits in Span*
    Van Kampen colimits as bicolimits in Span? Tobias Heindel1 and Pawe lSoboci´nski2 1 Abt. f¨urInformatik und angewandte kw, Universit¨atDuisburg-Essen, Germany 2 ECS, University of Southampton, United Kingdom Abstract. The exactness properties of coproducts in extensive categories and pushouts along monos in adhesive categories have found various applications in theoretical computer science, e.g. in program semantics, data type theory and rewriting. We show that these properties can be understood as a single universal property in the associated bicategory of spans. To this end, we first provide a general notion of Van Kampen cocone that specialises to the above colimits. The main result states that Van Kampen cocones can be characterised as exactly those diagrams in that induce bicolimit diagrams in the bicategory of spans Span , C C provided that C has pullbacks and enough colimits. Introduction The interplay between limits and colimits is a research topic with several applica- tions in theoretical computer science, including the solution of recursive domain equations, using the coincidence of limits and colimits. Research on this general topic has identified several classes of categories in which limits and colimits relate to each other in useful ways; extensive categories [5] and adhesive categories [21] are two examples of such classes. Extensive categories [5] have coproducts that are “well-behaved” with respect to pullbacks; more concretely, they are disjoint and universal. Extensivity has been used by mathematicians [4] and computer scientists [25] alike. In the presence of products, extensive categories are distributive [5] and thus can be used, for instance, to model circuits [28] or to give models of specifications [11].
    [Show full text]
  • LOOP SPACES for the Q-CONSTRUCTION Charles H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 52 (1988) l-30 North-Holland LOOP SPACES FOR THE Q-CONSTRUCTION Charles H. GIFFEN* Department of Mathematics, University of Virginia, Charlottesville, VA 22903, U.S. A Communicated by C.A. Weibel Received 4 November 1985 The algebraic K-groups of an exact category Ml are defined by Quillen as KJ.4 = TT,+~(Qkd), i 2 0, where QM is a category known as the Q-construction on M. For a ring R, K,P, = K,R (the usual algebraic K-groups of R) where P, is the category of finitely generated projective right R-modules. Previous study of K,R has required not only the Q-construction, but also a model for the loop space of QP,, known as the Y’S-construction. Unfortunately, the S-‘S-construction does not yield a loop space for QfLQ when M is arbitrary. In this paper, two useful models of a loop space for Qu, with no restriction on the exact category L&, are described. Moreover, these constructions are shown to be directly related to the Y’S- construction. The simpler of the two constructions fails to have a certain symmetry property with respect to dualization of the exact category mm. This deficiency is eliminated in the second construction, which is somewhat more complicated. Applications are given to the relative algebraic K-theory of an exact functor of exact categories, with special attention given to the case when the exact functor is cofinal.
    [Show full text]
  • Abelian Categories
    Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists.
    [Show full text]
  • Imbedding of Abelian Categories, by Saul Lubkin
    Imbedding of Abelian Categories Author(s): Saul Lubkin Reviewed work(s): Source: Transactions of the American Mathematical Society, Vol. 97, No. 3 (Dec., 1960), pp. 410-417 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/1993379 . Accessed: 15/01/2013 15:24 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society. http://www.jstor.org This content downloaded on Tue, 15 Jan 2013 15:24:14 PM All use subject to JSTOR Terms and Conditions IMBEDDING OF ABELIAN CATEGORIES BY SAUL LUBKIN 1. Introduction. In this paper, we prove the following EXACT IMBEDDING THEOREM. Every abelian category (whose objects form a set) admits an additive imbedding into the category of abelian groups which carries exact sequences into exact sequences. As a consequence of this theorem, every object A of (i has "elements"- namely, the elements of the image A' of A under the imbedding-and all the usual propositions and constructions performed by means of "diagram chas- ing" may be carried out in an arbitrary abelian category precisely as in the category of abelian groups.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]
  • Homological Algebra in Characteristic One Arxiv:1703.02325V1
    Homological algebra in characteristic one Alain Connes, Caterina Consani∗ Abstract This article develops several main results for a general theory of homological algebra in categories such as the category of sheaves of idempotent modules over a topos. In the analogy with the development of homological algebra for abelian categories the present paper should be viewed as the analogue of the development of homological algebra for abelian groups. Our selected prototype, the category Bmod of modules over the Boolean semifield B := f0, 1g is the replacement for the category of abelian groups. We show that the semi-additive category Bmod fulfills analogues of the axioms AB1 and AB2 for abelian categories. By introducing a precise comonad on Bmod we obtain the conceptually related Kleisli and Eilenberg-Moore categories. The latter category Bmods is simply Bmod in the topos of sets endowed with an involution and as such it shares with Bmod most of its abstract categorical properties. The three main results of the paper are the following. First, when endowed with the natural ideal of null morphisms, the category Bmods is a semi-exact, homological category in the sense of M. Grandis. Second, there is a far reaching analogy between Bmods and the category of operators in Hilbert space, and in particular results relating null kernel and injectivity for morphisms. The third fundamental result is that, even for finite objects of Bmods the resulting homological algebra is non-trivial and gives rise to a computable Ext functor. We determine explicitly this functor in the case provided by the diagonal morphism of the Boolean semiring into its square.
    [Show full text]
  • Quillens Q-Construction
    Topics in Algebraic topolgy Talk: Quillens Q-construction Julie Zangenberg Rasmusen 02-01-2019 Contents 1 The Q-construction 1 1.1 Quillens Q-construction . .1 1.2 An 1-categorical Q-construction . .3 2 Higher algebraic K-theory 6 2.1 Introduction . .6 2.2 The Devissage theorem . .8 Denition 0.1. Let F : C!D be a functor and d 2 obD a xed object. Then we dene a new category F=d which consist of pairs (c; u) where u : F (c) ! d with c 2 obC, in which morphisms (c; u) ! (c0; u0) is a map v : c ! c0 such that the square F (c) u / d F (v) F (c0) / d u0 commutes. Theorem 0.2 (Theorem A). Let F : C!D be a functor and d 2 obD a xed object. Then if the category F=d is contractible for every object d 2 obD, then the functor F is a homotopy equivalence. 1 The Q-construction 1.1 Quillens Q-construction Assume that C is an exact category. First of all we wish to dene a new category QC called Quillens Q-construction. QC has the same objects as C, i.e obQC = obC and we dene the morphisms in the following way: 1 1.1 Quillens Q-construction 1 THE Q-CONSTRUCTION Let c0; c1 2 obC and consider all diagrams of the form p r c0 o o c01 / / c1 (1) in C with p an admissible epimorphism and r an admissible monomorphism. We will say that p r p 0 r c0 o o c01 / / c1 ∼ c0 o o c01 / / c1 if and only if there exist an isomorphism 0 which makes the following diagram γ : c01 ! c01 commute: p c o o c / r / c 0 a a 01 = 1 γ p0 = r0 0 c01 A morphism f : c0 ! c1 in QC is all diagrams (1) up to the above equivalence.
    [Show full text]
  • How I Think About Math Part I: Linear Algebra
    Algebra davidad Relations Labels Composing Joining Inverting Commuting How I Think About Math Linearity Fields Part I: Linear Algebra “Linear” defined Vectors Matrices Tensors Subspaces David Dalrymple Image & Coimage [email protected] Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra March 6, 2014 CP decomposition Algebra Chapter 1: Relations davidad 1 Relations Relations Labels Labels Composing Joining Composing Inverting Commuting Joining Linearity Inverting Fields Commuting “Linear” defined Vectors 2 Linearity Matrices Tensors Fields Subspaces “Linear” defined Image & Coimage Kernel & Cokernel Vectors Decomposition Matrices Singular Value Decomposition Tensors Fundamental Theorem of Linear Algebra 3 Subspaces CP decomposition Image & Coimage Kernel & Cokernel 4 Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors
    [Show full text]
  • Lecture 10 Notes
    Math 210A Lecture 10 Notes Daniel Raban October 19, 2018 1 Images, Coimages, and Generating Sets 1.1 Images Definition 1.1. The image im(f) of f : A ! B is an object and a monomorphism ι : im(f) ! B such that there exists π : A ! im(f) with π ◦ ι and such that if e : C ! B is a monomorphism and g : A ! C is such that e ◦ g = f, then there exists a unique morphism : im(f) ! C such that g ◦ = ι. f A B π ι g im(f) e C Example 1.1. In Set, f(A) = im(f). Then b 2 F (A) =) b = f(a) for some a 2 A. Then g(a) 2 C is the unique element with e(g(a)) = (a) because e is a monomorphism. So (f(a)) = g(a). Proposition 1.1. If C has equalizers, then π : A ! im(f) is an epimorphism. Proof. Suppose α A ι im(f) D β commutes. Then α ◦ π = β ◦ π, π A eq(α; β) c im(f) f ι B 1 Then there is a unique d : im(f) ! eq(α; β), and c ◦ d = id and d ◦ c = id by uniqueness. So (im(f); idim(f)) equalizes α im(f) D β so α = β. Suppose that in C, every morphism factors through an equalizer and the category has finite limits and colimits. Then im(f) can be defined as the equalizer of the following diagram: ι1 B B qA B ι2 We get the following diagram. A π f f im(f) ι ι B B ι2 ι1 B qA B 1.2 Coimages Definition 1.2.
    [Show full text]
  • (1) Weibel, C. Intro to Algebraic K-Theory, In-Progress, but Available Online; (2) Quillen, D
    ALGEBRAIC K-THEORY BERTRAND GUILLOU 1. The Q construction 1.1. Introduction References: (1) Weibel, C. Intro to Algebraic K-theory, in-progress, but available online; (2) Quillen, D. "Higher algebraic K-theory: I" in Springer LNM v.341, 1973; (3) Grason, D. \Higher algebraic K-theory: II" in Springer LNM v.551, 1976; (4) Srinivas, V. Algebraic K-Theory, Second Edition, Birkhauser, 1996. We have seen a definition of the higher K-groups of a ring as the homotopy groups of a space: + Ki(R) = πi(BGl(R) K0(R)): × Quillen was able to calculate the K-theory of finite fields with this definition, and Borel calculated the ranks of the rational K-groups of the ring of integers in a number field (=finite extension of Q). On the other hand, one would like to extend some of the fundamental structure theorems from classical K-theory to the higher K-groups, and so we need a more general construction. 1.2. Exact Categories Definition 1. An exact category is an additive category C with a family of sequences E j 0 B i C D 0 ! −! −! ! such that there is an embedding of C as a full subcategory of some abelian category satisfying A (1) A sequence of the above form in C is in if and only if the sequence is a short exact sequence in . E A (2) C is closed under extensions in (i.e. if we have a short exact sequence 0 B A ! ! C D 0 in with B; D C then C C , up to isomorphism).
    [Show full text]
  • Linear Algebra Construction of Formal Kazhdan-Lusztig Bases
    LINEAR ALGEBRA CONSTRUCTION OF FORMAL KAZHDAN-LUSZTIG BASES MATTHEW J. DYER Abstract. General facts of linear algebra are used to give proofs for the (well- known) existence of analogs of Kazhdan-Lusztig polynomials corresponding to formal analogs of the Kazhdan-Lusztig involution, and of explicit formulae (some new, some known) for their coefficients in terms of coefficients of other natural families of polynomials (such as the corresponding formal analogs of the Kazhdan-Lusztig R-polynomials). Introduction In [13], Kazhdan and Lusztig associated to each pair of elements x, y of a Coxeter system a polynomial Px,y ∈ Z[q]. These Kazhdan-Lusztig polynomials and their variants (e.g g-polynomials of Eulerian lattices [23]) have a rich and interesting theory, with significant known or conjectured applications in representation theory, geometry and combinatorics. Many basic questions about them remain open in gen- eral e.g. the non-negativity of the coefficients of Px,y is known for crystallographic Coxeter systems by intersection cohomology techniques (see e.g. [14]) but not in general, though non-negativity of coefficients of g-vectors of face lattices of arbi- trary (i.e. possibly non-rational) convex polytopes has been recently established (see [24], [21], [5], [1], [12]). It is well known that formal analogs {px,y}x,y∈Ω of the Kazhdan-Lusztig poly- −1 nomials may be associated to any family of Laurent polynomials rx,y ∈ Z[v, v ], for x, y elements of a poset Ω with finite intervals, satisfying suitable conditions abstracted from properties of the Kazhdan-Lusztig R-polynomials [23]. In view of the many important special cases or variants of this type of construction (see e.g [19], [18], [6], [17]) several essentially equivalent formalisms for it appear in the literature e.g.
    [Show full text]