Identifying and Creating Pathways to Improve Biological Lignin Valorization T ⁎ Zhi-Hua Liua,B,1, Rosemary K

Total Page:16

File Type:pdf, Size:1020Kb

Identifying and Creating Pathways to Improve Biological Lignin Valorization T ⁎ Zhi-Hua Liua,B,1, Rosemary K Renewable and Sustainable Energy Reviews 105 (2019) 349–362 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser Identifying and creating pathways to improve biological lignin valorization T ⁎ Zhi-Hua Liua,b,1, Rosemary K. Lec,1, Matyas Kosad, Bin Yange, Joshua Yuana,b, , ⁎⁎ Arthur J. Ragauskasc,f,g, a Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, United States b Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, United States c Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, United States d Fortress Advanced Bioproducts Inc., Vancouver, BC, Canada V6T 1W5 e Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, United States f Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States g Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University Tennessee, Knoxville, TN 37996, United States ARTICLE INFO ABSTRACT Keywords: Biological lignin valorization to fuels and value-added chemicals enables sustainable and economic biorefineries. Biological lignin valorization While significant progress has been made, several major challenges arose due to high recalcitrance and het- Ligninolytic microorganism erogeneity of lignin, which needs to be addressed to improve lignin processing. This work provides an overview Bioprospecting of biological lignin conversion and its regulation from a metabolic engineering and systems biology viewpoint. Metabolic engineering Biological lignin valorization includes three stages: lignin depolymerization, aromatics degradation, and target Systems biology product biosynthesis. Ligninolytic microorganisms have an extensive enzymatic toolbox to break down the lignin Synthetic biology Techno-economic analysis and convert heterogeneous lignin derivatives to central intermediates, such as protocatechuate or catechol, through a peripheral pathway. These intermediates undergo ring cleavage via the β-ketoadipate pathway and are ultimately transformed into metabolites by yielding acetyl-CoA for internal product biosynthesis, such as tria- cylglycerols, polyhydroxyalkanoates, etc. Bioprospecting will expand the knowledge base of ligninolytic mi- crobial communities, strains, and enzymes to facilitate the understanding of aromatics metabolism. Systems biology analyses achieve an understanding of molecular and systems-level degradation mechanisms and meta- bolic pathways of lignin and aromatics. By identifying these mechanisms, synthetic biology provides promising approaches to create the lignin conversion pathways and engineer ligninolytic strains suitable as potential hosts for lignin conversion. Techno-economic analysis of biological lignin upgrading to coproducts in biorefineries will guide the implementation of lignin valorization by mitigating technical risk for scale-up and improving the profitability of biorefinery. By improving the understanding of biological lignin valorization, it should be pos- sible to create biological lignin valorization route to effectively produce value-added products from lignin. 1. Introduction considered to be suitable for the production of biofuels as well as bulk and fine chemicals, potentially addressing energy and environmental Demand for renewable resource based fuels and chemicals is on the concerns [1,3]. With the intensive development of biorefineries for rise due to the dramatic increase in greenhouse gas emissions [1,2]. The fuels and chemicals from carbohydrates, the amount of lignin-rich re- lignin polymer in plant biomass is the most abundant renewable source sidues has increased, warranting new strategies for upgrading lignin of aromatic carbon and the second most abundant terrestrial polymer [2,4–6]. For instance, in the cellulosic ethanol and pulp and paper in- after cellulose. Aromatic compounds derived from lignin have been dustries, about 112 million tons of lignin are annually produced as Abbreviations: CDW, Cell dry weight; DyP, Dye peroxidase; LiP, Lignin peroxidase; MnP, Manganese peroxidase; mcl-PHAs, Medium chain-length poly- hydroxyalkanoates; O2-KL, Oxygen pretreatment Kraft lignin; PAHs, Polycyclic aromatic hydrocarbons; PHA, Polyhydroxyalkanoates; TAG, Triacylglycerol; TCA, Tricarboxylic acid; TEA, Techno-economic analysis; US-EOL, Ultrasonicated ethanol organosolv lignin; WT, Wild type ⁎ Corresponding author at: Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, United States. ⁎⁎ Corresponding author at: Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, United States. E-mail addresses: [email protected] (Z.-H. Liu), [email protected] (R.K. Le), [email protected] (M. Kosa), [email protected] (B. Yang), [email protected] (J. Yuan), [email protected] (A.J. Ragauskas). 1 These authors contributed equally to this work. https://doi.org/10.1016/j.rser.2019.02.009 Received 3 June 2018; Received in revised form 18 January 2019; Accepted 12 February 2019 Available online 16 February 2019 1364-0321/ © 2019 Elsevier Ltd. All rights reserved. Z.-H. Liu, et al. Renewable and Sustainable Energy Reviews 105 (2019) 349–362 Fig. 1. Schematic structure of lignin biopolymer in plant biomass. inexpensive and readily available residue in the United States alone [7]. exactly controlled to synthesize the desired product in microorganisms. Recently, lignin valorization has attracted more attention and been Among available state-of-the-art technologies, biological lignin va- considered in plant biomass upgrading strategies for economic and lorization that involved lignin depolymerization and conversion by sustainable biorefineries. Even so, the commercial application of lignin microorganisms holds great potential. A desirable lignin bio-depoly- is limited to only a few examples (e.g. vanillin and lignosulfonates) merization protocol would be a series of reactions with high reaction because of the challenging approaches for lignin depolymerization. rates that also allow for bioconversion to value-added compounds. Lignin is biosynthesized in oxidative coupling reactions using cin- Despite significant progress, biological lignin valorization is still highly namyl alcohol derivatives: p-coumaryl alcohol, coniferyl alcohol, and challenging with low levels of useful products generated. Several major sinapyl alcohol (Fig. 1). It is an arguably random three-dimensional issues need to be addressed to further improve biological lignin valor- biopolymer composing of phenylpropanoid units linked together by ization. Herein this paper overviews the biological lignin biorefinery various linkages, including β-O-4-aryl ether, β-5-phenylcoumaran, 5–5- from a metabolic engineering and systems biology viewpoint, and biphenyl, β-β-resinol and 4-O-5-diaryl ether linkage [8–10]. β-O-4-aryl points out future prospects for microbial production of lignin-derived ether is the most abundant linkage in lignin polymer [3]. Lignin carries biofuels and chemical. a variety of functional groups, for example, aliphatic hydroxyl, car- bonyl, phenolic hydroxyl, methoxyl, and benzyl alcohol groups, which 2. Biological processing of lignin by ligninolytic microorganisms determine the polarity and quality of both native and technical lignin. These chemistries are responsible for its heterogeneity and high re- 2.1. Ligninolytic microorganisms calcitrance, imposing a unique challenge for its depolymerization. Numerous studies have been conducted in the past few decades into Biological processing of lignin has emerged as a potentially effective valorizing lignin, in which the resulting monomers and oligmers from approach to gain lignin-derived products. The benefits of using biolo- lignin depolymerization by biological, thermal, or chemical pretreat- gical processing include the ability to use renewable carbon sources as – ments are converted to fuels and chemicals [6,11 15]. Most pretreat- feedstock to sustain cellular growth for generating various inter- ment approaches for lignin depolymerization produce a heterogeneous mediates and the ability for target molecules to be expressed with a array of aromatic species from lignin, depending on the feedstock types specificity that surpasses synthetic chemistry [25–28]. The capability of – used and the pretreatment approaches employed [16 18]. A hetero- microorganisms to selectively create target chemicals with special ffi geneous mixture of aromatic compounds may be su cient to produce features can be harnessed to generate new molecules for unique bio- fuels; however, high purity of aromatic compounds is necessary for the fuels or chemicals. fi production of ne chemicals [11,12,17,19]. Therefore, heterogeneity of Both fungi and bacteria have been found capable of degrading lignin lignin or aromatics generated from these depolymerization processes in vitro and/or in vivo with multiple enzymes and associated small fi presents a major obstacle for upgrading lignin to ne chemicals. molecule co-factors. The degradation mechanisms of lignin and aro- Research of biological lignin processing has been ramped up and matics have also been studied in different natural biomass utilization screening of microorganisms in ligninolytic environments has led to the systems [23,29].
Recommended publications
  • A Bacterial Aromatic Aldehyde Dehydrogenase Critical for The
    www.nature.com/scientificreports OPEN A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of Received: 21 October 2016 Accepted: 07 February 2017 syringaldehyde Published: 15 March 2017 Naofumi Kamimura1, Takayuki Goto1, Kenji Takahashi1, Daisuke Kasai1, Yuichiro Otsuka2, Masaya Nakamura2, Yoshihiro Katayama3, Masao Fukuda1 & Eiji Masai1 Vanillin and syringaldehyde obtained from lignin are essential intermediates for the production of basic chemicals using microbial cell factories. However, in contrast to vanillin, the microbial conversion of syringaldehyde is poorly understood. Here, we identified an aromatic aldehyde dehydrogenase (ALDH) gene responsible for syringaldehyde catabolism from 20 putative ALDH genes of Sphingobium sp. strain SYK-6. All these genes were expressed in Escherichia coli, and nine gene products, including previously characterized BzaA, BzaB, and vanillin dehydrogenase (LigV), exhibited oxidation activities for syringaldehyde to produce syringate. Among these genes, SLG_28320 (desV) and ligV were most highly and constitutively transcribed in the SYK-6 cells. Disruption of desV in SYK-6 resulted in a significant reduction in growth on syringaldehyde and in syringaldehyde oxidation activity. Furthermore, a desV ligV double mutant almost completely lost its ability to grow on syringaldehyde. Purified DesV showed −1 −1 −1 −1 similar kcat/Km values for syringaldehyde (2100 s ·mM ) and vanillin (1700 s ·mM ), whereas LigV substantially preferred vanillin (8800 s−1·mM−1) over syringaldehyde (1.4 s−1·mM−1). These results clearly demonstrate that desV plays a major role in syringaldehyde catabolism. Phylogenetic analyses showed that DesV-like ALDHs formed a distinct phylogenetic cluster separated from the vanillin dehydrogenase cluster. Lignin is the second most abundant bio-resource on earth after cellulose, and its decomposition is essential for the carbon cycle.
    [Show full text]
  • Oxidative Pathways of Deoxyribose and Deoxyribonate Catabolism
    bioRxiv preprint doi: https://doi.org/10.1101/205583; this version posted November 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Oxidative pathways of deoxyribose and deoxyribonate catabolism 1* 1 2 1 Morgan N. Price, ​ Jayashree Ray, ​ Anthony T. Iavarone, ​ Hans K. Carlson, ​ Elizabeth M. 3 ​ 3 ​ 1,4,* ​ 1,5,*​ Ryan, ​ Rex R. Malmstrom, ​ Adam P. Arkin, ​ and Adam M. Deutschbauer ​ ​ ​ ​ 1 ​ Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley CA, USA 2 ​ QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley CA, USA 3 ​ DOE Joint Genome Institute, Walnut Creek CA, USA 4 ​ Department of Bioengineering, University of California, Berkeley CA, USA 5 ​ Department of Plant and Microbial Biology, University of California, Berkeley CA, USA * ​ [email protected], [email protected], [email protected] Abstract Using genome-wide mutant fitness assays in diverse bacteria, we identified novel oxidative pathways for the catabolism of 2-deoxy-D-ribose and 2-deoxy-D-ribonate. We propose that deoxyribose is oxidized to deoxyribonate, oxidized to ketodeoxyribonate, and cleaved to acetyl-CoA and glyceryl-CoA. We have genetic evidence for this pathway in three genera of bacteria, and we confirmed the oxidation of deoxyribose to ketodeoxyribonate in vitro. In ​ ​ Pseudomonas simiae, the expression of enzymes in the pathway is induced by deoxyribose or ​ deoxyribonate, while in Paraburkholderia bryophila and in Burkholderia phytofirmans, the ​ ​ ​ ​ pathway proceeds in parallel with the known deoxyribose 5-phosphate aldolase pathway.
    [Show full text]
  • Characterization of Cd36 03230P, a Putative Vanillin Dehydrogenase from Candida Dubliniensis† Cite This: RSC Adv.,2016,6, 99774 Suprama Datta,Ab Uday S
    RSC Advances View Article Online COMMUNICATION View Journal | View Issue Characterization of Cd36_03230p, a putative vanillin dehydrogenase from Candida dubliniensis† Cite this: RSC Adv.,2016,6, 99774 Suprama Datta,ab Uday S. Annapureb and David J. Timson*ac Received 5th September 2016 Accepted 10th October 2016 DOI: 10.1039/c6ra22209a www.rsc.org/advances A coding sequence (CD36-03230) from the yeast Candida dubliniensis derived phenylpropanoids (such as vanillin, vanillate, caffeate, p- had been previously annotated as a vanillin dehydrogenase (VDH). The coumarate, cinnamate and benzaldehyde). These aromatic alde- corresponding protein (CD36-03230p) was recombinantly expressed hydes, especially vanillin, are abundant as avour and aromas in in Escherichia coli and analysed. The protein is most likely a tetramer in food and cosmetic industries. It is important to elucidate the Creative Commons Attribution 3.0 Unported Licence. solution as judged by crosslinking and gel filtration experiments. structural and functional characteristics of these enzymes given CD36-03230p is an active aldehyde dehydrogenase favouring cyclic their potential role in food chemistry and biotechnology. This and aromatic substrates. Positive cooperativity and substrate inhibition group of enzymes has been characterized in a number of eubac- were observed with some substrates. The redox cofactor NADP+ and terial species, including Pseudomonas uorescens,6 Pseudomonas substrates affected the thermal stability of the protein. Interestingly, putida KT2440,13 Corynebacterium
    [Show full text]
  • Mechanistic Study of Cysteine Dioxygenase, a Non-Heme
    MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE, A NON-HEME MONONUCLEAR IRON ENZYME by WEI LI Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON August 2014 Copyright © by Student Name Wei Li All Rights Reserved Acknowledgements I would like to thank Dr. Pierce for your mentoring, guidance and patience over the five years. I cannot go all the way through this without your help. Your intelligence and determination has been and will always be an example for me. I would like to thank my committee members Dr. Dias, Dr. Heo and Dr. Jonhson- Winters for the directions and invaluable advice. I also would like to thank all my lab mates, Josh, Bishnu ,Andra, Priyanka, Eleanor, you all helped me so I could finish my projects. I would like to thank the Department of Chemistry and Biochemistry for the help with my academic and career. At Last, I would like to thank my lovely wife and beautiful daughter who made my life meaningful and full of joy. July 11, 2014 iii Abstract MECHANISTIC STUDY OF CYSTEINE DIOXYGENASE A NON-HEME MONONUCLEAR IRON ENZYME Wei Li, PhD The University of Texas at Arlington, 2014 Supervising Professor: Brad Pierce Cysteine dioxygenase (CDO) is an non-heme mononuclear iron enzymes that catalyzes the O2-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). CDO controls cysteine levels in cells and is a potential drug target for some diseases such as Parkinson’s and Alzhermer’s.
    [Show full text]
  • Genomic Analysis of the Aromatic Catabolic Pathways from Silicibacter Pomeroyi DSS-3
    Annals of Microbiology, 59 (4) 789-800 (2009) Genomic analysis of the aromatic catabolic pathways from Silicibacter pomeroyi DSS-3 Dazhong YAN1, Jianxiong KANG2, Dong-Qi LIU2* 1School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023; 2Center for Microbiology Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyue Road, Wuhan 430074, P.R. China Received 16 June 2009 / Accepted 7 October 2009 Abstract - Genomic analysis of the catabolic potentialities of Silicibacter pomeroyi DSS-3 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least seven main pathways for the conversion of the aromatic compounds to the intermediates which enter into TCA cycle, that is, the catechol (cat I and cat II genes) and protocatechuate (pca genes) branches of the β-ketoadipate pathway, the phenylacetate pathway (paa genes), the gentisate pathway (gtd genes), the homogentisate pathway (hmg/hppD genes), as well as the homoprotocatechuate pathway (hpc genes). Furthermore, the genes encoding those enzymes involved in the peripheral pathways leading to the β-ketoadipate central pathway were also mapped, i.e., 4-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and act), tyrosine (hpp) and n-phenylalkanoic acids (fad). Evidences showed that S. pomeroyi DSS-3 have versatile abili- ties to the catabolism of aromatic compounds either in anaerobic or in aerobic pathway, suggesting such a strain might be a model of heuristic value for the study of the genomic organization, the evolution of genes, as well as the catalytic or transcriptional mechanisms of enzymes for aromatic degradation in marine bacteria.
    [Show full text]
  • Characterization of Cd36 03230P, a Putative Vanillin Dehydrogenase from Candida Dubliniensis† Cite This: RSC Adv.,2016,6, 99774 Suprama Datta,Ab Uday S
    RSC Advances View Article Online COMMUNICATION View Journal | View Issue Characterization of Cd36_03230p, a putative vanillin dehydrogenase from Candida dubliniensis† Cite this: RSC Adv.,2016,6, 99774 Suprama Datta,ab Uday S. Annapureb and David J. Timson*ac Received 5th September 2016 Accepted 10th October 2016 DOI: 10.1039/c6ra22209a www.rsc.org/advances A coding sequence (CD36-03230) from the yeast Candida dubliniensis derived phenylpropanoids (such as vanillin, vanillate, caffeate, p- had been previously annotated as a vanillin dehydrogenase (VDH). The coumarate, cinnamate and benzaldehyde). These aromatic alde- corresponding protein (CD36-03230p) was recombinantly expressed hydes, especially vanillin, are abundant as avour and aromas in in Escherichia coli and analysed. The protein is most likely a tetramer in food and cosmetic industries. It is important to elucidate the Creative Commons Attribution 3.0 Unported Licence. solution as judged by crosslinking and gel filtration experiments. structural and functional characteristics of these enzymes given CD36-03230p is an active aldehyde dehydrogenase favouring cyclic their potential role in food chemistry and biotechnology. This and aromatic substrates. Positive cooperativity and substrate inhibition group of enzymes has been characterized in a number of eubac- were observed with some substrates. The redox cofactor NADP+ and terial species, including Pseudomonas uorescens,6 Pseudomonas substrates affected the thermal stability of the protein. Interestingly, putida KT2440,13 Corynebacterium
    [Show full text]
  • Generation of Flavors and Fragrances Through Biotransformation and De Novo Synthesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Food and Bioprocess Technology (2018) 11:2217–2228 https://doi.org/10.1007/s11947-018-2180-8 ORIGINAL PAPER Generation of Flavors and Fragrances Through Biotransformation and De Novo Synthesis Adelaide Braga1 & Carlos Guerreiro1 & Isabel Belo1 Received: 8 May 2018 /Accepted: 10 September 2018 /Published online: 19 September 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Flavors and fragrances are the result of the presence of volatile and non-volatile compounds, appreciated mostly by the sense of smell once they usually have pleasant odors. They are used in perfumes and perfumed products, as well as for the flavoring of foods and beverages. In fact the ability of the microorganisms to produce flavors and fragrances has been described for a long time, but the relationship between the flavor formation and the microbial growth was only recently established. After that, efforts have been put in the analysis and optimization of food fermentations that led to the investigation of microorganisms and their capacity to produce flavors and fragrances, either by de novo synthesis or biotransformation. In this review, we aim to resume the recent achievements in the production of the most relevant flavors by bioconversion/biotransformation or de novo synthesis, its market value, prominent strains used, and their production rates/maximum concentrations. Keywords Bioconversion . Biotransformation . De novo synthesis . Flavors . Fragrances Introduction fact, chemical synthesis still represents the cheaper technol- ogy for their production; however, it may require harsh Flavors and fragrances have a wide application in the food, conditions (toxic catalysts, high pressure and temperature, feed, cosmetic, chemical, and pharmaceutical sectors among others) and usually lack adequate regio- and (Vandamme 2003).
    [Show full text]
  • Catalytic Strategies of the Non-Heme Iron Dependent Oxygenases And
    Available online at www.sciencedirect.com ScienceDirect Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology Mark D White and Emily Flashman Non-heme iron-dependent oxygenases catalyse the these enzymes play in plant biology. Targeted manipula- incorporation of O2 into a wide range of biological molecules tion of these enzymes could have beneficial effects for and use diverse strategies to activate their substrates. Recent plant growth and/or stress tolerance, addressing the 21st kinetic studies, including in crystallo, have provided century issue of food security. We therefore highlight experimental support for some of the intermediates used by those of potential agricultural (and/or health) interest. different subclasses of this enzyme family. Plant non-heme iron-dependent oxygenases have diverse and important Resolving intermediates in non-heme iron biological roles, including in growth signalling, stress dependent oxygenase catalysis responses and secondary metabolism. Recently identified To activate O2, non-heme iron-dependent oxygenases use roles include in strigolactone biosynthesis, O-demethylation in a redox active iron, coordinated octahedrally at their active morphine biosynthesis and regulating the stability of hypoxia- site with water, usually in a vicinal facial triad arrangement responsive transcription factors. We discuss current structural [1]. During turnover, H2O is sequentially displaced by and mechanistic understanding of plant non-heme iron substrate/co-substrate and O2, which is reductively acti- oxygenases, and how their chemical/genetic manipulation vated enabling a specific substrate modification. Enzyme could have agricultural benefit, for example, for improved yield, subfamilies are proposed to employ different reactive stress tolerance or herbicide development.
    [Show full text]
  • Catalytic Triad' in Directing Promiscuous Substrate-Specificity
    Spectroscopic and mechanistic investigation of the enzyme mercaptopropionic acid dioxygenase (MDO), the role of the conserved outer-sphere 'catalytic triad' in directing promiscuous substrate-specificity A DISSERTATION Presented to the faculty of the Graduate School of The University of Texas at Arlington in Partial fulfillment Of the requirements of the Degree of Doctor in Philosophy in CHEMISTRY by SINJINEE SARDAR Under the guidance of Dr. Brad S. Pierce 2nd May, 2018 ACKNOWLEDGEMENT It gives me immense pleasure to thank my compassionate guide Dr. Brad S. Pierce, for his exemplary guidance to accomplish this work. It has been an extraordinary pleasure and privilege to work under his guidance for the past few years. I express my sincere gratitude to my doctoral committee members Prof. Frederick. MacDonnell, Dr. Rasika Dias, and Dr. Jongyun Heo for their valuable advice and constant help. I would also like to thank the Department of Chemistry and Biochemistry of UTA for bestowing me the opportunity to have access to all the departmental facilities required for my work. Here, I express my heartiest gratitude to the ardent and humane guidance of my senior lab mates Dr. Josh Crowell and Dr. Bishnu Subedi which was indispensable. I am immeasurably thankful to my lab mates Wei, Mike, Phil, Nick, Jared and Sydney for their constant support and help. It has been a pleasure to working with all of you. The jokes and laughter we shared have reduced the hardships and stress of graduate school and had made the stressful journey fun. To end with, I utter my heartfelt gratefulness to my parents and my sister for their lifelong support and encouragement which helped me chase my dreams and aspirations and sincere appreciation towards my friends who are my extended family for their lively and spirited encouragement.
    [Show full text]
  • Structural and Mechanistic Studies on 2-Oxoglutarate-Dependent Oxygenases and Related Enzymes Christopher J Schofield and Zhihong Zhang
    722 Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes Christopher J Schofield and Zhihong Zhang Mononuclear nonheme-Fe(II)-dependent oxygenases comprise The 2OG-dependent oxygenases have emerged as the an extended family of oxidising enzymes, of which the largest known family of nonheme oxidising enzymes [7,8] 2-oxoglutarate-dependent oxygenases and related enzymes are (Figure 1a). Their occurrence is ubiquitous, having been the largest known subgroup. Recent crystallographic and identified in many organisms ranging from prokaryotes to mechanistic studies have helped to define the overall fold of eukaryotes. Recent evidence also indicates that a 2OG- the 2-oxoglutarate-dependent enzymes and have led to the dependent oxygenase, prolyl 4-hydroxylase, is expressed by identification of coordination chemistry closely related to that of the P. bursaria Chlorella virus-1 [9]. Oxidative reactions catal- other nonheme-Fe(II)-dependent oxygenases, suggesting ysed by 2OG-dependent dioxygenases are steps in the related mechanisms for dioxygen activation that involve iron- biosynthesis of a variety of metabolites, including materials mediated electron transfer. of medicinal or agrochemical importance, such as plant ‘hor- mones’ (e.g. gibberellins) and antibiotics (e.g. cephalosporins Address and the β-lactamase inhibitor clavulanic acid). The Oxford Centre for Molecular Sciences and the Department of Chemistry, The Dyson Perrins Laboratory, South Parks Road, Oxford In mammals, the best-characterised 2OG-dependent oxy- OX1 3QY, UK genase is prolyl-4-hydroxylase, which catalyses the Current Opinion in Structural Biology 1999, 9:722–731 post-translational hydroxylation of proline residues in col- lagen. Mammalian prolyl-4-hydroxylase is an α β 0959-440X/99/$ — see front matter © 1999 Elsevier Science Ltd.
    [Show full text]
  • Efficient Synthesis of 4-Vinyl Guaiacol Via Bioconversion of Ferulic Acid By
    Chiang Mai J. Sci. 2016; 43(1) : 158-168 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Efficient Synthesis of 4-Vinyl Guaiacol via Bioconversion of Ferulic Acid by Volvariella volvacea Keerati Tanruean [a,b] and Nuansri Rakariyatham*[b,c] [a] Division of Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand. [b] Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. [c] Faculty of Health Science, Nation University, Lampang 52000, Thailand. *Author for correspondence; e-mail: [email protected] Received: 8 March 2014 Accepted: 7 July 2014 ABSTRACT Ferulic acid is a phenolic compound that is extremely abundant in the cell walls of plants. It has been of interest for use as a starting material in the bioconversion process of subsequent highly valuable compounds. In this study, Volvariella volvacea was investigated for its ability to convert ferulic acid to various products of degradation (4-vinyl guaiacol, vanillic acid and vanillyl alcohol) by HPLC and LC-DAD-ESIMS. The results showed that the mycelium of V. volvacea had potential to produce high amounts of 4-vinyl guaiacol (88.2 mg/L), vanillic acid (59.1 mg/L) and vanillyl alcohol (39.7 mg/L) at 42, 42 and 96 hours of growth on ferulic acid medium, respectively. Moreover, the effects of various sulfhydryl compounds and their derivatives of sulfur containing amino acids: cysteine, cysteine hydrochloride monohydrate, dithiothreitol, glutathione and methionine treatment on ferulic acid bioconversion were also investigated. Most all of the sulfhydryl compounds, except dithiothreitol, could enhance 4-vinyl guaiacol production; especially cysteine hydrochloride monohydrate which displayed a 47.9% increase in 4-vinyl guaiacol production (136.7 mg/L) when compared with the control.
    [Show full text]
  • University of Groningen Exploring the Cofactor-Binding and Biocatalytic
    University of Groningen Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Kopacz, Malgorzata IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kopacz, M. (2014). Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Małgorzata M. Kopacz The research described in this thesis was carried out in the research group Molecular Enzymology of the Groningen Biomolecular Sciences and Biotechnology Institute (GBB), according to the requirements of the Graduate School of Science, Faculty of Mathematics and Natural Sciences.
    [Show full text]