How I Think About Math Part I: Linear Algebra

Total Page:16

File Type:pdf, Size:1020Kb

How I Think About Math Part I: Linear Algebra Algebra davidad Relations Labels Composing Joining Inverting Commuting How I Think About Math Linearity Fields Part I: Linear Algebra “Linear” defined Vectors Matrices Tensors Subspaces David Dalrymple Image & Coimage [email protected] Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra March 6, 2014 CP decomposition Algebra Chapter 1: Relations davidad 1 Relations Relations Labels Labels Composing Joining Composing Inverting Commuting Joining Linearity Inverting Fields Commuting “Linear” defined Vectors 2 Linearity Matrices Tensors Fields Subspaces “Linear” defined Image & Coimage Kernel & Cokernel Vectors Decomposition Matrices Singular Value Decomposition Tensors Fundamental Theorem of Linear Algebra 3 Subspaces CP decomposition Image & Coimage Kernel & Cokernel 4 Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition y(x)= 2 · x Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined 3 2 6 Vectors Matrices Tensors Subspaces Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition 6 = 2 · 3 Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined 2.5 2 5 Vectors Matrices Tensors Subspaces Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition 5 = 2 · 2.5 Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined 0 2 0 Vectors Matrices Tensors Subspaces Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition 0 = 2 · 0 Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition y(x)= 2 · x Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Really, the directional annotations on the arrows are just that: annotations. Kernel & Cokernel Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition y(x)= 2 · x Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Really, the directional annotations on the arrows are just that: annotations. Only the Kernel & Cokernel directionality of the operator “2·” is significant. Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition y(x)= 2 · x Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Really, the directional annotations on the arrows are just that: annotations. Only the Kernel & Cokernel directionality of the operator “2·” is significant. Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition y(x)= 2 · x Analogously, writing y(x) is just politics: “x gets to tell y what to do!” Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Really, the directional annotations on the arrows are just that: annotations. Only the Kernel & Cokernel directionality of the operator “2·” is significant. Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition y(x)= 2 · x Analogously, writing y(x) is just politics: “x gets to tell y what to do!” It can be useful to sequence computations hierarchically, but in the Platonic ideal world of mathematics, Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Really, the directional annotations on the arrows are just that: annotations. Only the Kernel & Cokernel directionality of the operator “2·” is significant. Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition y = 2 · x Analogously, writing y(x) is just politics: “x gets to tell y what to do!” It can be useful to sequence computations hierarchically, but in the Platonic ideal world of mathematics, all variables are equal. Algebra A simple relation davidad Relations Labels Composing Relations are a generalization of functions; they’re actually more like constraints. Joining Inverting Here’s an example: Commuting Linearity Fields · “Linear” defined x 2 y Vectors Matrices Tensors Subspaces Image & Coimage Really, the directional annotations on the arrows are just that: annotations. Only the Kernel & Cokernel directionality of the operator “2·” is significant. Decomposition Singular Value Decomposition This might be more familiar to you as the equation: Fundamental Theorem of Linear Algebra CP decomposition y = 2 · x Analogously, writing y(x) is just politics: “x gets to tell y what to do!” It can be useful to sequence computations hierarchically, but in the Platonic ideal world of mathematics, all variables are equal have equal standing. Algebra A simpler relation davidad Relations Labels Composing Joining Inverting Commuting x y Linearity Fields “Linear” defined Vectors Matrices Tensors Subspaces Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simpler relation davidad Relations Labels Composing Joining Inverting Commuting x y Linearity Fields “Linear” defined Vectors You might better know this relation as Matrices Tensors Subspaces y = x Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simpler relation davidad Relations Labels Composing Joining Inverting Commuting 3 3 Linearity Fields “Linear” defined Vectors You might better know this relation as Matrices Tensors Subspaces 3 = 3 Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simpler relation davidad Relations Labels Composing Joining Inverting Commuting 2 2 Linearity Fields “Linear” defined Vectors You might better know this relation as Matrices Tensors Subspaces 2 = 2 Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simpler relation davidad Relations Labels Composing Joining Inverting Commuting 0 0 Linearity Fields “Linear” defined Vectors You might better know this relation as Matrices Tensors Subspaces 0 = 0 Image & Coimage Kernel & Cokernel Decomposition Singular Value Decomposition Fundamental Theorem of Linear Algebra CP decomposition Algebra A simpler relation davidad Relations Labels Composing
Recommended publications
  • Kernel and Image
    Math 217 Worksheet 1 February: x3.1 Professor Karen E Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. T Definitions: Given a linear transformation V ! W between vector spaces, we have 1. The source or domain of T is V ; 2. The target of T is W ; 3. The image of T is the subset of the target f~y 2 W j ~y = T (~x) for some x 2 Vg: 4. The kernel of T is the subset of the source f~v 2 V such that T (~v) = ~0g. Put differently, the kernel is the pre-image of ~0. Advice to the new mathematicians from an old one: In encountering new definitions and concepts, n m please keep in mind concrete examples you already know|in this case, think about V as R and W as R the first time through. How does the notion of a linear transformation become more concrete in this special case? Think about modeling your future understanding on this case, but be aware that there are other important examples and there are important differences (a linear map is not \a matrix" unless *source and target* are both \coordinate spaces" of column vectors). The goal is to become comfortable with the abstract idea of a vector space which embodies many n features of R but encompasses many other kinds of set-ups. A. For each linear transformation below, determine the source, target, image and kernel. 2 3 x1 3 (a) T : R ! R such that T (4x25) = x1 + x2 + x3.
    [Show full text]
  • Math 120 Homework 3 Solutions
    Math 120 Homework 3 Solutions Xiaoyu He, with edits by Prof. Church April 21, 2018 [Note from Prof. Church: solutions to starred problems may not include all details or all portions of the question.] 1.3.1* Let σ be the permutation 1 7! 3; 2 7! 4; 3 7! 5; 4 7! 2; 5 7! 1 and let τ be the permutation 1 7! 5; 2 7! 3; 3 7! 2; 4 7! 4; 5 7! 1. Find the cycle decompositions of each of the following permutations: σ; τ; σ2; στ; τσ; τ 2σ. The cycle decompositions are: σ = (135)(24) τ = (15)(23)(4) σ2 = (153)(2)(4) στ = (1)(2534) τσ = (1243)(5) τ 2σ = (135)(24): 1.3.7* Write out the cycle decomposition of each element of order 2 in S4. Elements of order 2 are also called involutions. There are six formed from a single transposition, (12); (13); (14); (23); (24); (34), and three from pairs of transpositions: (12)(34); (13)(24); (14)(23). 3.1.6* Define ' : R× ! {±1g by letting '(x) be x divided by the absolute value of x. Describe the fibers of ' and prove that ' is a homomorphism. The fibers of ' are '−1(1) = (0; 1) = fall positive realsg and '−1(−1) = (−∞; 0) = fall negative realsg. 3.1.7* Define π : R2 ! R by π((x; y)) = x + y. Prove that π is a surjective homomorphism and describe the kernel and fibers of π geometrically. The map π is surjective because e.g. π((x; 0)) = x. The kernel of π is the line y = −x through the origin.
    [Show full text]
  • Discrete Topological Transformations for Image Processing Michel Couprie, Gilles Bertrand
    Discrete Topological Transformations for Image Processing Michel Couprie, Gilles Bertrand To cite this version: Michel Couprie, Gilles Bertrand. Discrete Topological Transformations for Image Processing. Brimkov, Valentin E. and Barneva, Reneta P. Digital Geometry Algorithms, 2, Springer, pp.73-107, 2012, Lecture Notes in Computational Vision and Biomechanics, 978-94-007-4174-4. 10.1007/978-94- 007-4174-4_3. hal-00727377 HAL Id: hal-00727377 https://hal-upec-upem.archives-ouvertes.fr/hal-00727377 Submitted on 3 Sep 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chapter 3 Discrete Topological Transformations for Image Processing Michel Couprie and Gilles Bertrand Abstract Topology-based image processing operators usually aim at trans- forming an image while preserving its topological characteristics. This chap- ter reviews some approaches which lead to efficient and exact algorithms for topological transformations in 2D, 3D and grayscale images. Some transfor- mations which modify topology in a controlled manner are also described. Finally, based on the framework of critical kernels, we show how to design a topologically sound parallel thinning algorithm guided by a priority function. 3.1 Introduction Topology-preserving operators, such as homotopic thinning and skeletoniza- tion, are used in many applications of image analysis to transform an object while leaving unchanged its topological characteristics.
    [Show full text]
  • Kernel Methodsmethods Simple Idea of Data Fitting
    KernelKernel MethodsMethods Simple Idea of Data Fitting Given ( xi,y i) i=1,…,n xi is of dimension d Find the best linear function w (hyperplane) that fits the data Two scenarios y: real, regression y: {-1,1}, classification Two cases n>d, regression, least square n<d, ridge regression New sample: x, < x,w> : best fit (regression), best decision (classification) 2 Primary and Dual There are two ways to formulate the problem: Primary Dual Both provide deep insight into the problem Primary is more traditional Dual leads to newer techniques in SVM and kernel methods 3 Regression 2 w = arg min ∑(yi − wo − ∑ xij w j ) W i j w = arg min (y − Xw )T (y − Xw ) W d(y − Xw )T (y − Xw ) = 0 dw ⇒ XT (y − Xw ) = 0 w = [w , w ,L, w ]T , ⇒ T T o 1 d X Xw = X y L T x = ,1[ x1, , xd ] , T −1 T ⇒ w = (X X) X y y = [y , y ,L, y ]T ) 1 2 n T −1 T xT y =< x (, X X) X y > 1 xT X = 2 M xT 4 n n×xd Graphical Interpretation ) y = Xw = Hy = X(XT X)−1 XT y = X(XT X)−1 XT y d X= n FICA Income X is a n (sample size) by d (dimension of data) matrix w combines the columns of X to best approximate y Combine features (FICA, income, etc.) to decisions (loan) H projects y onto the space spanned by columns of X Simplify the decisions to fit the features 5 Problem #1 n=d, exact solution n>d, least square, (most likely scenarios) When n < d, there are not enough constraints to determine coefficients w uniquely d X= n W 6 Problem #2 If different attributes are highly correlated (income and FICA) The columns become dependent Coefficients
    [Show full text]
  • Abelian Categories
    Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists.
    [Show full text]
  • 23. Kernel, Rank, Range
    23. Kernel, Rank, Range We now study linear transformations in more detail. First, we establish some important vocabulary. The range of a linear transformation f : V ! W is the set of vectors the linear transformation maps to. This set is also often called the image of f, written ran(f) = Im(f) = L(V ) = fL(v)jv 2 V g ⊂ W: The domain of a linear transformation is often called the pre-image of f. We can also talk about the pre-image of any subset of vectors U 2 W : L−1(U) = fv 2 V jL(v) 2 Ug ⊂ V: A linear transformation f is one-to-one if for any x 6= y 2 V , f(x) 6= f(y). In other words, different vector in V always map to different vectors in W . One-to-one transformations are also known as injective transformations. Notice that injectivity is a condition on the pre-image of f. A linear transformation f is onto if for every w 2 W , there exists an x 2 V such that f(x) = w. In other words, every vector in W is the image of some vector in V . An onto transformation is also known as an surjective transformation. Notice that surjectivity is a condition on the image of f. 1 Suppose L : V ! W is not injective. Then we can find v1 6= v2 such that Lv1 = Lv2. Then v1 − v2 6= 0, but L(v1 − v2) = 0: Definition Let L : V ! W be a linear transformation. The set of all vectors v such that Lv = 0W is called the kernel of L: ker L = fv 2 V jLv = 0g: 1 The notions of one-to-one and onto can be generalized to arbitrary functions on sets.
    [Show full text]
  • Positive Semigroups of Kernel Operators
    Positivity 12 (2008), 25–44 c 2007 Birkh¨auser Verlag Basel/Switzerland ! 1385-1292/010025-20, published online October 29, 2007 DOI 10.1007/s11117-007-2137-z Positivity Positive Semigroups of Kernel Operators Wolfgang Arendt Dedicated to the memory of H.H. Schaefer Abstract. Extending results of Davies and of Keicher on !p we show that the peripheral point spectrum of the generator of a positive bounded C0-semigroup of kernel operators on Lp is reduced to 0. It is shown that this implies con- vergence to an equilibrium if the semigroup is also irreducible and the fixed space non-trivial. The results are applied to elliptic operators. Mathematics Subject Classification (2000). 47D06, 47B33, 35K05. Keywords. Positive semigroups, Kernel operators, asymptotic behaviour, trivial peripheral spectrum. 0. Introduction Irreducibility is a fundamental notion in Perron-Frobenius Theory. It had been introduced in a direct way by Perron and Frobenius for matrices, but it was H. H. Schaefer who gave the definition via closed ideals. This turned out to be most fruit- ful and led to a wealth of deep and important results. For applications Ouhabaz’ very simple criterion for irreduciblity of semigroups defined by forms (see [Ouh05, Sec. 4.2] or [Are06]) is most useful. It shows that for practically all boundary con- ditions, a second order differential operator in divergence form generates a positive 2 N irreducible C0-semigroup on L (Ω) where Ωis an open, connected subset of R . The main question in Perron-Frobenius Theory, is to determine the asymp- totic behaviour of the semigroup. If the semigroup is bounded (in fact Abel bounded suffices), and if the fixed space is non-zero, then irreducibility is equiv- alent to convergence of the Ces`aro means to a strictly positive rank-one opera- tor, i.e.
    [Show full text]
  • The Kernel of a Linear Transformation Is a Vector Subspace
    The kernel of a linear transformation is a vector subspace. Given two vector spaces V and W and a linear transformation L : V ! W we define a set: Ker(L) = f~v 2 V j L(~v) = ~0g = L−1(f~0g) which we call the kernel of L. (some people call this the nullspace of L). Theorem As defined above, the set Ker(L) is a subspace of V , in particular it is a vector space. Proof Sketch We check the three conditions 1 Because we know L(~0) = ~0 we know ~0 2 Ker(L). 2 Let ~v1; ~v2 2 Ker(L) then we know L(~v1 + ~v2) = L(~v1) + L(~v2) = ~0 + ~0 = ~0 and so ~v1 + ~v2 2 Ker(L). 3 Let ~v 2 Ker(L) and a 2 R then L(a~v) = aL(~v) = a~0 = ~0 and so a~v 2 Ker(L). Math 3410 (University of Lethbridge) Spring 2018 1 / 7 Example - Kernels Matricies Describe and find a basis for the kernel, of the linear transformation, L, associated to 01 2 31 A = @3 2 1A 1 1 1 The kernel is precisely the set of vectors (x; y; z) such that L((x; y; z)) = (0; 0; 0), so 01 2 31 0x1 001 @3 2 1A @yA = @0A 1 1 1 z 0 but this is precisely the solutions to the system of equations given by A! So we find a basis by solving the system! Theorem If A is any matrix, then Ker(A), or equivalently Ker(L), where L is the associated linear transformation, is precisely the solutions ~x to the system A~x = ~0 This is immediate from the definition given our understanding of how to associate a system of equations to M~x = ~0: Math 3410 (University of Lethbridge) Spring 2018 2 / 7 The Kernel and Injectivity Recall that a function L : V ! W is injective if 8~v1; ~v2 2 V ; ((L(~v1) = L(~v2)) ) (~v1 = ~v2)) Theorem A linear transformation L : V ! W is injective if and only if Ker(L) = f~0g.
    [Show full text]
  • Quasi-Arithmetic Filters for Topology Optimization
    Quasi-Arithmetic Filters for Topology Optimization Linus Hägg Licentiate thesis, 2016 Department of Computing Science This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7601-409-7 ISSN: 0348-0542 UMINF 16.04 Electronic version available at http://umu.diva-portal.org Printed by: Print & Media, Umeå University, 2016 Umeå, Sweden 2016 Acknowledgments I am grateful to my scientific advisors Martin Berggren and Eddie Wadbro for introducing me to the fascinating subject of topology optimization, for sharing their knowledge in countless discussions, and for helping me improve my scientific skills. Their patience in reading and commenting on the drafts of this thesis is deeply appreciated. I look forward to continue with our work. Without the loving support of my family this thesis would never have been finished. Especially, I am thankful to my wife Lovisa for constantly encouraging me, and covering for me at home when needed. I would also like to thank my colleges at the Department of Computing Science, UMIT research lab, and at SP Technical Research Institute of Sweden for providing a most pleasant working environment. Finally, I acknowledge financial support from the Swedish Research Council (grant number 621-3706), and the Swedish strategic research programme eSSENCE. Linus Hägg Skellefteå 2016 iii Abstract Topology optimization is a framework for finding the optimal layout of material within a given region of space. In material distribution topology optimization, a material indicator function determines the material state at each point within the design domain. It is well known that naive formulations of continuous material distribution topology optimization problems often lack solutions.
    [Show full text]
  • Imbedding of Abelian Categories, by Saul Lubkin
    Imbedding of Abelian Categories Author(s): Saul Lubkin Reviewed work(s): Source: Transactions of the American Mathematical Society, Vol. 97, No. 3 (Dec., 1960), pp. 410-417 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/1993379 . Accessed: 15/01/2013 15:24 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society. http://www.jstor.org This content downloaded on Tue, 15 Jan 2013 15:24:14 PM All use subject to JSTOR Terms and Conditions IMBEDDING OF ABELIAN CATEGORIES BY SAUL LUBKIN 1. Introduction. In this paper, we prove the following EXACT IMBEDDING THEOREM. Every abelian category (whose objects form a set) admits an additive imbedding into the category of abelian groups which carries exact sequences into exact sequences. As a consequence of this theorem, every object A of (i has "elements"- namely, the elements of the image A' of A under the imbedding-and all the usual propositions and constructions performed by means of "diagram chas- ing" may be carried out in an arbitrary abelian category precisely as in the category of abelian groups.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]
  • Homological Algebra in Characteristic One Arxiv:1703.02325V1
    Homological algebra in characteristic one Alain Connes, Caterina Consani∗ Abstract This article develops several main results for a general theory of homological algebra in categories such as the category of sheaves of idempotent modules over a topos. In the analogy with the development of homological algebra for abelian categories the present paper should be viewed as the analogue of the development of homological algebra for abelian groups. Our selected prototype, the category Bmod of modules over the Boolean semifield B := f0, 1g is the replacement for the category of abelian groups. We show that the semi-additive category Bmod fulfills analogues of the axioms AB1 and AB2 for abelian categories. By introducing a precise comonad on Bmod we obtain the conceptually related Kleisli and Eilenberg-Moore categories. The latter category Bmods is simply Bmod in the topos of sets endowed with an involution and as such it shares with Bmod most of its abstract categorical properties. The three main results of the paper are the following. First, when endowed with the natural ideal of null morphisms, the category Bmods is a semi-exact, homological category in the sense of M. Grandis. Second, there is a far reaching analogy between Bmods and the category of operators in Hilbert space, and in particular results relating null kernel and injectivity for morphisms. The third fundamental result is that, even for finite objects of Bmods the resulting homological algebra is non-trivial and gives rise to a computable Ext functor. We determine explicitly this functor in the case provided by the diagonal morphism of the Boolean semiring into its square.
    [Show full text]