RICE UNIVERSITY Development of a Distributed Water Quality Model
Total Page:16
File Type:pdf, Size:1020Kb
RICE UNIVERSITY Development of a Distributed Water Quality Model Using Advanced Hydrologic Simulation by Aarin Teague A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE: 7 Philip Bedient, Herman and George R. Brown Professor of Civil Engineering Civil and Environmental Engineering Dale Sawyer, Professor Eart Science Leonardo Duenas-Osorio, Assistant Professor Civil and Environmental Engineering ?~~ Mason Tomson, Professor Earth Science HOUSTON, TEXAS August 2011 ABSTRACT Cypress Creek is an urbanizing watershed in the Gulf Coast region of Texas that contributes the largest inflow of urban runoff containing suspended solids to Lake Houston, the primary source of drinking water for the City of Houston. Historical water quality data was statistically analyzed to characterize the watershed and its pollutant sources. It was determined that the current sampling program provides limited information on the complex behaviors of pollutant sources in both dry weather and rainfall events. In order to further investigate the dynamics of pollutant export from Cypress Creek to Lake Houston, fully distributed hydrologic and water quality models were developed and employed to simulate high frequency small storms. A fully distributed hydrologic model, Vjlo ™, was used to model streamflow during small storm events in Cypress Creek. Accurately modeling small rainfall events, which have traditionally been difficult to model, is necessary for investigation and design of watershed management since small storms occur more frequently. An assessment of the model for multiple storms shows that using radar rainfall input produces results well matched to the observed streamflow for both volume and peak streamflow. Building on the accuracy and utility of distributed hydrologic modeling, a water quality model was developed to simulate buildup, washoff, and advective transport of a conservative pollutant. Coupled with the physically based Vjlo™ hydrologic model, the pollutant transport model was used to simulate the washoff and transport of total suspended solids for multiple small storm events in Cypress Creek Watershed. The output of this distributed buildup and washoff model was compared to storm water 11 quality sampling in order to assess the performance of the model and to further temporally and spatially characterize the storm events. This effort was the first step towards developing a fully distributed water quality model that can be widely applied to a wide variety of watersheds. It provides the framework for future incorporation of more sophisticated pollutant dynamics and spatially explicit evaluation of best management practices and land use dynamics. This provides an important tool and decision aid for watershed and resource management and thus efficient protection of the sources waters. TABLE OF CONTENTS CHAPTER 1 : INTRODUCTION •..•••...••...•••..••..••..••..••••..••••.••••....••...•••...••....•...•.••••..•••...••..••••......•....••...•• 8 !:~: ~:=.~;~~~~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~~ 1.3. DESCRIPTION OF THE STUDY AREA .......................................................................................... 13 1.4. WATER QUALITY IN THE STUDY AREA ..................................................•................................. 19 1.5. SUMMARY .................................................................................................................•................ 21 1.6. 0RGANIZATION OF THIS DOCUMENT ..............................................•..........•................•............. 21 CHAPTER 2 : TARGETED APPLICATION OF SEASONAL LOAD DURATION CURVES USING MULTIVARIATE ANALYSIS IN TWO WATERSHEDS FLOWING INTO LAKE HOUSTON.....••••..•...•••.......•.•...•••........•.••......••••...••.•••••....•••••...••••.........••......••.....•••.••••....•••••.....•••..••..•..••••.. 23 2. INTRODUCTION ........................................................................•........................•...•......................... 24 2.1. BACKGROUND ........................................................................................................•................... 27 2.1.1. Study Area............................................................................................................................. 27 2.1.2. Analysis Techniques ............................................................................................................. 31 2.1.2.1. Principal Component Analysis ......................................................................................... 31 2.1.2.2. Cluster Analysis ................................................................................................................ 32 2.1.2.3. Discriminant Analysis....................................................................................................... 33 2.1.2.4. Load Duration Curves ...................................................................................................... 34 2.2. DATA AND METHODS ......................................................................................••........................ .36 2.2.1. Multivariate Analysis............................................................................................................ 39 2.2.2. Targeted Load Duration Curves .......................................................................................... 40 2.3. RESULTS ..................................................................................................................................... 42 2.3.1. Spring Creek Watershed ....................................................................................................... 44 2.3.2. Cypress Creek Watershed ..................................................................................................... 47 2.4. DISCUSSION ................................................................................................................................ 49 2.5. SUMMARY AND CONCLUSIONS .................................................................................................. 51 CHAPTER 3: RADAR RAINFALL APPLICATION IN A DISTRIBUTED HYDROLOGIC MODELING FOR CYPRESS CREEK WATERSHED, TEXAS.•...•...............•.......•..•••.•••••••••••.......••••• 53 3. INTRODUCTION .....................................................................................................•......................... 53 3.1. BACKGROUND ............................................................................................................................ 55 3.1.1. RadarRainfall ...................................................................................................................... 55 3.1.2. Fully Distributed Hydrologic Model .................................................................................... 57 3.2. STUDY AREA .............................................................................................................................. 61 3.3. METHOD ....................................................................................................................................62 3.4. RESULTS .......................................................................................................•...•......................... 66 3.5. DISCUSSION ................................................................................................................................ 74 3.6. CONCLUSION .............................................................................................................................. 76 CHAPTER 4 : MODELING OF POLLUTANT WASHOFF AND TRANSPORT USING FULLY DISTRIBUTED HYDROLOGIC MODELING ..••••.•.••.•.•.•••••••••.........................•••••••••••.•••..••••••...........•.. 78 4. INTRODUCTION ............................................................................................................................... 79 4.1. BACKGROUND ..............................................................................................•............................. 82 4.1.1. Fully Distributed Hydrologic Modeling ............................................................................... 82 4.1.2. Pollutant Buildup ................................................................................................................. 83 4.1.3. Pollutant Washoff-................................................................................................................ 83 4.1.4. Pollutant Transport .............................................................................................................. 84 4.2. METHODOLOGY ...................................................................•..................................................... 86 4.2.1. Hydrologic Model Development ........................................................................................... 87 4.2.2. Washoff- Transport Model Formulation .......................................................................... 90 4.2.2.1. Buildup ....................................................................................................................................... 91 IV 4.2.2.2. Washoff and Transport ............................................................................................................... 92 4.2.3. Calibration ............................................................................................................................ 94 4.2.4.