A Test of Two Distributed Hydrologic Models with Wsr-88D Radar Precipitation Data Input

Total Page:16

File Type:pdf, Size:1020Kb

A Test of Two Distributed Hydrologic Models with Wsr-88D Radar Precipitation Data Input JP3.3 A TEST OF TWO DISTRIBUTED HYDROLOGIC MODELS WITH WSR-88D RADAR PRECIPITATION DATA INPUT Steven Hunter1*, Jeff Jorgeson2, Steffen Meyer1, and Baxter Vieux3 1U.S. Bureau of Reclamation, Denver, Colorado; 2U.S. Army Corps of Engineers, Vicksburg, Mississippi; 3Vieux and Associates, Inc., Norman, Oklahoma and model parameters from GIS inputs, as well as 1. INTRODUCTION AND PURPOSE visualization of model outputs, is performed using the Watershed Modeling System (WMS) version The U.S. Bureau of Reclamation 6.1, which is developed at Brigham Young (Reclamation) will test two different 2-D University in cooperation with the U. S. Army distributed-parameter hydrologic models in the Engineer Research and Development Center, case of a heavy rainfall over west-central Arizona. Coastal and Hydraulics Laboratory. The heavy rain was produced by Tropical Storm Vflo is a real-time distributed hydrologic Nora, 25-26 September 1997. The primary test model for managing precious water resources, area is the Santa Maria basin in West-central water quality management, and flood warning Arizona. The two distributed models are GSSHA systems. Improved hydrologic modeling and Vflo™. capitalizes on access to high-resolution The Gridded Surface Subsurface quantitative precipitation estimates from model Hydrologic Analysis (GSSHA) model is a forecasts, radar, satellite, rain gauges, or reformulation and enhancement of the distributed combinations in multi-sensor products. Digital runoff model CASC2D (Ogden 2000). GSSHA is maps of soils, land use, topography and rainfall a physically based, two-dimensional model that rates are used to compute and route rainfall operates on a raster (square-grid) representation excess through a network formulation based on of a watershed and is designed for long-term, the Finite Element Method (FEM) computational large-basin simulation of rainfall-runoff and base scheme described by Vieux (2001a, and 2001b). flow processes. The model solves transport Vflo is a new model implemented in Java™ to take equations using finite difference and finite volume advantage of secure servlet/applet technology for techniques and includes 2-D diffusive-wave multi-user access. Vieux and Vieux (2002), in overland flow routing and 1-D diffusive-wave these proceedings, describe the Vflo model in channel routing. GSSHA is a process-based more detail. model where the user has the option to select the The overall goal of Vflo is to provide high- specific processes to be modeled for a particular resolution, distributed hydrologic prediction from application. Among the processes that can be catchment to river basin scale. The advantage of simulated are precipitation distribution, snowfall physics-based models is that they can be setup accumulation and melting, precipitation with minimal historical data and still obtain interception by vegetation, surface water retention, meaningful results. Distributed models better infiltration, overland flow runoff, overland erosion represent the spatial variability of factors that and deposition, channel routing of water, channel control runoff enhancing the predictability of routing of sediments, channel routing of hydrologic processes (Vieux, 2002). Finite element conservative contaminants, unsaturated solution of the kinematic wave equations is an groundwater flow (Vadose zone modeling), efficient approach allowing large systems to be saturated groundwater flow, stream solved easily on single processor Intel PC’s in a recharge/discharge to groundwater, exfiltration of Windows environment, or on servers. Solution groundwater to land surface, and proceeds on a drainage network making the same evapotranspiration (ET). model scalable from small catchment to major Additional information on the GSSHA river basin. Vflo is set model and its evolution from the Cascade of up using a drainage network rather than a basin Planes, 2-Dimensional (CASC2D) model can be approach. Vflo represents an important advance in found in Downer et al. (2000b) and Downer et al. simulating rainfall-runoff using digital data (2002). To facilitate the calibration process, describing the Earth’s terrain coupled with automatic calibration using the Shuffled Complex advances in radar precipitation detection. Evolution (SCE) procedure is available for GSSHA We plan to integrate a distributed (Senerath et al. 2000). Development of input data hydrologic model such as GSSHA or Vflo into a 1 Figure 1. Representation of lowest (0.5L elevation) radar beam extent from Flagstaff AZ WSR-88D (KFSX) along azimuth 275°, which lies over the headwaters of the Santa Maria (SM) test basin. Arrow denotes location of aforesaid headwaters and line and circles above the arrow designate beam heights and width above this location (see text). generalized watershed management framework, accommodated by the model’s spatially variable such as the RiverWare modeling tool (Zagona et characteristics within an individual basin, derived al., 2001) currently used by Reclamation. from the aforementioned GIS input. Other factors RiverWare is a water resources management tool such as temporal and spatial resolution of the for operations, scheduling and planning, which input data and transformation of those data into builds water operations models and applies parameters usable by the model are also crucial decision criteria to them. This integration may be considerations in the modeling process. considered analogous to the relationship of For this preliminary comparative study, while CASC2D to WMS. both GSSHA and Vflo have some flexibility as to Both distributed models require the format of GIS data that they will accept, the Geographic Information Systems (GIS) data as most important requirement of this test is that they input, such as basin definitions, topography, soils operate from the same input data set. This and land use data. The following section will detail stipulation allows for a valid comparison of the these GIS data. models themselves instead of the quality of their input data. From these basic data sets, the 2. GIS DATA INPUT specific model parameters and inputs will be derived for the respective models. The following Distributed hydrologic models may require slightly data sets were selected for the comparison: different inputs and formats, but most need the same basic ingredients. Basin delineation, S DEM data with 30 m horizontal resolution channel network delineation, overland flow slope, from the U.S. Geological Survey (USGS) flow accumulation and drainage direction are all EROS Data Center’s National Elevation derived from topographic data, typically in the form Dataset (NED). of a Digital Elevation Model (DEM). Digital soil S Land Use Land Cover data at 30 m surveys may supply soil infiltration parameter resolution, from the USGS EROS Data estimates, and digital maps of land use/cover are Center’s National Land Cover 1992 generally used as the basis for estimates of Dataset (NLCD). surface hydraulic roughness coefficients. S Soil data from the Natural Resources Arguably the most critical component is a Conservation Service State Soil temporally and spatially variable precipitation field. Geographic (STATSGO) database for In distributed hydrologic models, such variability is Arizona. 2 S Channel cross-section data from the Williams River discharges into the mainstem of the USGS, available for this basin only at a Lower Colorado River near Lake Havasu City. single stream gauge location on the Santa The area of the Santa Maria basin is 3,727 square Maria River. km. Figs. 2 and 3 show the location, hydrography and topography of the region surrounding the 3. RADAR DATA INPUT basin. As would be expected for the arid desert soils and steep topography of this basin, response Radar data input is from the WSR-88D times in the event of heavy rains are small. (formerly NEXRAD) Doppler radar (Crum et al. An encircled red dot in Fig. 2 indicates the 1993) south of Flagstaff, Arizona (KFSX), which is single active stream gauge in the basin, namely about 150 km east of the headwaters of the test USGS 09424900 on the Santa Maria River. The basin. The data consist of reflectivities in Level II elevation of this gauge is 415 m above sea level format from the National Climatic Data Center, and is 17 km above the basin outlet, with a which have a data resolution of 0.5 dB. The beam drainage area of 2,924 square km. Mean annual width at the headwaters range is about 3.6 km and streamflow at the gauge varies widely from year to the lowest (0.5) beam center altitude is about 3.4 year - from 1967 to 1999 values ranged from zero km above ground level (Fig. 1). This location is to 232 cubic feet per second (cfs), with an average considered to be at moderate range from the radar of 66 cfs. On many days in most years there is no for precipitation estimation in the warm September flow. The same large variability is also evident in atmosphere over Arizona. annual peak streamflows, which are presented in The radar quantitative precipitation Fig. 4. estimation (QPE) is accomplished via use of Reclamation’s new Precipitation Accumulation 4.2 Synoptic and Hydrologic Characteristics of Algorithm (PAA; Hunter et al. 2001). The PAA the Storm uses Eta model soundings to distinguish rain, snow, melting snow, and virga regions and applies Tropical cyclones are rare in Arizona, but different Z-R relationships to each, producing occur occasionally as they make landfall from the precipitation accumulations at the surface. In this eastern Pacific or Gulf of California. Tropical case, the National Weather Service (NWS)- Storm (TS) Nora was an example of the latter sanctioned tropical Z-R relationship (Z = 250 R1.2) landfall location. TS Nora’s center traveled along was used for all precipitation, since its phase was the western Gulf of California and accelerated all liquid at the surface and was produced by a northward at landfall, which was near the tropical storm. Finally, a single precipitation California/Arizona border at 2100 UTC 25 gauge/radar QPE bias (G/R) for the entire radar September 1997 (Fig. 5 and Rappaport 1997).
Recommended publications
  • 01042 Norman Cover 11X17.Indd
    An employee-owned company Document No. 080238 PBS&J Job No. 441941 FINAL REPORT STORM WATER MASTER PLAN NORMAN, OKLAHOMA Prepared for: City of Norman, Oklahoma 201 West Gray Building A Norman, Oklahoma 73070 Prepared by: in association with: PBS&J PBS&J Halff Associates, Inc. Vieux, Inc. 6504 Bridge Point Parkway 350 David L. Boren Blvd. 4030 West Braker Lane 350 David L. Boren Blvd. Suite 200 Suite 1510 Suite 450 Suite 2500 Austin, Texas 78730 Norman, Oklahoma 73072 Austin, Texas 78759-5356 Norman, Oklahoma 73072-7267 October 2009 Contents Page Page List of Figures................................................................................................................................................iv 4.2.2 Hydraulic Modeling for Level 3 and 4 Streams..............................................................4-27 List of Tables.................................................................................................................................................iv 4.2.2.1 RFD Inputs and Outputs..........................................................................4-27 List of Exhibits ............................................................................................................................................... v 4.2.2.2 RFD Processing .......................................................................................4-28 Acronyms and Abbreviations ........................................................................................................................vi 4.2.2.3 RFD Application for
    [Show full text]
  • Caribou/Poker Creek Research Watershed
    Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model Charles W. Downer and Mark D. Wahl Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center HS10.8 A.370. European Geosciences Union General Assembly 2017,Vienna, Austria Moss/Peat as Vegetative Abstract Soils at Caribou/Poker Creeks Research Watershed Land Cover at Caribou/Poker Creeks Research Watershed Roughness 0.18 Vegetation Conceptualization 0.16 As part of a research effort focused on climate change effects on permafrost near • Increased the overland roughness Fairbanks, Alaska, it becam e apparent t hat peat soils, overlain by thick sphagnum values of the peat and sphagnum 0.14 m oss, had a considerable effect on the overall hydrology. Peat lands represent a well beyond the range associat ed 0.12 with the forested landuse. 0.10 confounding mixture of vegetation, soils, and w at er t hat present challenges for Data • Failed to m at ch the timing of the conceptualizing and parametrizing hydrologic models. We employed the Gridded 0.08 peak and overall shape of the Su r f ac e Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the 0.06 observed hydrograph. Caribou Poker Creek Experimental Watershed (CPCRW). Th e model enables 0.04 simulation of surface w at er and groundwater interactions, as well as soil • Over lan d flow equations with 0.02 temperature and frozen ground effects on subsurface w at er movement. A sit e increased roughness poorly represent the lat eral fluxes 0 visit exposed the presence of surface w at er flows indicating a mixed basin t hat 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Time would require both surface and subsurface simulation capability to properly through the peat .
    [Show full text]
  • A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport
    EPA 600/R-19/232 | December 2019 | www.epa.gov/research A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport Office of Research and Development Center for Environmental Solutions & Emergency Response | Groundwater Characterization & Remediation Division EPA 600/R-19/232 December 2019 A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport Tadesse Sinshaw National Research Council Resident Research Associate United States Environmental Protection Agency Robert S. Kerr Environmental Research Center 919 Kerr Research Drive, Ada, OK 74820, USA Lifeng Yuan National Research Council Resident Research Associate United States Environmental Protection Agency Robert S. Kerr Environmental Research Center 919 Kerr Research Drive, Ada, OK 74820, USA Kenneth J. Forshay Project Officer United States Environmental Protection Agency Office of Research and Development Center for Environmental Solutions and Emergency Response Groundwater Characterization and Remediation Division 919 Kerr Research Drive, Ada, OK 74820, USA Office of Research and Development Center for Environmental Solutions & Emergency Response | Groundwater Characterization & Remediation Division Disclaimer This document has been reviewed by the U.S. Environmental Protection Agency, Office of Research and Development, and it has been approved for publication as an EPA document. This technical report presents the result of work directed by Project Officer Kenneth J. Forshay (EPA). The research described in this report has been funded wholly or in part by the U.S. Environmental Protection Agency including support for National Research Council Research Associateship Program Fellows Tadesse Sinshaw and Lifeng Yuan. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Quality Assurance This work was performed under an EPA-approved quality assurance project plan, “A Review of Tools for Nutrient Fate and Transport Simulation,” (QA ID #: G-GWERD- 0031787-QP-1-1), approved September 24, 2018.
    [Show full text]
  • Flood Modeling: Main Concepts and Ideas on How to Develop Flood Models Using Open Data
    FLOOD MODELING: MAIN CONCEPTS AND IDEAS ON HOW TO DEVELOP FLOOD MODELS USING OPEN DATA FRANCISCO FEBRONIO PENA GUERRA Major Advisor FIU: Dr. Assefa Melesse Major Advisor UNIFI: Dr. Fernando Nardi Department of Earth and Environment Florida International University Source: Alan White (BuzzFeed) OUTLINE BACKGROUND 2D HYDRAULIC CASE STUDY BUILD MODEL EXPECTED DISCUSSION MODELING FROM SCRATCH OUTPUTS Q & A 2 TYPES OF FLOODING Compound flooding: Interaction of multiple flood drivers (Zscheischler et al. 2018) Coastal Flooding Source: Ben Gilliland (NERC) Source: Thomas Wahl (UCF) 3 HAZARD INTERRELATION APPROACHES I. Stochastic: • Based on samples of different variables with random behavior evolving in time II. Empirical: • Based on measurements and are observation oriented III. Mechanistic: • Mathematically idealized representation of real phenomena Source: Tilloy et al., 2019 4 TYPES OF FLOOD MODELS 1. Hydrologic: Characterization of hydrologic features and systems (i.e. HEC-HMS, EPA SWMM, SWAT, GSSHA, Vflo...) 2. Hydraulic: Simulate flood processes over unconfined flow surfaces and channels in 1D (i.e. HEC-RAS, IBER...) HEC-HMS hydrologic model FLO-2D hydraulic model Source: Santillan, 2015 Source: TRBA and 2D (i.e. FLO-2D, Infoworks ICM,ICPR4...) 3. Storm surge: Increase of surge levels due to storms, hurricanes and future coastal conditions (i.e. SLOSH, ADCIRC, SWAN...) 4. Groundwater: Surface-subsurface interactions from permeable soil strata (i.e. ModelMuse, MODFLOW) FVCOM ocean circulation model ModelMuse groundwater model Source: USGS Source: FVCOM 5 MODEL LINKING TECHNIQUES There are different techniques to combine numerical models: • One-way (i.e. linking technique) • Two-way (i.e. 1D + 2D models) • Tightly (i.e. SWAN + ADCIRC) • Fully (i.e.
    [Show full text]
  • A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhang BTS, U.S
    Engineering Conferences International ECI Digital Archives Fifty Years Of Watershed Modeling - Past, Present Proceedings And Future 2012 A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhang BTS, U.S. Army Engineer Research and Development Center, USA Billy E. Johnson U.S. Army Engineer Research and Development Center, USA Charles W. Downer U.S. Army Engineer Research and Development Center, USA Follow this and additional works at: http://dc.engconfintl.org/watershed Part of the Civil and Environmental Engineering Commons Recommended Citation Zhonglong Zhang, Billy E. Johnson, and Charles W. Downer, "A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model" in "Fifty Years Of Watershed Modeling - Past, Present And Future", A.S. Donigian, AQUA TERRA onC sultants; Richard Field, US EPA (retired); Michael Baker Jr., Inc. Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/watershed/5 This Article is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fifty Years Of Watershed Modeling - Past, Present And Future by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected]. A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhanga, Billy E. Johnsonb and Charles W. Downer b a. BTS, U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road, Vicksburg, MS 39180 (Email: [email protected]) b. U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180 (Email: [email protected], [email protected]) 1 Overview 2 Hydrologic Simulation 5 Coupling Hydrology, Sediment and Nutrient Simulation Modules A distributed watershed hydrologic, sediment, nutrient transport and fate model - GSSHA Mass Transport was developed at U.S.
    [Show full text]
  • Demonstration of GSSHA Hydrology at Goodwin Creek Experimental Watershed by Charles W
    ERDC TN-SWWRP-08-x March 2008 Demonstration of GSSHA Hydrology at Goodwin Creek Experimental Watershed By Charles W. Downer PURPOSE: The purpose of this System-Wide Water Resources (SWWRP) technical note is to describe the application of the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model at the Goodwin Creek Experimental Watershed (GCEW). The purpose of applying the model at this site was to confirm that the hydrologic portions of the code were working properly and were able to achieve accurate results. Application of GSSHA at this site also allows the current model to be compared and contrasted with the performance of previous versions of the model. BACKGROUND: GSSHA is a physics-based, distributed-parameter, hydrology and transport code. As part of SWWRP, the GSSHA model has undergone a series of major improvements and additions including changes to the stream hydraulics, soil moisture accounting, and sediment transport portions of the model. While these additions and improvements enhance the model’s ability to perform additional analysis, it is essential that the new methods and enhanced model be tested to assure that the model is functioning as desired and that the model can reproduce historic results at an equal or superior level to previous versions of GSSHA. The GCEW, a small (21.2-km2) agricultural watershed located in northeast Mississippi, has been the test bed for many features of the GSSHA model. The watershed is instrumented to measure rainfall, hydrometeorological variables, soil moisture, and stream water and sediment discharge (Figure 1). Legend Streamflow gage with rain gage 6 SCAN Station 9 12 5 8 11 Rain gage 3 10 2 4 7 13 14 Scale (m) 1 1000 0 5001000 N Figure 1.
    [Show full text]
  • Comparison of Hydrologic Model Performance Statistics Using Rain Gauge and NEXRAD Precipitation Input at Different Watershed
    Proceedings Comparison of Hydrologic Model Performance Statistics Using Rain Gauge and NEXRAD Precipitation Input at Different Watershed Spatial Scales and Rainfall Return Frequencies for the Upper St. Johns River, Florida USA † Amanda Bredesen 1 and Christopher J. Brown 2,* 1 U.S. Army Corps of Engineers, Jacksonville, District, Jacksonville, FL 32224, USA; [email protected] 2 School of Engineering, University of North Florida, Jacksonville, FL 32224, USA * Correspondence: [email protected]; Tel.: +1-904-620-2811 † Presented at the 3rd International Electronic Conference on Water Sciences, 15–30 November 2018; Available online: https://ecws-3.sciforum.net. Published: 15 November 2018 Abstract: Water resources numerical models are dependent upon various input hydrologic field data. As models become increasingly complex and model simulation times expand, it is critical to understand the inherent value in using different input datasets available. One important category of model input is precipitation data. For hydrologic models, the precipitation data inputs are perhaps the most critical. Common precipitation model input includes either rain gauge or remotely-sensed data such next-generation radar-based (NEXRAD) data. NEXRAD data provides a higher level of spatial resolution than point rain gauge coverage, but is subject to more extensive data pre and post processing along with additional computational requirements. This study first documents the development and initial calibration of a HEC-HMS model of a subtropical watershed in the Upper St. Johns River Basin in Florida, USA. Then, the study compares calibration performance of the same HEC-HMS model using either rain gauge or NEXRAD precipitation inputs. The results are further discretized by comparing key calibration statistics such as Nash– Sutcliffe Efficiency for different spatial scale and at different rainfall return frequencies.
    [Show full text]
  • Quantifying the Effects of Residential Infill Redevelopment on Urban
    water Article Quantifying the Effects of Residential Infill Redevelopment on Urban Stormwater Quality in Denver, Colorado Kyle R. Gustafson 1,2, Pablo A. Garcia-Chevesich 1,2,3,*, Kimberly M. Slinski 1,4,5, Jonathan O. Sharp 1,2,6 and John E. McCray 1,2,6 1 Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA; [email protected] (K.R.G.); [email protected] (K.M.S.); [email protected] (J.O.S.); [email protected] (J.E.M.) 2 National Science Foundation Engineering Research Center, ReNUWIt, Golden, CO 80401, USA 3 Intergovernmental Hydrological Programme, UNESCO, 75007 Paris, France 4 Earth Systems Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA 5 Goddard Space Flight Center, NASA, Beltsville, MD 20771, USA 6 Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA * Correspondence: [email protected]; Tel.: +1-520-270-9555 Abstract: Stormwater quality in three urban watersheds in Denver that have been undergoing rapid infill redevelopment for about a decade was evaluated. Sampling was conducted over 18 months, con- sidering 15 storms. Results: (1) The first-flush effect was observed for nutrients and total suspended solids (TSS) but not for total dissolved solids (TDS), conductivity, pH, and fecal indicator bacteria; (2) though no significant differences on event mean concentration (EMC) values were found among the three basins, local-scale EMCs were higher than traditional city-wide standards, particularly some metals and nutrients, most likely because of the significantly higher imperviousness of the Citation: Gustafson, K.R.; studied urban basins compared to city averages; (3) peak rainfall intensity and total rainfall depth Garcia-Chevesich, P.A.; Slinski, K.M.; showed significant but weak correlations with some nutrients and metals, and TDS; (4) antecedent Sharp, J.O.; McCray, J.E.
    [Show full text]
  • Erosion and Sediment Transport Modelling in Shallow Waters: a Review on Approaches, Models and Applications
    International Journal of Environmental Research and Public Health Review Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications Mohammad Hajigholizadeh 1,* ID , Assefa M. Melesse 2 ID and Hector R. Fuentes 3 1 Department of Civil and Environmental Engineering, Florida International University, 10555 W Flagler Street, EC3781, Miami, FL 33174, USA 2 Department of Earth and Environment, Florida International University, AHC-5-390, 11200 SW 8th Street Miami, FL 33199, USA; melessea@fiu.edu 3 Department of Civil Engineering and Environmental Engineering, Florida International University, 10555 W Flagler Street, Miami, FL 33174, USA; fuentes@fiu.edu * Correspondence: mhaji002@fiu.edu; Tel.: +1-305-905-3409 Received: 16 January 2018; Accepted: 10 March 2018; Published: 14 March 2018 Abstract: The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters.
    [Show full text]
  • Workshop on Watershed Modeling with GSSHA June 20-23 National Water Center, Tuscaloosa, Alabama
    Workshop on Watershed Modeling with GSSHA June 20-23 National Water Center, Tuscaloosa, Alabama You will learn the basics of: • Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, developed at the U.S. Army Corps of Engineers, Engineering Research and Development Center and the University of Wyoming • Dept. of Defense Watershed Modeling System (WMS), developed by Aquaveo LLC • Spatial data needed to estimate distributed GSSHA model parameters, including data requirements, basics of GSSHA/WMS and how to find and use spatial geographic data to develop GSSHA models using the WMS Hydrologic Model Wizard. The GSSHA model with WMS support constitutes a complete watershed analysis system that can be used for a variety of hydrologic science and engineering computation and design evaluation, such as flood simulation, hydrologic impacts of land use change, best management practice design, and testing of flood mitigation measures. Course Layout: Through a combination of lectures and experiential applications, the course features the spatially distributed modeling components of this system. The course begins with an overview of the capabilities of the WMS to ensure maximum benefit from the hands-on portions of the class. Attendees will learn to use WMS to set up GSSHA models that include overland flow, infiltration, distributed rainfall, hydraulic structures, continuous simulations, flood inundation mapping, and groundwater/surface water interaction. Outcome: Having completed this course, attendees will gain a working knowledge of the U.S. Army Corps of Engineers (USACE), Engineer Research and Development Center (ERDC) GSSHA model that is supported by the Watershed Modeling System (WMS) graphical user interface software. Attendees will also understand how, when, and why to apply the tools to specific studies as well as understand input data requirements.
    [Show full text]
  • ERDC TN-SWWRP-10-3, Improved Soil Erosion and Sediment
    ERDC TN-SWWRP-10-3 August 2010 Improved Soil Erosion and Sediment Transport in GS SHA by Charles W. Downer, Fred L. Ogden, Nawa Pradhan, Siqing Liu, and Aaron R. Byrd PURPOSE: To describe the new sediment transport formulation in GSSHA and demonstrate the improved capability in predicting storm-total sediment runoff using a research-quality data set. BACKGROUND: GSSHA simulates overland soil erosion and outputs erosion and deposition for any size class of particles smaller than gravel with specific gravities greater than 1.0. The model first calculates particle detachment by raindrops and surface runoff, and then calculates the transport capacity of surface runoff using one of three user-selected transport equations. The actual sediment transport is determined by comparing the amount of detached soil and the trans- port capacity of surface runoff. Depending on particle size, soil transported to channels is treated either as wash load or bed load, with sizes less than the user specified value of sand treated as wash load and larger sizes treated as bed load. The original GSSHA sediment transport formula- tion was hard-coded to simulate only three size classes of sediment (sand, silt, and clay), each with a specific gravity of silicate minerals (S=2.65). The new GSSHA erosion routines have been generalized to allow simulation of arbitrary size classes smaller than gravels, each with unique specific gravity. Ogden and Heilig (2001) performed a detailed investigation of the CASC2D erosion formulation (Johnson 1997, 2000) and found that it greatly over-predicts storm-total sediment yield for events that are considerably larger than the event used to calibrate the model.
    [Show full text]
  • Real-Time Stormwater Management Using Depth, Duration, Frequency Thresholds
    WEFTEC®.06 REAL-TIME STORMWATER MANAGEMENT USING DEPTH, DURATION, FREQUENCY THRESHOLDS Susan Janek, P.E., George Oswald, P.E., Baxter Vieux, P.E., Ph.D. City of Austin Watershed Protection and Development Review Department 505 Barton Springs Road, Suite 1200, Austin, Texas 78704 City of Austin Watershed Protection and Development Review Department Vieux and Associates, Inc. ABSTRACT The City of Austin (City) operates a Flood Early Warning System (FEWS) to reduce public exposure to flash flood hazards. The system is operated and maintained by the Watershed Protection and Development Review Department, Watershed Engineering Division. Advanced information and warning of urban storm water flooding is achieved by the FEWS. A critical component of the system is rainfall detection and interpretation. Radar rainfall detection and forecasting also utilizes the existing ALERT (Automated Local Evaluation in Real Time) rain gauge network. An innovative web-based hydrologic information system built upon radar hydrology and implemented in 2004 has proved to be useful during storms producing heavy precipitation and flooding. This presentation will describe the development and use of Depth, Duration, Frequency (DDF) values in near real-time. KEYWORDS Flood warning, DDF, real-time, internet, hydrologic information system, radar hydrology BACKGROUND Central Texas is often called "Flash Flood Alley" because of its frequent, intense storms. While large events seem to happen every decade, lesser events also cause public safety concerns. Coordination between the Watershed Protection and Development Review Department (WPRDR) and Office of Emergency Management (OEM), both City of Austin agencies, results in hydrologists and emergency managers working together in the Emergency Operations Center (EOC) to warn of and respond to flooding along creeks and at major intersections in the City.
    [Show full text]