Plant-Soil Interactions of Range-Expanding Plants

Total Page:16

File Type:pdf, Size:1020Kb

Plant-Soil Interactions of Range-Expanding Plants Plant-soil plants interactions of range-expanding Invitation Plant-soil interactions of to attend the public defense of range-expanding plants my PhD thesis, entitled: Plant-soil interactions of range-expanding plants Friday 7th of December at 11:00 in the Aula of Wageningen University, General Foulkesweg 1, Wageningen Marta Manrubia Freixa Marta Manrubia Freixa [email protected] Paranymphs: Sigrid Dassen [email protected] Paolo di Lonardo [email protected] 2018 Marta Manrubia Freixa Plant-soil interactions of range-expanding plants Marta Manrubia Freixa Thesis committee Promotor Prof. Dr W. H. van der Putten Special Professor Functional Biodiversity, Wageningen University & Research Netherlands Institute of Ecology, Wageningen Co-promotor Dr G. F. Veen Junior Group Leader Netherlands Institute of Ecology, Wageningen Other members Prof. Dr G. B. De Deyn, Wageningen University & Research Dr M. te Beest, Utrecht University Prof. Dr J. H. C. Cornelissen, VU Amsterdam Dr E. J. Sayer, Lancaster University, UK This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology & Resource Conservation (PE&RC) Plant-soil interactions of range-expanding plants Marta Manrubia Freixa Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 7 December 2018 at 11 a.m. in the Aula. Marta Manrubia Freixa Plant-soil interactions of range-expanding plants 184 pages. PhD thesis, Wageningen University, Wageningen, The Netherlands (2018) With references, with summaries in English, Catalan and Dutch ISBN: 978-94-6343-531-4 DOI: https://doi.org/10.18174/462576 “Keep Ithaka always in your mind. Arriving there is what you’re destined for. But don’t hurry the journey at all. Better if it lasts for years, so you’re old by the time you reach the island, wealthy with all you’ve gained on the way, not expecting Ithaka to make you rich” Fragment of “Ithaka” by K.P. Kavafis Translated by E. Keeley Table of contents Chapter 1 General introduction 9 Chapter 2 Nutrient content in plants and soils of range-expanding plant 23 species in their original and expansion ranges compared to natives Chapter 3 Belowground consequences of intracontinental range-expanding 45 plants and related natives in novel environments Chapter 4 Rhizosphere and litter feedbacks to range-expanding plant species 77 and related natives Chapter 5 Soil functional responses to drought under range-expanding and 109 native plant communities Chapter 6 General discussion 137 List of references 149 Summary 163 Sumari 167 Samenvatting 172 Acknowledgements 176 About the author 180 List of publications 181 Graduate school training and courses 182 Chapter 1 General introduction 9 Chapter 1 Anthropogenic activities during the last century have had a profound impact on greenhouse gas balances at a global scale. One of the clearest consequences of the rapid increase of greenhouse gas emissions is the rise of the mean global temperature (IPCC 2014). Quite some plant species are responding to a warming climate by expanding their ranges to higher latitude and altitude regions within continents (Chen et al. 2011). Similarly to introduced exotic species that become invasive, the arrival of range-expanding plant species in recipient ecosystems may have consequences for the composition and functioning of ecological communities, both of native plant species and soil communities (Morriën et al. 2010). In this thesis, I study plant species that expand their range as a response to current global warming and I focus on how these species interact with the abiotic soil environment, the soil microbial communities, and how they influence soil community functioning compared to native plant species. I will especially focus on the impacts of range-expanding plant species on litter decomposition and soil nutrient cycling, which regulate ecosystem carbon balance and the provisioning of nutrients for plant growth. Climate change and plant responses Global biochemical cycles have been profoundly modified by human activities (Vitousek et al. 1997), with important consequences for the climate system. The concentration of carbon dioxide in the atmosphere has now increased by 40% with respect to pre-industrial times. The increase in greenhouse gas emissions, mainly derived from fossil fuel emissions, has triggered an increase on global average surface temperatures of 0.6oC over the 20th century (IPCC 2014). This temperature increase varies locally and has especially been prominent in areas of high latitudes (Fig. 1.1). All projected climate scenarios predict that global temperature will continue to rise during the 21st century, which may further increase carbon dioxide emission from natural ecosystems (Crowther et al. 2016). Plant species can respond to climate warming in different ways. Plants can undergo genetic and phenotypical adaptation induced by climate warming. Adaptation can result, for example, in phenological changes such as earlier flowering time, or longer growing season (Peñuelas and Filella 2001, Cleland et al. 2007). However, adaptation processes in the future may be critically limited by the rapid rates at which the climate changes and by decreased gene flow between fragmented habitats (Davis and Shaw 2001, Jump and Penuelas 2005). Thereby, climate warming can also lead to local extinctions of plant species 10 Introduction that are unable to adapt or disperse (Thomas et al. 2004). Wild plant species can also respond to a warming climate by expanding their ranges to higher latitude and altitude regions within continents (Parmesan and Yohe 2003, Lenoir et al. 2008, Chen et al. 2011). It has been estimated that the average distribution of species has shifted polewards at a rate of 16.9 km per decade (Chen et al. 2011). Due to the increase of temperature in areas of high latitude, especially in the northern Hemisphere (Fig. 1.1), habitats have become more suitable for thermophilic plant species. For example, in the Netherlands, the number of plant species from warmer climatic regions has increased substantially during the last decades (Tamis et al. 2005, NDFF 2018). Even though the introduction of some of these species may have been induced by human activity, natural range expansion and the spread of plant species is likely to be enabled by warming climate. Fig. 1.1. Map of the observed surface temperature change, from 1901 to 2012 (source: IPCC, 2014). Trends have been calculated where data availability permitted a robust estimate (i.e., only for grid boxes with greater than 70% complete records and more than 20% data availability in the first and last 10% of the time period), other areas are white. Grid boxes where the trend is significant, at the 10% level, are indicated by a + sign. Plant species that expand their range within continents establish in ecosystems outside their native range. Similarly, plant species that have been introduced to other continents also establish outside their native range. In the ecological literature, the latter are traditionally referred to as (introduced) exotic species (Keane and Crawley 2002). While it can be argued that plants that expand their range within a continent into previously un- colonized higher latitude areas are exotic species as well, I will refer to them as “range- 11 Chapter 1 expanders” in this thesis. In contrast, I will use the term exotic species to refer to studies that have investigated the causes and consequences of intercontinental plant introductions. Numerous studies have examined successfully established exotic plants that become invasive and induce important changes on the composition and functioning of the invaded ecosystems (Ehrenfeld 2010, Vilà et al. 2011, Pyšek et al. 2012). However, little is known about the manner that range-expanding plant species may affect the composition and functioning of ecosystems in the new range. Plant-soil interactions All plant species, including introduced exotic plants, can induce changes in the soil biotic and abiotic components that affect their own performance and the performance of subsequent plant generations (Wardle et al. 2004, Bezemer et al. 2006). This phenomenon is known as plant-soil feedback (Bever et al. 1997). Individual plants and soil communities interact with each other in a direct or indirect manner, and the outcome of these interactions can have positive, negative or neutral feedback effects to plants. According to the general framework proposed by Wardle et al. (2004), soil communities can affect plants in a direct manner when soil organisms associate with living plant roots or in an indirect manner when soil organisms that consume dead plant material provide the nutrients needed by plants to grow (Fig. 1.2). Mechanisms of direct plant-soil interactions include pathogenesis, herbivory or symbiotic-mutualistic relationships. The association of pathogens, herbivores and symbiotic mutualists with a host plant has immediate effects to its performance. In contrast, the soil decomposer subsystem transforms organic plant material into inorganic plant-available nutrients via litter decomposition, thereby affecting plant performance indirectly. Besides the strong influence of climatic conditions on decomposition processes, plant traits and soil decomposer communities have been shown to regulate decomposition rates in soil (Cornelissen
Recommended publications
  • Tillage and Soil Ecology: Partners for Sustainable Agriculture
    Soil & Tillage Research 111 (2010) 33–40 Contents lists available at ScienceDirect Soil & Tillage Research journal homepage: www.elsevier.com/locate/still Review Tillage and soil ecology: Partners for sustainable agriculture Jean Roger-Estrade a,b,*, Christel Anger b, Michel Bertrand b, Guy Richard c a AgroParisTech, UMR 211 INRA/AgroParisTech., Thiverval-Grignon, 78850, France b INRA, UMR 211 INRA/AgroParisTech. Thiverval-Grignon, 78850, France c INRA, UR 0272 Science du sol, Centre de recherche d’Orle´ans, Orle´ans, 45075, France ARTICLE INFO ABSTRACT Keywords: Much of the biodiversity of agroecosystems lies in the soil. The functions performed by soil biota have Tillage major direct and indirect effects on crop growth and quality, soil and residue-borne pests, diseases Soil ecology incidence, the quality of nutrient cycling and water transfer, and, thus, on the sustainability of crop Agroecosystems management systems. Farmers use tillage, consciously or inadvertently, to manage soil biodiversity. Soil biota Given the importance of soil biota, one of the key challenges in tillage research is understanding and No tillage Plowing predicting the effects of tillage on soil ecology, not only for assessments of the impact of tillage on soil organisms and functions, but also for the design of tillage systems to make the best use of soil biodiversity, particularly for crop protection. In this paper, we first address the complexity of soil ecosystems, the descriptions of which vary between studies, in terms of the size of organisms, the structure of food webs and functions. We then examine the impact of tillage on various groups of soil biota, outlining, through examples, the crucial effects of tillage on population dynamics and species diversity.
    [Show full text]
  • Exudate Flavonoids in Some Gnaphalieae and Inuleae (Asteraceae) Eckhard Wollenwebera,*, Matthias Christa, R
    Exudate Flavonoids in Some Gnaphalieae and Inuleae (Asteraceae) Eckhard Wollenwebera,*, Matthias Christa, R. Hugh Dunstanb, James N. Roitmanc, and Jan F. Stevensd a Institut für Botanik der TU Darmstadt, Schnittspahnstrasse 4, D-64287 Darmstadt, Germany. Fax: 0049-6151/164630. E-mail: [email protected] b School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia c Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, U.S.A. d Department of Pharmaceutical Sciences, 203 Pharmacy Building, Oregon State University, Corvallis, OR 97331, U.S.A. * Author for correspondance and reprint requests Z. Naturforsch. 60c, 671Ð678 (2005); received May 19, 2005 Three members of the tribe Gnaphalieae and six members of the tribe Inuleae (Astera- ceae) were analyzed for their exudate flavonoids. Whereas some species exhibit rather trivial flavonoids, others produce rare compounds. Spectral data of rare flavonoids are reported and their structural identification is discussed. 6-Oxygenation of flavonols is a common feature of two Inula species and Pulicaria sicula. By contrast, flavonoids with 8-oxygenation, but lacking 6-oxygenation, are common in two out of three Gnaphalieae species examined. In addition, B-ring deoxyflavonoids are abundantly present in the leaf exudates of Helichrysum italicum (Gnaphalieae). These distinctive features of the two Asteraceae tribes are in agreement with previous flavonoid surveys of these and related taxa. Key words: Gnaphalieae, Inuleae, Flavonoids Introduction in the flowering stage between October 1997 and Plants belonging to the sunflower family are August 2004. Inula britannica L. was collected in well-known to produce a wealth of flavonoid agly- August 2000 on the bank of the river Elbe near cones (Bohm and Stuessy, 2001).
    [Show full text]
  • Tebenna Micalis – Zilveroogje (Lepidoptera: Choreutidae) Nieuw Voor De Belgische Fauna
    Tebenna micalis – Zilveroogje (Lepidoptera: Choreutidae) nieuw voor de Belgische fauna Guido De Prins & Ruben Meert Samenvatting: Op 7 november 2015 werd te Zandvliet/Berendrecht in de “Ruige Heide” met een skinnerval een exemplaar van Tebenna micalis (Mann, 1857) (Zilveroogje) waargenomen. Bij nader onderzoek bleek dit zeker niet de eerste waarneming in België te zijn. Er staan reeds 35 meldingen op waarnemingen.be (december 2015). Het eerste waargenomen exemplaar komt op naam van Ruben Meert: op 02.viii.2013 te Lebbeke, Oost-Vlaanderen. Abstract: On 7 November 2015, a specimen of Tebenna micalis (Mann, 1857) was observed in a skinner trap in the domain “Ruige Heide” at Zandvliet/Berendrecht. This is certainly not the first record of this species in Belgium since there are already 35 other records on the site waarnemingen.be. The first specimen was observed by Ruben Meert on 2 August 2013 at Lebbeke, East Flanders. Résumé: Le 7 novembre 2015, un exemplaire de Tebenna micalis (Mann, 1857) a été observé dans un piège Skinner dans le domaine “Ruige Heide” à Zandvliet/Berendrecht. Il ne s’agit certainement pas de la première mention de cette espèce en Belgique, puisqu’il y a déjà 35 autres mentions sur le site web waarnemingen.be. Le tout premier exemplaire a été trouvé par Ruben Meert le 2 août 2013 à Lebbeke, Flandre Orientale. Key words: Tebenna micalis – Faunistics – Lepidoptera – New record – Belgium. De Prins G.: Markiezenhof 32, B-2170 Merksem/Antwerpen, Belgium. [email protected] Meert R.: Grote Snijdersstraat 75, B-9280 Lebbeke, Belgium. [email protected] Inleiding Poperinge: 1 imago (Margaux Boeraeve en Ward Op 7 november 2015 werd in een skinnerval, Tamsyn).
    [Show full text]
  • Soil Ecology
    LSC 322 Laboratory 10 LAB #10: SOIL ECOLOGY Soil is one of the earth’s most important resources. For a community of plants and animals to become established on land, soil must first be present. Further, soil quality is often a limiting factor for growth many systems. Soil is a complex mixture of inorganic and organic materials, microorganisms, water and air. The weathering of bedrock produces small grains of rock that accumulate as a layer on the surface of the earth. There they are altered by biology, becoming mixed with organic matter, which results from the decomposition of the waste products and dead tissue of living organisms to form humus. The soil formation process is very slow (hundreds to thousands of years), so it can be very detrimental to a community if the soil is lost through erosion or its quality degraded by pollution or misuse. Soil Sampling As a class, we will identify interesting soil ecosystems on campus that we would like to examine further. Your small group will be assigned to collect one of those samples. Using a trowel, you will scoop the top 5 cm (this is where most of the biological “action” happens) into a ziplock bag. Also, take notes to record the environmental surroundings. What is the land usage? What plants are growing here? What is the soil moisture? These environmental characteristics will influence many aspects of the soil. Questions - Describe the environment from which you took your soil sample. Include all of the information from your notes. - How do these conditions relate to the soil characteristics measured during the lab exercise (texture, nutrients, pH, and biota)? After samples are collected, we will return to the lab and measure the following characteristics: Soil Texture Soil texture refers to the proportion of sand, silt, and clay present in a soil, which differ in their particle size.
    [Show full text]
  • Soil As a Huge Laboratory for Microorganisms
    Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium.
    [Show full text]
  • Dynamics of Soil Nitrogen and Carbon Accumulation for 61 Years After Agricultural Abandonment
    Ecology, 81(1), 2000, pp. 88±98 q 2000 by the Ecological Society of America DYNAMICS OF SOIL NITROGEN AND CARBON ACCUMULATION FOR 61 YEARS AFTER AGRICULTURAL ABANDONMENT JOHANNES M. H. KNOPS1 AND DAVID TILMAN Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108 USA Abstract. We used two independent methods to determine the dynamics of soil carbon and nitrogen following abandonment of agricultural ®elds on a Minnesota sand plain. First, we used a chronosequence of 19 ®elds abandoned from 1927 to 1982 to infer soil carbon and nitrogen dynamics. Second, we directly observed dynamics of carbon and nitrogen over a 12-yr period in 1900 permanent plots in these ®elds. These observed dynamics were used in a differential equation model to predict soil carbon and nitrogen dynamics. The two methods yielded similar results. Resampling the 1900 plots showed that the rates of accumulation of nitrogen and carbon over 12 yr depended on ambient carbon and nitrogen levels in the soil, with rates of accumulation declining at higher carbon and nitrogen levels. A dynamic model ®tted to the observed rates of change predicted logistic dynamics for nitrogen and carbon accumulation. On average, agricultural practices resulted in a 75% loss of soil nitrogen and an 89% loss of soil carbon at the time of abandonment. Recovery to 95% of the preagricultural levels is predicted to require 180 yr for nitrogen and 230 yr for carbon. This model accurately predicted the soil carbon, nitrogen, and carbon : nitrogen ratio patterns observed in the chronosequence of old ®elds, suggesting that the chronose- quence may be indicative of actual changes in soil carbon and nitrogen.
    [Show full text]
  • Fundamentals in Soil Science Course a Course Offered by the Soil Science Society of America
    Fundamentals in Soil Science Course A course offered by the Soil Science Society of America. This course is divided into six modules: Fundamentals of Soil Genesis, Classification, and Morphology, Fundamentals in Soil Chemistry and Mineralogy, Fundamentals in Soil Fertility and Nutrient Management, Soil Biology and Soil Ecology, Influences and Management of Soil Physical Properties and Soil and Land Use Management. Each module contains 2 lessons. Lectures are approximately two hours. To maximize learning, students will be expected to spend time reading and studying outside of the recorded lesson. Course Description The Soil Science Fundamentals Review Course is designed to provide an overview of the fundamental concepts in soil science: Genesis, Classification and Morphology, Physics, Chemistry, Fertility, Biology, and Land Use. Instructors will use the Fundamentals Performance Objectives (POs) as a guide for discussing topics within each section, but will not go through each objective individually. However, students are encouraged to ask questions regarding specific POs if needed. The objective of the course is to provide the student with a formalized way to build their fundamental knowledge and skills within the different areas of soil science to enhance their professional skills and/or to prepare to take the Fundamentals of Soil Science Exam. Lecture material is supplemented with additional readings and practical examples to illustrate the concepts and provide practical examples of how the concepts are used in practice. This course is not designed to teach a student how to take the Fundamentals Exam, but instead is designed to complement the students existing knowledge of soil science and help the student understand the principles behind the POs.
    [Show full text]
  • Unit 2.3, Soil Biology and Ecology
    2.3 Soil Biology and Ecology Introduction 85 Lecture 1: Soil Biology and Ecology 87 Demonstration 1: Organic Matter Decomposition in Litter Bags Instructor’s Demonstration Outline 101 Step-by-Step Instructions for Students 103 Demonstration 2: Soil Respiration Instructor’s Demonstration Outline 105 Step-by-Step Instructions for Students 107 Demonstration 3: Assessing Earthworm Populations as Indicators of Soil Quality Instructor’s Demonstration Outline 111 Step-by-Step Instructions for Students 113 Demonstration 4: Soil Arthropods Instructor’s Demonstration Outline 115 Assessment Questions and Key 117 Resources 119 Appendices 1. Major Organic Components of Typical Decomposer 121 Food Sources 2. Litter Bag Data Sheet 122 3. Litter Bag Data Sheet Example 123 4. Soil Respiration Data Sheet 124 5. Earthworm Data Sheet 125 6. Arthropod Data Sheet 126 Part 2 – 84 | Unit 2.3 Soil Biology & Ecology Introduction: Soil Biology & Ecology UNIT OVERVIEW MODES OF INSTRUCTION This unit introduces students to the > LECTURE (1 LECTURE, 1.5 HOURS) biological properties and ecosystem The lecture covers the basic biology and ecosystem pro- processes of agricultural soils. cesses of soils, focusing on ways to improve soil quality for organic farming and gardening systems. The lecture reviews the constituents of soils > DEMONSTRATION 1: ORGANIC MATTER DECOMPOSITION and the physical characteristics and soil (1.5 HOURS) ecosystem processes that can be managed to In Demonstration 1, students will learn how to assess the improve soil quality. Demonstrations and capacity of different soils to decompose organic matter. exercises introduce students to techniques Discussion questions ask students to reflect on what envi- used to assess the biological properties of ronmental and management factors might have influenced soils.
    [Show full text]
  • Articles, and the Creation of New Soil Habitats in Other Scientific fields Who Also Made Early Contributions Through the Weathering of Rocks (Puente Et Al., 2004)
    Editorial SOIL, 1, 117–129, 2015 www.soil-journal.net/1/117/2015/ doi:10.5194/soil-1-117-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. The interdisciplinary nature of SOIL E. C. Brevik1, A. Cerdà2, J. Mataix-Solera3, L. Pereg4, J. N. Quinton5, J. Six6, and K. Van Oost7 1Department of Natural Sciences, Dickinson State University, Dickinson, ND, USA 2Departament de Geografia, Universitat de València, Valencia, Spain 3GEA-Grupo de Edafología Ambiental , Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, Avda. de la Universidad s/n, Edificio Alcudia, Elche, Alicante, Spain 4School of Science and Technology, University of New England, Armidale, NSW 2351, Australia 5Lancaster Environment Centre, Lancaster University, Lancaster, UK 6Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Tannenstrasse 1, 8092 Zurich, Switzerland 7Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium Correspondence to: J. Six ([email protected]) Received: 26 August 2014 – Published in SOIL Discuss.: 23 September 2014 Revised: – – Accepted: 23 December 2014 – Published: 16 January 2015 Abstract. The holistic study of soils requires an interdisciplinary approach involving biologists, chemists, ge- ologists, and physicists, amongst others, something that has been true from the earliest days of the field. In more recent years this list has grown to include anthropologists, economists, engineers, medical professionals, military professionals, sociologists, and even artists. This approach has been strengthened and reinforced as cur- rent research continues to use experts trained in both soil science and related fields and by the wide array of issues impacting the world that require an in-depth understanding of soils.
    [Show full text]
  • RIVM Rapport 711701047 Ecological Risk Assessment of Contaminated Land
    Ecological Risk Assessment of Contaminated Land Risk of Contaminated Assessment Ecological This book is the outcome of the EU-funded research project ‘Liberation’ which looked to the development of a decision support system for sustainable Land Risk of Contaminated Assessment Ecological This book is the outcome of the EU-funded research project ‘Liberation’ which management of contaminated land by linking bioavailability, ecological risk Ecological Risk looked to the development of a decision support system for sustainable Ecological Risk and ground water pollution – focussing particularly on organic contaminants. management of contaminated land by linking bioavailability, ecological risk The aim is to provide guidance to risk assessors and stakeholders of and ground water pollution – focussing particularly on organic contaminants. AssessmentAssessment of of contaminated land in their decision making process. The book is organised in The aim is to provide guidance to risk assessors and stakeholders of two parts. contaminated land in their decision making process. The book is organised in Contaminated Land two parts. Chapters 1-3 give short introductions and an overview of relevant Contaminated Chapters 1-3 give short introductions and an overview of relevant topics, topics, whilst Chapters 4-7 give more detailed guidance on how to perform an whilst Chapters 4-7 give more detailed guidance on how to perform an Ecological Risk Assessment of contaminated sites using the Triad approach. Ecological Risk Assessment of contaminated sites using the Triad approach. Land Chapter One gives a brief introduction to the overall principles and concepts in Chapter One gives a brief introduction to the overall principles and concepts in ecological risk assessment and decision support systems.
    [Show full text]
  • Soil Science 1
    Soil Science 1 Soil Chemistry and Plant Nutrition: Nutrient cycling; nutrient recovery from wastewater; molecular visualization of soil minerals SOIL SCIENCE and molecules; soil acidification. The Department of Soil Science provides undergraduate and graduate Professor William Bleam education in the environmental, agricultural, and natural resource Surface and Colloid Chemistry: Physical chemistry of soil aspects of soils. Areas of emphasis include soil ecology; soil erosion colloids and sorption processes, chemistry of humic substances, management; soil fertility and plant nutrition; soil physical and chemical factors controlling biological availability of contaminants to characterization; biogeochemistry; urban soils; soil carbon; soil health; microorganisms, magnetic resonance and synchrotron studies of soil contaminants; waste management; pedology; and land-use analysis. adsorption and precipitation. Soils are a critical natural resource in environmental protection, food Assistant Professor Zachary Freedman and fiber production, turf and grounds management, rural and urban planning, and waste disposal. All of these facets are integrated into the Soil microbiology, ecology and sustainability: Effects of environmental department's course offerings and research programs. Soil Science change on biogeochemical cycles; community ecology and trophic majors prepare for professional, technical, consulting, and project dynamics; forest soil ecology; soil organic matter dynamics; sustainable positions in environmental sciences, ecology and restoration, crop and agroecosystems; bio-based product crop production on marginal lands. timber production, soil informatics, soil conservation, environmental pollution control, turf and grounds management, and land-use planning. Professor Alfred Hartemink Please contact the department for further information on career Pedology and Digital Soil Mapping: Pedology, soil carbon; digital soil opportunities. mapping; tropical soils; history and philosophy of soil science.
    [Show full text]
  • Methods of Analysis Soil Sampling
    Soil Sampling and Methods of Analysis Second Edition ß 2006 by Taylor & Francis Group, LLC. In physical science the first essential step in the direction of learning any subject is to find principles of numerical reckoning and practicable methods for measuring some quality connected with it. I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of science, whatever the matter may be. Lord Kelvin, Popular Lectures and Addresses (1891–1894), vol. 1, Electrical Units of Measurement Felix qui potuit rerum cognoscere causas. Happy the man who has been able to learn the causes of things. Virgil: Georgics (II, 490) ß 2006 by Taylor & Francis Group, LLC. Soil Sampling and Methods of Analysis Second Edition Edited by M.R. Carter E.G. Gregorich Canadian Society of Soil Science ß 2006 by Taylor & Francis Group, LLC. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2008 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-0-8493-3586-0 (Hardcover) This book contains information obtained from authentic and highly regarded sources.
    [Show full text]