Critical Studies/Book Reviews 1. Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Relevant Implication and Ordered Geometry
Australasian Journal of Logic Relevant Implication and Ordered Geometry Alasdair Urquhart Abstract This paper shows that model structures for R+, the system of positive relevant implication, can be constructed from ordered geometries. This ex- tends earlier results building such model structures from projective spaces. A final section shows how such models can be extended to models for the full system R. 1 Introduction This paper is a sequel to an earlier paper by the author [6] showing how to construct models for the logic KR from projective spaces. In that article, the logical relation Rabc is an extension of the relation Cabc, where a; b; c are points in a projective space and Cabc is read as \a; b; c are distinct and collinear." In the case of the projective construction, the relation Rabc is totally sym- metric. This is of course not the case in general in R models, where the first two points a and b can be permuted, but not the third. For the third point, we have only the implication Rabc ) Rac∗b∗. On the other hand, if we read Rabc as \c is between a and b", where we are operating in an ordered geometry, then we can permute a and b, but not b and c, just as in the case of R. Hence, these models are more natural than the ones constructed from projective spaces, from the point of view of relevance logic. In the remainder of the paper, we carry out the plan outlined here, by constructing models for R+ from ordered geometries. -
Geometry in a Nutshell Notes for Math 3063
GEOMETRY IN A NUTSHELL NOTES FOR MATH 3063 B. R. MONSON DEPARTMENT OF MATHEMATICS & STATISTICS UNIVERSITY OF NEW BRUNSWICK Copyright °c Barry Monson February 7, 2005 One morning an acorn awoke beneath its mother and declared, \Gee, I'm a tree". Anon. (deservedly) 2 THE TREE OF EUCLIDEAN GEOMETRY 3 INTRODUCTION Mathematics is a vast, rich and strange subject. Indeed, it is so varied that it is considerably more di±cult to de¯ne than say chemistry, economics or psychology. Every individual of that strange species mathematician has a favorite description for his or her craft. Mine is that mathematics is the search for the patterns hidden in the ideas of space and number . This description is particularly apt for that rich and beautiful branch of mathematics called geometry. In fact, geometrical ideas and ways of thinking are crucial in many other branches of mathematics. One of the goals of these notes is to convince you that this search for pattern is continuing and thriving all the time, that mathematics is in some sense a living thing. At this very moment, mathematicians all over the world1 are discovering new and enchanting things, exploring new realms of the imagination. This thought is easily forgotten in the dreary routine of attending classes. Like other mathematical creatures, geometry has many faces. Let's look at some of these and, along the way, consider some advice about doing mathematics in general. Geometry is learned by doing: Ultimately, no one can really teach you mathe- matics | you must learn by doing it yourself. Naturally, your professor will show the way, give guidance (and also set a blistering pace). -
Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux
Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux To cite this version: Pierre Boutry, Gabriel Braun, Julien Narboux. Formalization of the Arithmetization of Euclidean Plane Geometry and Applications. Journal of Symbolic Computation, Elsevier, 2019, Special Issue on Symbolic Computation in Software Science, 90, pp.149-168. 10.1016/j.jsc.2018.04.007. hal-01483457 HAL Id: hal-01483457 https://hal.inria.fr/hal-01483457 Submitted on 5 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux ICube, UMR 7357 CNRS, University of Strasbourg Poleˆ API, Bd Sebastien´ Brant, BP 10413, 67412 Illkirch, France Abstract This paper describes the formalization of the arithmetization of Euclidean plane geometry in the Coq proof assistant. As a basis for this work, Tarski’s system of geometry was chosen for its well-known metamath- ematical properties. This work completes our formalization of the two-dimensional results contained in part one of the book by Schwabhauser¨ Szmielew and Tarski Metamathematische Methoden in der Geome- trie. -
The Axiomatics of Ordered Geometry I
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Expositiones Mathematicae 29 (2011) 24–66 Contents lists available at ScienceDirect Expositiones Mathematicae journal homepage: www.elsevier.de/exmath The axiomatics of ordered geometry I. Ordered incidence spaces Victor Pambuccian Division of Mathematical and Natural Sciences, Arizona State University - West Campus, P. O. Box 37100, Phoenix, AZ 85069-7100, USA article info a b s t r a c t Article history: We present a survey of the rich theory of betweenness and Received 7 September 2009 separation, from its beginning with Pasch's 1882 Vorlesungen über Received in revised form neuere Geometrie to the present. 17 July 2010 ' 2010 Elsevier GmbH. All rights reserved. Keywords: Ordered geometry Axiom system Half-ordered geometry Somewhere there is some knowledge; under the stone A message perhaps; or hidden by strange signs In places only the stupid visit. Malcolm Lowry. Ein Zeichen sind wir, deutungslos, Schmerzlos sind wir und haben fast Die Sprache in der Fremde verloren. Friedrich Hölderlin, Mnemosyne. 1. Introduction Unlike most concepts of elementary geometry, whose origin is shrouded in the ineluctable fog of all cultural beginnings, the history of the notion of betweenness can be traced back to one person, one book, and one year: Moritz Pasch,1 Vorlesungen über neuere Geometrie, and 1882. The aim of this pioneering book was to provide a solid foundation, very much in the spirit of synthetic geometry, for 1 For a view of one of Pasch's contemporaries on his life and his work's significance for the axiomatics of geometry, see [325]. -
Von Staudt and His Influence
A Von Staudt and his Influence A.1 Von Staudt The fundamental criticism of the work of Chasles and M¨obius is that in it cross- ratio is defined as a product of two ratios, and so as an expression involving four lengths. This makes projective geometry, in their formulation, dependent on Euclidean geometry, and yet projective geometry is claimed to be more fundamental, because it does not involve the concept of distance at all. The way out of this apparent contradiction was pioneered by von Staudt, taken up by Felix Klein, and gradually made its way into the mainstream, culminating in the axiomatic treatments of projective geometry between 1890 and 1914. That a contradiction was perceived is apparent from remarks Klein quotes in his Zur nicht-Euklidischen Geometrie [138] from Cayley and Ball.1 Thus, from Cayley: “It must however be admitted that, in applying this theory of v. Staudt’s to the theory of distance, there is at least the appearance of arguing in a circle.” And from Ball: “In that theory [the non-Euclidean geometry] it seems as if we try to replace our ordinary notion of distance between two points by the logarithm of a certain anharmonic ratio. But this ratio itself involves the notion of distance measured in the ordinary way. How then can we supersede the old notion of distance by the non-Euclidean one, inasmuch as the very definition of the latter involves the former?” The way forward was to define projective concepts entirely independently of Euclidean geometry. The way this was done was inevitably confused at first, 1 In Klein, Gesammelte mathematische Abhandlungen,I[137, pp. -
Non-Desarguian Geometries and the Foundations of Geometry from David Hilbert to Ruth Moufang
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 320–336 www.elsevier.com/locate/hm Non-Desarguian geometries and the foundations of geometry from David Hilbert to Ruth Moufang Cinzia Cerroni Dipartimento di Matematica ed Applicazioni, Università degli Studi di Palermo, Palermo, Italy Available online 19 November 2003 Abstract In this work, we study the development of non-Desarguian geometry from David Hilbert to Ruth Moufang. We will see that a geometric model became a complicated interrelation between algebra and geometry. 2003 Elsevier Inc. All rights reserved. Sommario In questo articolo analizziamo lo sviluppo della geometria non-Desarguesiana, da David Hilbert a Ruth Moufang. Come vedremo, da un iniziale modello geometrico si arriverà ad una sottile interrelazione tra proprietà algebriche e proprietà geometriche di queste geometrie. 2003 Elsevier Inc. All rights reserved. MSC: 01A70; 01A60; 51A35; 05B35; 17D05 Keywords: David Hilbert; Forest Ray Moulton; Joseph H.M. Wedderburn; Oswald Veblen; Max Dehn; Ruth Moufang; Non-Desarguesian geometry; Quasifield; Alternative ring 1. Introduction In 1899, David Hilbert published the Grundlagen der Geometrie, a book that opened up research in the foundations of geometry. In fact, the Grundlagen took the axiomatic method both as a culmination of geometry and as the beginning of a new phase of research. In that new phase, the links between the postulates were not seen as the cold expression of their logical relations or interdependence, but as the creation of new geometries having equal importance at the research level. For example, the independence E-mail address: [email protected]. -
Revue D'histoire Des Mathématiques
Revue d’Histoire des Mathématiques The contributions of Hilbert and Dehn to non-Archimedean geometries Cinzia Cerroni Tome 13 Fascicule 2 2007 SOCIÉTÉ MATHÉMATIQUE DE FRANCE Publiée avec le concours du Ministère de la culture et de la communication (DGLFLF) et du Centre national de la recherche scientifique REVUE D’HISTOIRE DES MATHÉMATIQUES RÉDACTION COMITÉ DE LECTURE Rédactrice en chef : Jeanne Peiffer P. Abgrall . France T. Archibald . Canada Rédacteur en chef adjoint : J. Barrow-Greene . Grande-Bretagne Philippe Nabonnand U. Bottazzini . Italie Membres du Comité de J.-P. Bourguignon . France rédaction : A. Brigaglia . Italie Michel Armatte B. Bru . France Liliane Beaulieu P. Cartier . France Bruno Belhoste J.-L. Chabert . France Alain Bernard F. Charette . France Jean Celeyrette K. Chemla . France Olivier Darrigol P. Crépel . France Anne-Marie Décaillot F. De Gandt . France Marie-José Durand-Richard S. Demidov . Russie Étienne Ghys M. Epple . Allemagne Christian Gilain N. Ermolaëva . Russie Jens Hoyrup H. Gispert . France Agathe Keller C. Goldstein . France Karen Parshall J. Gray . Grande-Bretagne Dominique Tournès E. Knobloch . Allemagne T. Lévy . France Secrétariat : J. Lützen . Danemark Nathalie Christiaën A. Malet . Catalogne Société Mathématique de France I. Pantin . France Institut Henri Poincaré I. Passeron . France 11, rue Pierre et Marie Curie D. Rowe . Allemagne 75231 Paris Cedex 05 C. Sasaki . Japon Tél. : (33) 01 44 27 67 99 K. Saito . Japon Fax : (33) 01 40 46 90 96 S.R. Sarma . Inde Mél : [email protected] N. Schappacher . Allemagne Url : http//smf.emath.fr/ E. Scholz . Allemagne S. Stigler . États-Unis Directeur de la publication : B. Vitrac . France Stéphane Jaffard Périodicité : La Revue publie deux fascicules par an, de 150 pages chacun environ. -
The Origin of the Group in Logic and the Methodology of Science
Journal of Humanistic Mathematics Volume 8 | Issue 1 January 2018 The Origin of the Group in Logic and the Methodology of Science Paolo Mancosu UC Berkeley Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Mancosu, P. "The Origin of the Group in Logic and the Methodology of Science," Journal of Humanistic Mathematics, Volume 8 Issue 1 (January 2018), pages 371-413. DOI: 10.5642/jhummath.201801.19 . Available at: https://scholarship.claremont.edu/jhm/vol8/iss1/19 ©2018 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. The Origin of the Group in Logic and the Methodology of Science Cover Page Footnote This paper was written on the occasion of the conference celebrating 60 years of the Group in Logic and the Methodology of Science that took place at UC Berkeley on May 5-6, 2017. I am very grateful to Doug Blue, Nicholas Currie, and James Walsh for the help they provided in assisting me with the archival work. -
Geometry Applications: Points and Lines 1
TRANSCRIPT—Geometry Applications: Points and Lines 1 Geometry Applications: Points and Lines Geometry Applications: Points and Lines, Segment 1: Introduction OUR STUDY OF GEOMETRY OWES MUCH TO THE ANCIENT GREEKS. AND THERE IS NO BETTER SYMBOL OF ANCIENT GREECE THAN THE PARTHENON, A TEMPLE OVERLOOKING THE CITY OF ATHENS COMPLETED IN THE FOURTH CENTURY BC. YET A MORE PERMANENT MONUMENT WAS BUILT A CENTURY LATER BY THE MOST INFLUENTIAL MATHEMATICIAN OF ANCIENT GREECE, EUCLID. HIS BOOK, THE ELEMENTS, LAID THE GROUNDWORK FOR GEOMETRIC THINKING AND MATHEMATICAL REASONING. YET BOTH THE PARTHENON AND THE ELEMENTS SHARE A LOT IN COMMON WHEN IT COMES TO GEOMETRY. THE PARTHENON IS AN ARCHITECTURAL STRUCTURE AND ARCHITECTURE RELIES HEAVILY ON GEOMETRY. THE NOTIONS OF POINTS, LINES, PLANES, AND ANGLES ARE A KEY PART OF GEOMETRY AND OF THE PARTHENON. FOR EXAMPLE, TO SKETCH THE FRONT OF THE PARTHENON YOU WOULD DRAW A SERIES OF POINTS TRANSCRIPT—Geometry Applications: Points and Lines 2 TO MARK THE LINES FOR THE COLUMNS. YOU WOULD CONNECT THESE POINTS TO CONSTRUCT A TRIANGLE. FOR A THREE-DIMENSIONAL VIEW OF THE PARTHENON YOU WOULD NEED TO DRAW SEVERAL PLANES INDICATING THE VARIOUS LEVELS. GEOMETRIC CONSTRUCTIONS LIKE THESE RELY ON SOME UNDERLYING PRINCIPLES. IN THIS PROGRAM WE WILL COVER REAL-WORLD APPLICATIONS THAT EXPLORE THE FOLLOWING GEOMETRIC CONCEPTS: Geometry Applications: Points and Lines, Segment 2: Points IN THE SWISS COUNTRYSIDE SOME IMPORTANT SCIENTIFIC WORK IS TAKING PLACE. SO AS NOT TO OBSTRUCT THE VIEW OF THE ALPS, THIS WORK IS HAPPENING UNDERGROUND. CERN, THE EUROPEAN AGENCY THAT DOES RESEARCH IN SUB ATOMIC PHYSICS HAS RECENTLY LAUNCHED THE LARGE HADRON COLLIDER. -
Introduction. the School: Its Genesis, Development and Significance
Introduction. The School: Its Genesis, Development and Significance Urszula Wybraniec-Skardowska Abstract. The Introduction outlines, in a concise way, the history of the Lvov- Warsaw School – a most unique Polish school of worldwide renown, which pi- oneered trends combining philosophy, logic, mathematics and language. The author accepts that the beginnings of the School fall on the year 1895, when its founder Kazimierz Twardowski, a disciple of Franz Brentano, came to Lvov on his mission to organize a scientific circle. Soon, among the characteristic fea- tures of the School was its serious approach towards philosophical studies and teaching of philosophy, dealing with philosophy and propagation of it as an intellectual and moral mission, passion for clarity and precision, as well as ex- change of thoughts, and cooperation with representatives of other disciplines. The genesis is followed by a chronological presentation of the development of the School in the successive years. The author mentions all the key represen- tatives of the School (among others, Ajdukiewicz, Leśniewski, Łukasiewicz, Tarski), accompanying the names with short descriptions of their achieve- ments. The development of the School after Poland’s regaining independence in 1918 meant part of the members moving from Lvov to Warsaw, thus pro- viding the other segment to the name – Warsaw School of Logic. The author dwells longer on the activity of the School during the Interwar period – the time of its greatest prosperity, which ended along with the outbreak of World War 2. Attempts made after the War to recreate the spirit of the School are also outlined and the names of continuators are listed accordingly. -
ORDER in AFFINE and PROJECTIVE GEOMETRY Joe
ORDER IN AFFINE AND PROJECTIVE GEOMETRY Joe Liipman (received July 2, 1962) In this note we give a characterisation of ordered skew fields by certain properties of the negative elements. Properties of negative elements of a skew field K are then interpreted as statements about "betweenness" in any affine geometry over K, or as statements about "separation" in any projective geometry over K. In this way, our axioms for ordered fields permit of immediate translation into postulates of order for affine or projective geometry (over a field). The postulates so obtained seem simple enough to be of interest, (cf. [4], p. 22) 1. We assume we have an ordered skew field K, [l], i. e. there is given a subset P of K (the positive elements) satisfying a) K is the disjoint union of P, \0), -P, b) P+PCP. c) PPcP. Let N be the set of negative elements, i.e. N = { X | X ^ P, X # 0} so that d) P = { X j X 4 N, X # 0} . Canad. Math. Bull, vol.6, no. 1, January 1963. 37 Downloaded from https://www.cambridge.org/core. 27 Sep 2021 at 18:14:09, subject to the Cambridge Core terms of use. For convenience we write ,f{X} lf to mean X € N. It is clear by elementary properties of ordered fields that (i) N is not empty (ii) {X} - X* 0 (iii) {X} -(1 - X)€P (iv) If { X} and [i e P, then {JJLX }. What we want is the converse: given a subset N of any field K, define P by d), write n{X}!! to mean X € N, and show that (i), (ii), (iii), £iv), imply a), b), c); in other words, if N satisfies (i), (ii), (iii), (iv), show that K can be ordered in such a way that N is the set of negative elements. -
A Mechanical Verification of the Independence of Tarski's Euclidean
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchArchive at Victoria University of Wellington A mechanical verification of the independence of Tarski’s Euclidean axiom by Timothy James McKenzie Makarios A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Master of Science in Mathematics. Victoria University of Wellington 2012 Abstract This thesis describes the mechanization of Tarski’s axioms of plane geom- etry in the proof verification program Isabelle. The real Cartesian plane is mechanically verified to be a model of Tarski’s axioms, thus verifying the consistency of the axiom system. The Klein–Beltrami model of the hyperbolic plane is also defined in Is- abelle; in order to achieve this, the projective plane is defined and several theorems about it are proven. The Klein–Beltrami model is then shown in Isabelle to be a model of all of Tarski’s axioms except his Euclidean axiom, thus mechanically verifying the independence of the Euclidean axiom — the primary goal of this project. For some of Tarski’s axioms, only an insufficient or an inconvenient published proof was found for the theorem that states that the Klein– Beltrami model satisfies the axiom; in these cases, alternative proofs were devised and mechanically verified. These proofs are described in this thesis — most notably, the proof that the model satisfies the axiom of segment construction, and the proof that it satisfies the five-segments axiom. The proof that the model satisfies the upper 2-dimensional axiom also uses some of the lemmas that were used to prove that the model satisfies the five-segments axiom.