Primed to Die: an Investigation of the Genetic Mechanisms Underlying Noise-Induced

Total Page:16

File Type:pdf, Size:1020Kb

Primed to Die: an Investigation of the Genetic Mechanisms Underlying Noise-Induced bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435183; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title. 2 Primed to Die: An Investigation of the Genetic Mechanisms Underlying Noise-Induced 3 Hearing Loss and Cochlear Damage in Homozygous Foxo3-knockout Mice 4 5 Running title. 6 Noise induced outer hair cell loss in Foxo3 mutant mice 7 8 Authors. 9 Holly J. Beaulac1, Felicia Gilels1†, Jingyuan Zhang1††, Sarah Jeoung2, and Patricia M. White1* 10 11 Institutional Affiliations. 12 1Department of Neuroscience, Ernest J. Del Monte Institute for Neuroscience, University of 13 Rochester School of Medicine and Dentistry, Rochester, NY, USA. 14 15 2University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. 16 17 †Now at Department of Pathology, University of Rochester School of Medicine and Dentistry, 18 Rochester, NY, USA. 19 20 ††Now at Department of Otolaryngology, Otolaryngology-Head and Neck Surgery, Harvard 21 Medical School, Boston Children’s Hospital Center for Life Science, Boston, MA, USA. 22 23 (*) Corresponding Author. Department of Neuroscience, Ernest J. Del Monte Institute for 24 Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, 25 Rochester, NY, 14642, USA. Email: [email protected]; Phone: 585-273-2340 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435183; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abbreviations. 28 NIHL, noise-induced hearing loss; OHC, outer hair cell; IHC, inner hair cell; SC, supporting cell; 29 P, postnatal day; WT, wild-type; ABR, auditory brainstem response; DPOAE, distortion product 30 otoacoustic emission; DPN, days post noise; HPN, hours post noise; kHz, kilohertz; dB, decibel; 31 DEGs, differentially expressed genes; GDPD3, Glycerophosphodiester Phosphodiesterase 32 Domain Containing 3; LPA, lysophosphatidic acid. 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435183; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 33 Abstract. 34 The prevalence of noise-induced hearing loss (NIHL) continues to increase, with limited therapies 35 available for individuals with cochlear damage. We have previously established that the 36 transcription factor FOXO3 is necessary to preserve outer hair cells (OHCs) and hearing 37 thresholds up to two weeks following a mild noise exposure in mice. The mechanisms by which 38 FOXO3 preserves cochlear cells and function are unknown. In this study, we analyzed the 39 immediate effects of mild noise exposure on wild-type, Foxo3 heterozygous (Foxo3+/KO), and 40 Foxo3 knock-out (Foxo3KO/KO) mice to better understand FOXO3’s role(s) in the mammalian 41 cochlea. We used confocal and multiphoton microscopy to examine well-characterized 42 components of noise-induced damage including calcium regulators, oxidative stress, necrosis, 43 and caspase-dependent and -independent apoptosis. Lower immunoreactivity of the calcium 44 buffer oncomodulin in Foxo3KO/KO OHCs correlated with cell loss beginning 4 hours post-noise 45 exposure. Using immunohistochemistry, we identified parthanatos as the cell death pathway for 46 OHCs. Oxidative stress response pathways were not significantly altered in FOXO3’s absence. 47 We used RNA sequencing to identify and RT-qPCR to confirm differentially expressed genes. We 48 further investigated a gene downregulated in the unexposed Foxo3KO/KO mice that may contribute 49 to OHC noise susceptibility. Glycerophosphodiester Phosphodiesterase Domain Containing 3 50 (GDPD3), a possible endogenous source of lysophosphatidic acid (LPA), has not previously been 51 described in the cochlea. As LPA reduces OHC loss after severe noise exposure, we treated 52 noise exposed Foxo3KO/KO mice with exogenous LPA. LPA treatment delayed immediate damage 53 to OHCs but was insufficient to ultimately prevent their death or prevent hearing loss. These 54 results suggest that FOXO3 acts prior to acoustic insult to maintain cochlear resilience, possibly 55 through sustaining endogenous LPA levels. 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435183; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 56 Introduction. 57 Noise induced hearing loss (NIHL) is a pervasive health threat. In 2017, the NIDCD estimated that 58 despite increased awareness and access to protective equipment, nearly 40 million American adults 59 had signs of NIHL1. Therapies for NIHL remain limited, in many cases due to the permanent loss of 60 cochlear sensory cells. Individuals have varying susceptibilities to noise damage, partially due to 61 differences in gene expression crucial for hearing recovery and cochlear preservation2. By studying 62 the underlying genetic mechanisms of NIHL susceptibility, our goal is to better prevent or mitigate 63 NIHL using biological approaches. 64 65 Transcriptional regulators comprise a class of NIHL susceptibility genes, including forkhead box 66 O-3 (FOXO3)3. FOXO3 is a winged helix/forkhead class transcription factor involved in cellular 67 processes including autophagy4, survival5, stress resistance6–9, apoptosis10–12, and longevity13–16. 68 Individuals may harbor genetic variants that can lead to varying levels of FOXO3 transcription, 69 with its spatiotemporal regulatory roles susceptible to manipulation in autoimmune diseases17–19 70 and cancers20,21. FOXO3 is expressed from birth into adulthood throughout the mammalian 71 cochlea including inner and outer hair cells (IHCs and OHCs), supporting cells (SCs), and spiral 72 ganglion neurons (SGNs)22. FOXO3 is capable of translocating from the cytoplasm to nucleus in 73 response to a stressor, as SGNs respond to non-traumatic noise22. This suggests a role in driving 74 gene transcription, which could prevent additional damage or promote death in dysfunctional 75 cells. We have previously shown that FOXO3 is required to preserve OHCs and hearing 76 thresholds following mild noise exposure23. In the hematopoietic system, loss of FOXO3 leads to 77 the overaccumulation of reactive oxygen species (ROS), leading to the death of hematopoietic 78 stem cells24 and developing erythrocytes25. Accumulation of ROS in cochlear cells after noise 79 exposure also drives cell death26–28. We hypothesize that in the absence of FOXO3 following 80 noise exposure, higher levels of reactive oxygen species would accumulate in Foxo3KO/KO OHCs 81 versus WT OHCs, triggering an apoptotic cascade. 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435183; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 82 83 To better understand FOXO3’s role in NIHL susceptibility, we analyzed the immediate effects of 84 mild noise exposure on wild-type (WT, Foxo3+/+), Foxo3 heterozygous (Foxo3+/KO), and Foxo3 85 knock-out (Foxo3KO/KO) mice. Previous studies have shown that after traumatic noise exposure, 86 OHC damage drives apoptosis, necroptosis, and a third death pathway29–31. Depending on the 87 severity of the traumatic exposure, OHC caspase-3 activation may be immediately evident29, or it 88 may develop over the following 24 hours post noise (HPN)32. OHC loss continues over a period 89 of days to weeks32,33. The degree of OHC loss seen in the Foxo3KO/KO cochlea after a mild noise 90 exposure could reflect either changes in cochlear homeostasis prior to damage or a compromised 91 damage response. Determining the time course of OHC death could shed light on when FOXO3 92 acts to protect the cochlea. 93 94 To this end, we characterized the time course of OHC loss from noise in the Foxo3KO/KO mouse 95 and identified a likely mode of cell death. We compared activation of known damage pathways 96 in the Foxo3KO/KO cochlea to that of the WT cochlea to assess their involvement. We performed 97 RNA-SEQ, identified a candidate downstream effector enzyme, and tested its involvement by 98 exogenous supplementation of its product. Our goals were to determine what pathways were 99 immediately active after noise and when therapeutic intervention would be most efficacious to 100 mitigate the effects of FOXO3’s absence. 5 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.12.435183; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 101 Results. 102 Establishing the time course of OHC loss in the Foxo3KO/KO noise-exposed cochlea. 103 Foxo3KO/KO mice acquire severe permanent threshold shifts throughout the cochlea after mild 104 noise exposure23. By two weeks, about one third of Foxo3KO/KO OHCs were lost from the basal 105 cochlea without any IHC loss23. WT littermates experienced only temporary threshold shifts and 106 no cell loss from the same exposure23. These observations did not establish when or how 107 Foxo3KO/KO OHCs are lost. Here we characterize cellular pathology in Foxo3KO/KO and WT 108 cochleae immediately after noise exposure. We used cochlear cryosectioning to obtain cross- 109 sections for detailed cellular analysis (Fig. S1A), and whole mounts preparations for cellular 110 quantification according to tonotopic frequency (Fig. S1B). The latter is important as high 111 frequency (basal) OHCs are more susceptible to trauma34–36. To test for haploinsufficiency, we 112 analyzed the FOXO3 heterozygote (Foxo3+/KO). We measured Foxo3+/KO auditory brainstem 113 responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) at baseline, 1-day 114 post-noise (1 DPN), and 14 DPN (Fig.
Recommended publications
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Putative Pore-Forming Subunits of the Mechano-Electrical Transduction Channel
    bioRxiv preprint doi: https://doi.org/10.1101/393330; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 Putative pore-forming subunits of the mechano-electrical transduction channel, 5 Tmc1/2b, require Tmie to localize to the site of mechanotransduction in zebrafish 6 sensory hair cells 7 8 9 Itallia V. Pacentine and Teresa Nicolson* 10 Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, 11 Portland, Oregon, United States of America 12 13 14 *Corresponding author 15 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/393330; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 Abstract 17 Mutations in transmembrane inner ear (TMIE) cause deafness in humans; previous 18 studies suggest involvement in the mechano-electrical transduction (MET) complex in sensory 19 hair cells, but TMIE’s precise role is unclear. In tmie zebrafish mutants, we observed that GFP- 20 tagged Tmc1 and Tmc2b, which are putative subunits of the MET channel, fail to target to the 21 hair bundle. In contrast, overexpression of Tmie strongly enhances the targeting of Tmc2b-GFP 22 to stereocilia.
    [Show full text]
  • The Lhfpl5 Ohnologs Lhfpl5a and Lhfpl5b Are Required for Mechanotransduction in Distinct Populations of Sensory Hair Cells in Zebrafish
    fnmol-12-00320 January 2, 2020 Time: 14:35 # 1 ORIGINAL RESEARCH published: 15 January 2020 doi: 10.3389/fnmol.2019.00320 The lhfpl5 Ohnologs lhfpl5a and lhfpl5b Are Required for Mechanotransduction in Distinct Populations of Sensory Hair Cells in Zebrafish Timothy Erickson1,2*, Itallia V. Pacentine2, Alexandra Venuto1, Rachel Clemens2 and Teresa Nicolson2† 1 Department of Biology, East Carolina University, Greenville, NC, United States, 2 Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, United States Hair cells sense and transmit auditory, vestibular, and hydrodynamic information by converting mechanical stimuli into electrical signals. This process of mechano-electrical transduction (MET) requires a mechanically gated channel localized in the apical Edited by: stereocilia of hair cells. In mice, lipoma HMGIC fusion partner-like 5 (LHFPL5) acts Isabel Varela-Nieto, as an auxiliary subunit of the MET channel whose primary role is to correctly localize Spanish National Research Council (CSIC), Spain PCDH15 and TMC1 to the mechanotransduction complex. Zebrafish have two lhfpl5 Reviewed by: genes (lhfpl5a and lhfpl5b), but their individual contributions to MET channel assembly Hiroshi Hibino, and function have not been analyzed. Here we show that the zebrafish lhfpl5 genes Niigata University, Japan are expressed in discrete populations of hair cells: lhfpl5a expression is restricted to Sangyong Jung, Singapore Bioimaging Consortium auditory and vestibular hair cells in the inner ear, while lhfpl5b expression is specific ∗ (A STAR), Singapore to hair cells of the lateral line organ. Consequently, lhfpl5a mutants exhibit defects in Gwenaelle Geleoc, Harvard Medical School, auditory and vestibular function, while disruption of lhfpl5b affects hair cells only in the United States lateral line neuromasts.
    [Show full text]
  • TMC) Gene Family: Functional Clues from Hearing Loss and Epidermodysplasia Verruciformis૾
    Available online at www.sciencedirect.com R Genomics 82 (2003) 300–308 www.elsevier.com/locate/ygeno Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis૾ Kiyoto Kurima,a Yandan Yang,a Katherine Sorber,a and Andrew J. Griffitha,b,* a Section on Gene Structure and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA b Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA Received 10 March 2003; accepted 15 May 2003 Abstract Mutations of TMC1 cause deafness in humans and mice. TMC1 and a related gene, TMC2, are the founding members of a novel gene family. Here we describe six additional TMC paralogs (TMC3 to TMC8) in humans and mice, as well as homologs in other species. cDNAs spanning the full length of the predicted open reading frames of the mammalian genes were cloned and sequenced. All are strongly predicted to encode proteins with 6 to 10 transmembrane domains and a novel conserved 120-amino-acid sequence that we termed the TMC domain. TMC1, TMC2, and TMC3 comprise a distinct subfamily expressed at low levels, whereas TMC4 to TMC8 are expressed at higher levels in multiple tissues. TMC6 and TMC8 are identical to the EVER1 and EVER2 genes implicated in epidermodysplasia verruciformis, a recessive disorder comprising susceptibility to cutaneous human papilloma virus infections and associated nonmelanoma skin cancers, providing additional genetic and tissue systems in which to study the TMC gene family. © 2003 Elsevier Science (USA).
    [Show full text]
  • USHIC, CDH23 and TMIE
    Non-Syndromic Hearing Impairment in India: High Allelic Heterogeneity among Mutations in TMPRSS3, TMC1, USHIC, CDH23 and TMIE Aparna Ganapathy1, Nishtha Pandey1, C. R. Srikumari Srisailapathy2, Rajeev Jalvi3, Vikas Malhotra4, Mohan Venkatappa1, Arunima Chatterjee1, Meenakshi Sharma1, Rekha Santhanam1, Shelly Chadha4, Arabandi Ramesh2, Arun K. Agarwal4, Raghunath R. Rangasayee3, Anuranjan Anand1* 1 Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, 2 Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, Chennai, India, 3 Department of Audiology, Ali Yavar Jung National Institute for the Hearing Handicapped, Mumbai, India, 4 Department of ENT, Maulana Azad Medical College, New Delhi, India Abstract Mutations in the autosomal genes TMPRSS3, TMC1, USHIC, CDH23 and TMIE are known to cause hereditary hearing loss. To study the contribution of these genes to autosomal recessive, non-syndromic hearing loss (ARNSHL) in India, we examined 374 families with the disorder to identify potential mutations. We found four mutations in TMPRSS3, eight in TMC1, ten in USHIC, eight in CDH23 and three in TMIE. Of the 33 potentially pathogenic variants identified in these genes, 23 were new and the remaining have been previously reported. Collectively, mutations in these five genes contribute to about one-tenth of ARNSHL among the families examined. New mutations detected in this study extend the allelic heterogeneity of the genes and provide several additional variants for structure-function correlation studies. These findings have implications for early DNA-based detection of deafness and genetic counseling of affected families in the Indian subcontinent. Citation: Ganapathy A, Pandey N, Srisailapathy CRS, Jalvi R, Malhotra V, et al.
    [Show full text]
  • Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis.
    [Show full text]
  • Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I
    EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR.
    [Show full text]
  • Improved TMC1 Gene Therapy Restores Hearing and Balance in Mice with Genetic Inner Ear Disorders
    Corrected: Publisher correction ARTICLE https://doi.org/10.1038/s41467-018-08264-w OPEN Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders Carl A. Nist-Lund1, Bifeng Pan 1,2, Amy Patterson1, Yukako Asai1,2, Tianwen Chen3, Wu Zhou3, Hong Zhu3, Sandra Romero4, Jennifer Resnik2,4, Daniel B. Polley2,4, Gwenaelle S. Géléoc1,2 & Jeffrey R. Holt1,2,5 Fifty percent of inner ear disorders are caused by genetic mutations. To develop treatments for genetic inner ear disorders, we designed gene replacement therapies using synthetic 1234567890():,; adeno-associated viral vectors to deliver the coding sequence for Transmembrane Channel- Like (Tmc) 1 or 2 into sensory hair cells of mice with hearing and balance deficits due to mutations in Tmc1 and closely related Tmc2. Here we report restoration of function in inner and outer hair cells, enhanced hair cell survival, restoration of cochlear and vestibular function, restoration of neural responses in auditory cortex and recovery of behavioral responses to auditory and vestibular stimulation. Secondarily, we find that inner ear Tmc gene therapy restores breeding efficiency, litter survival and normal growth rates in mouse models of genetic inner ear dysfunction. Although challenges remain, the data suggest that Tmc gene therapy may be well suited for further development and perhaps translation to clinical application. 1 Department of Otolaryngology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. 2 Department of Otolaryngology, Harvard Medical School, Boston, MA 02139, USA. 3 Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA.
    [Show full text]
  • Tip-Link Protein Protocadherin 15 Interacts with Transmembrane Channel-Like Proteins TMC1 and TMC2
    Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2 Reo Maedaa,b,1, Katie S. Kindta,b,1,2, Weike Moa,b,1, Clive P. Morgana,b, Timothy Ericksona,b, Hongyu Zhaoa,b, Rachel Clemens-Grishama,b, Peter G. Barr-Gillespiea,b, and Teresa Nicolsona,b,3 aOregon Hearing Research Center and bVollum Institute, Oregon Health and Science University, Portland, OR 97239 Edited by A. J. Hudspeth, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, and approved July 23, 2014 (received for review February 3, 2014) The tip link protein protocadherin 15 (PCDH15) is a central compo- vestibular deficits, along with the complete absence of normal nent of the mechanotransduction complex in auditory and vestib- mechanotransduction currents in auditory and vestibular hair cells ular hair cells. PCDH15 is hypothesized to relay external forces to the (17). Changes in calcium permeability through the transduction mechanically gated channel located near its cytoplasmic C terminus. channel of cochlear hair cells were observed for Tmc1 Tmc2 How PCDH15 is coupled to the transduction machinery is not clear. double-mutant mice, as well as in single mutants of either gene Using a membrane-based two-hybrid screen to identify proteins (10, 18, 19). In further support of the idea that TMCs are pore- that bind to PCDH15, we detected an interaction between zebrafish forming subunits of the transduction channel, mouse vestibular Pcdh15a and an N-terminal fragment of transmembrane channel- hair cells that express only the dominant Beethoven (M412K) al- like 2a (Tmc2a). Tmc2a is an ortholog of mammalian TMC2, which lele of Tmc1, in the absence of any wild-type TMC1 or TMC2, along with TMC1 has been implicated in mechanotransduction in display altered single-channel transduction currents (10).
    [Show full text]
  • Roles of Nickel Binding Proteins in Helicobacter Species
    ROLES OF NICKEL BINDING PROTEINS IN HELICOBACTER SPECIES by SUSMITHA SESHADRI (Under the Direction of Robert J. Maier) ABSTRACT Proteins Hpn and Hpn-like of the gastric pathogen H. pylori were hypothesized to bind nickel since histidine residues make up 45% and 27% of their amino acid content, respectively. Characterization of an hpn, an hpn-like and an hpn, hpn-like double mutant revealed novel functions for these gene products in nickel detoxification and storage. Compared to the wild-type parent, mutant strains were more sensitive to elevated concentrations of nickel, cobalt, and cadmium, indicating roles for the two proteins in surviving metal toxicity. Under low nickel conditions, the mutants exhibited higher urease activities and had increased amount of Ni- associated with urease; but similar urease apo-protein levels to wild-type. The parent achieved mutant level urease activities under nickel supplementation and lower pH conditions while growth with a nickel chelator decreased mutant but not wild-type urease activities. These results strongly imply a role for these proteins as nickel reservoirs/storage proteins. H. hepaticus colonizes a non-acidic niche, hence nickel metabolism may be different than in H. pylori. A nikR mutant exhibited higher urease and hydrogenase activities under all supplemental nickel conditions, but there was no change in urease expression, and NikR did not bind pUreA or pHydA. Higher total nickel levels (detected by ICP-MS) in the nikR mutant implied possible higher nickel transporter (NikA) levels, which was later verified by qRT-PCR and binding of NikR to pNikA. Periplasmic nitrate reductase (NapA) was upregulated in the NikR strain.
    [Show full text]
  • A Highly Accurate Model for Screening Prostate Cancer Using Propensity Index Panel of Ten Genes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436371; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A highly accurate model for screening prostate cancer using propensity index panel of ten genes Shipra Jain#, Kawal Preet Kaur Malhotra#, Sumeet Patiyal#, Gajendra P. S. Raghava* Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi-110020, India. # - Contributed Equally * - Corresponding Author Mailing Address of Authors Shipra Jain: [email protected] ORCID ID: https://orcid.org/0000-0002-7045-5188 Kawal Preet Kaur Malhotra: [email protected] Sumeet Patiyal: [email protected] ORCID ID: https://orcid.org/0000-0003-1358-292X GPS Raghava: [email protected] ORCID ID: https://orcid.org/0000-0002-8902-2876 Corresponding Author Gajendra Pal Singh Raghava Head and Professor, Department of Computational Biology Office: A-302 R&D Block, Indraprastha Institute of Information Technology, Delhi Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station) New Delhi, India - 110020 Phone: 011-26907444 Email: [email protected] Website: http://webs.iiitd.edu.in/raghava/ Highlights ● Application of Machine learning techniques to identify Biomarkers for PRAD cancer. ● Highly accurate models developed for classifying prostate cancer vs. normal sample. ● Introducing Propensity index concept for enhancing model performance. ● Top 10 genes identified using feature selection techniques. bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436371; this version posted March 22, 2021.
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]