Hantaviruses Vs Programmed Cell Death

Total Page:16

File Type:pdf, Size:1020Kb

Hantaviruses Vs Programmed Cell Death From THE DEPARTMENT OF MICROBIOLOGY, TUMOR AND CELL BIOLOGY Karolinska Institutet, Stockholm, Sweden WHO IS KILLING WHOM? HANTAVIRUSES VS PROGRAMMED CELL DEATH Shawon Gupta Stockholm 2016 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB 2016 © Shawon Gupta, 2016 ISBN 978-91-7676-150-2 Who is Killing Whom? Hantaviruses VS Programmed Cell Death THESIS FOR DOCTORAL DEGREE (Ph.D.) By Shawon Gupta Principal Supervisor: Opponent: Associate Professor Jonas Klingström Assistant Professor Jason Botten Karolinska Institutet The University of Vermont Department of Medicine, Huddinge Department of Medicine Center for Infectious Medicine Division of Immunobiology Examination Board: Co-supervisors: Professor Stefan Schwartz Professor Hans-Gustaf Ljunggren Lund University Karolinska Institutet Department of Laboratory Medicine Department of Medicine, Huddinge Division of Medical Microbiology Center for Infectious Medicine Associate Professor Vladimir Gogvadze Adjunct Professor Ali Mirazimi Karolinska Institutet Karolinska Institutet Institute of Environmental Medicine Department of Laboratory Medicine Unit of Toxicology Division of Clinical Microbiology Associate Professor Marianne Jansson Associate Professor Kerstin Falk Lund University Karolinska Institutet Department of Laboratory Medicine Department of Microbiology, Tumor Division of Medical Microbiology and Cell Biology To my family Deep into that darkness peering, long I stood there wondering, fearing… From The Raven by Edgar Allan Poe 1845 ABSTRACT Hantaviruses belong to the Bunyaviridae family of negative stranded RNA viruses. They carry a tri-segmented genome and consist of four structural proteins. The four structural proteins are two glycoproteins Gn and Gc, a nucleocapsid (N) protein and an RNA-dependent RNA-polymerase. An additional nonstructural protein can be expressed by some hantaviruses. Hantavirus-infection cause two severe diseases in humans with potential deadly outcome, namely hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardio- pulmonary syndrome (HCPS). One main target for hantavirus-infection is the endothelial cells and vascular leakage is a hallmark for both HFRS and HCPS. In patients strong cytotoxic lymphocyte responses are seen. Cytotoxic lymphocytes, such as natural killer (NK) cells and cytotoxic T lymphocytes, cause apoptosis in virus-infected cells via the cytotoxic granule pathway or the death receptor pathway. The cytotoxic granule pathway uses granzyme B to facilitate programmed cell death (PCD) in the target. The death receptor pathway uses death ligands, among them tumor necrosis factor related apoptosis-inducing ligand (TRAIL) binds to death receptor (DR) 4 or 5, to induce PCD. One potential mechanism regarding hantavirus pathogenesis might be killing of infected endothelial cells by cytotoxic lymphocytes, thus causing leakage of the endothelium. This is contradicted by findings showing that in patient autopsy, hantavirus-infected cells are intact. The aim of this PhD thesis is to give a possible explanation of this dichotomy and to better understand hantavirus pathogenesis. The first part of this thesis (paper I and II) shows that hantavirus-infection protects cells from cytotoxic lymphocytes via inhibiting granzyme B activity and by down-regulating DR5 from the cell surface. Granzyme B and caspase 3, enzymes needed for apoptosis (a type of PCD), both interacts with hantavirus N protein, and they are both inhibited by the N protein. Further, hantavirus-infection of primary endothelial cells causes miss-localization of DR5. In infected cells DR5 is found in the nucleus instead of on the cell surface. Taken together, hantavirus-infection blocks the two major pathways used by cytotoxic lymphocytes to induce cell death, suggesting that hantavirus pathogenesis is not due to killing of infected cells by cytotoxic lymphocytes. The last part of this thesis (paper III) focuses on hantavirus activated NK cell mediated killing of uninfected endothelial cells. NK cells co-incubated with hantavirus-infected endothelial cells are activated. This activation is contact dependent and was attributed to IL-15 and IL-15Rα expression on hantavirus-infected cells’ surface. Interestingly, these activated NK cells induce cell death in uninfected cells with normal HLA class I levels, indicating that hantavirus might cause NK cell mediated killing of uninfected bystander cells. Taken together, the papers I, II and III included in this thesis shows that hantavirus- infection protects cells from cytotoxic lymphocyte mediated killing, while infected cells can cause NK cell activation and possibly subsequent NK cell killing of uninfected cells. LIST OF SCIENTIFIC PAPERS I. Gupta S, Braun M, Tischler ND, Stoltz M, Sundström KB, Björkström NK, Ljunggren HG, Klingström J. Hantavirus-infection Confers Resistance to Lymphocyte-Mediated Apoptosis. PLoS Pathogens, 2013 9(3):e1003272. II. Gupta S, Solà Riera C, Braun M, Björkström NK, Ljunggren HG, Klingström J. Hantavirus Causes Nuclear Translocation of Death Receptor 5 and Protects Infected Cells from TRAIL-Induced Apoptosis. Manuscript. III. Braun M, Björkström NK, Gupta S, Sundström K, Ahlm C, Klingström J, Ljunggren HG. NK Cell Activation in Human Hantavirus Infection Explained by Virus-Induced IL-15/IL-15Rα Expression. PLoS Pathogens, 2014 20;10(11):e1004521. CONTENTS INTRODUCTION ................................................................................................................ 1 ABOUT HANTAVIRUSES ......................................................................................... 1 The history ....................................................................................................................... 1 Hosts and distribution ...................................................................................................... 2 Diseases ........................................................................................................................... 3 Structure ........................................................................................................................... 3 Hantavirus proteins.......................................................................................................... 4 Life cycle ......................................................................................................................... 6 IMMUNOLOGY AND HANTAVIRUSES ............................................................... 7 Pattern recognition receptors .......................................................................................... 7 Nuclear factor kappa-light-chain-enhancer of activated B cells .................................... 8 Interferons ........................................................................................................................ 8 Dendritic cells .................................................................................................................. 9 Natural killer cells ......................................................................................................... 10 Cytotoxic T Lymphocytes ............................................................................................. 11 PROGRAMMED CELL DEATH ............................................................................ 12 Apoptosis ....................................................................................................................... 12 Intrinsic apoptosis .......................................................................................................... 13 Extrinsic apoptosis ........................................................................................................ 13 Caspases ......................................................................................................................... 13 Viruses and apoptosis .................................................................................................... 14 Granzyme B mediated cell death .................................................................................. 15 TRAIL-induced cell death ............................................................................................ 16 HANTAVIRUS PATHOGENESIS .......................................................................... 19 AIM....................................................................................................................................... 21 RESULTS AND DISCUSSION ........................................................................................ 23 Inhibition of chemically-induced apoptosis ................................................................. 23 Inhibition of cytotoxic granule-mediated apoptosis ..................................................... 24 Inhibition of a death ligand/receptor pathway .............................................................. 26 Aberrant localization of death receptor 5 ..................................................................... 27 NK cells activated by hantaviruses ............................................................................... 27 Activation through interleukin-15................................................................................. 29 An unexpected function of hantavirus activated NK cells ........................................... 29 CONCLUSIONS ................................................................................................................
Recommended publications
  • United States Patent (19) 11 Patent Number: 5,766,598 Paoletti Et Al
    USOO5766598A United States Patent (19) 11 Patent Number: 5,766,598 Paoletti et al. 45) Date of Patent: Jun. 16, 1998 54 RECOMBINANTATTENUATED ALVAC Murphy. F., 1996. "Virus Taxonomy", in Fields Virology, CANARYPOXVIRUS EXPRESSION Third Edition, Fields et al., eds. Lippincott-Raven Publish WECTORS CONTAINING HETEROLOGOUS ers. Philadelphia, pp. 15-57. DNA SEGMENTS ENCODNG LENTWRAL Taylor et al., 1991. Vaccine 9(3):190-193. GENE PRODUCTS Berman et al., 1990, Nature 345:622-625. Girard et al., 1991 Proc. Natl. Acad. Sci., USA 88:542-546. 75 Inventors: Enzo Paoletti, Delmar; James Tartaglia. Schenectady; William Irvin Hu et al., 1986. Nature 320:537-540. Cox. Troy, all of N.Y. Ho et al., 1990, Eur, J. Immunol. 20:477-483. Virology, vol. 173, No. 1, issued Nov. 1989, S. Dallo et al. 73) Assignee: Wirogenetics Corporation, Troy, N.Y. "Humoral Immune Response Elicited by Highly Attenuated Variants of Vaccinia Virus and by an Attenuated Recombi nant Expressing HIV-1 Envelope Protein". pp. 323-328 21 Appl. No.: 303,275 (entire document). (22 Filed: Sep. 7, 1994 Virology, vol. 152, issued 1986. M.E. Perkus et al., “Inser tion and Deletion Mutants of Vaccinia Virus". pp. 285-297 Related U.S. Application Data (entire document). Nature, vol. 317, issued 31 Oct. 1985, R.M.L. Buller et al., 63 Continuation of Ser. No. 897,382, Jun. 11, 1992, abandoned, which is a continuation-in-part of Ser. No. 715,921, Jun. 14, "Decreased Virulence of Recombinant Vaccinia Virus 1991, abandoned, and Ser. No. 847,951, Mar. 6, 1992, which Expression Vectors is Associated With a Thymidine is a continuation-in-part of Ser.
    [Show full text]
  • Transcriptomic Profiles of High and Low Antibody Responders to Smallpox
    Genes and Immunity (2013) 14, 277–285 & 2013 Macmillan Publishers Limited All rights reserved 1466-4879/13 www.nature.com/gene ORIGINAL ARTICLE Transcriptomic profiles of high and low antibody responders to smallpox vaccine RB Kennedy1,2, AL Oberg1,3, IG Ovsyannikova1,2, IH Haralambieva1,2, D Grill1,3 and GA Poland1,2 Despite its eradication over 30 years ago, smallpox (as well as other orthopox viruses) remains a pathogen of interest both in terms of biodefense and for its use as a vector for vaccines and immunotherapies. Here we describe the application of mRNA-Seq transcriptome profiling to understanding immune responses in smallpox vaccine recipients. Contrary to other studies examining gene expression in virally infected cell lines, we utilized a mixed population of peripheral blood mononuclear cells in order to capture the essential intercellular interactions that occur in vivo, and would otherwise be lost, using single cell lines or isolated primary cell subsets. In this mixed cell population we were able to detect expression of all annotated vaccinia genes. On the host side, a number of genes encoding cytokines, chemokines, complement factors and intracellular signaling molecules were downregulated upon viral infection, whereas genes encoding histone proteins and the interferon response were upregulated. We also identified a small number of genes that exhibited significantly different expression profiles in subjects with robust humoral immunity compared with those with weaker humoral responses. Our results provide evidence that differential gene regulation patterns may be at work in individuals with robust humoral immunity compared with those with weaker humoral immune responses. Genes and Immunity (2013) 14, 277–285; doi:10.1038/gene.2013.14; published online 18 April 2013 Keywords: Next-generation sequencing; mRNA-Seq; vaccinia virus; smallpox vaccine INTRODUCTION these 44 subjects had two samples (uninfected and vaccinia Vaccinia virus (VACV) is the immunologically cross-protective infected).
    [Show full text]
  • PF a Colonne V 5 2020 12 16.Xlsx
    Istanza per il riconoscimento dell'esenzione della Tassa Automobilistica Ex Art 7 Comma 4 della Legge Regionale 12 Maggio 2020 n. 9 Elenco delle richieste di rimborso Persone Fisiche Le istanze sono riportate nell'elenco ordinate in modo crescente. Il motivo dell'eventuale rifiuto è solo perché non è stato trovato un versamento corrispondente al veicolo indicato per l'annualità 2020.
    [Show full text]
  • Characterization of Small Nontranslated Polyadenylylated
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2037-2042, March 1996 Biochemistry Characterization of small nontranslated polyadenylylated RNAs in vaccinia virus-infected cells (inhibition of protein synthesis/in vitro transcription/in vitro translation/in vivo polyadenylylation of tRNAs and small nuclear RNAs) CHUNXIA Lu AND ROSTOM BABLANIAN* Department of Microbiology and Immunology, State University of New York, Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203 Communicated by Howard L. Bachrach, U.S. Department ofAgriculture, Greenport, NY, September 28, 1995 (received for review June 22, 1995) ABSTRACT Host protein synthesis is selectively inhibited uninfected, infected-with-VV or infected-with-UV-irradiated in vaccinia virus-infected cells. This inhibition has been associ- VV (9600 ergs/mm2) HeLa spinner cells. Poly(A)+-containing ated with the production of a group of small, nontranslated, mRNA was isolated from total cytoplasmic RNA by oligo(dT)- polyadenylylated RNAs (POLADS) produced during the early cellulose chromatography. POLADS were isolated as de- part of virus infection. The inhibitory function of POLADS is scribed (10). associated with the poly(A) tail of these small RNAs. To deter- Construction of Plasmids That Contain POLADS. The mine the origin of the 5'-ends of POLADS, reverse transcription cDNA of POLADS was obtained by reverse transcription (13) was performed with POLADS isolated from W-infected cells at using a cDNA synthesis kit (United States Biochemical) and 1 hr and 3.5 hr post infection. The cDNAs ofthese POLADS were cloned into pBS or pBluescript KS 11 +/- at the Sma I site. cloned into plasmids (pBS or pBluescript H KS +/-), and their In Vitro Transcription.
    [Show full text]
  • XXVI Brazilian Congress of Virology
    Virus Reviews and Research Journal of the Brazilian Society for Virology Volume 20, October 2015, Supplement 1 Annals of the XXVI Brazilian Congress of Virology & X Mercosur Meeting of Virology October, 11 - 14, 2015, Costão do Santinho Resort, Florianópolis, Santa Catarina, Brazil Editors Edson Elias da Silva Fernando Rosado Spilki BRAZILIAN SOCIETY FOR VIROLOGY BOARD OF DIRECTORS (2015-2016) Officers Area Representatives President: Dr. Bergmann Morais Ribeiro Basic Virology (BV) Vice-President: Dr. Célia Regina Monte Barardi Dr. Luciana Jesus da Costa, UFRJ (2015 – 2016) First Secretary: Dr. Fernando Rosado Spilki Dr. Luis Lamberti Pinto da Silva, USP-RP (2015 – 2016) Second Secretary: Dr. Mauricio Lacerda Nogueira First Treasurer: Dr. Alice Kazuko Inoue Nagata Environmental Virology (EV) Second Treasurer: Dr. Zélia Inês Portela Lobato Dr. Adriana de Abreu Correa, UFF (2015 – 2016) Executive Secretary: Dr Fabrício Souza Campos Dr. Jônatas Santos Abrahão, UFMG (2015 – 2016 Human Virology (HV) Fiscal Councilors Dr. Eurico de Arruda Neto, USP-RP (2015 – 2016) Dr. Viviane Fongaro Botosso Dr. Paula Rahal, UNESP (2015 – 2016) Dr. Davis Fernandes Ferreira Dr. Maria Ângela Orsi Immunobiologicals in Virology (IV) Dr. Flávio Guimarães da Fonseca, UFMG (2015 – 2016) Dr. Jenner Karlisson Pimenta dos Reis, UFMG (2015 – 2016) Plant and Invertebrate Virology (PIV) Dr. Maite Vaslin De Freitas Silva, UFRJ (2015 – 2016) Dr. Tatsuya Nagata, UNB (2015 – 2016) Veterinary Virology (VV) Dr. João Pessoa Araújo Junior, UNESP (2015 – 2016) Dr. Marcos Bryan Heinemann, USP (2015 – 2016) Address Universidade Feevale, Instituto de Ciências da Saúde Estrada RS-239, 2755 - Prédio Vermelho, sala 205 - Laboratório de Microbiologia Molecular Bairro Vila Nova - 93352-000 - Novo Hamburgo, RS - Brasil Phone: (51) 3586-8800 E-mail: F.R.Spilki - [email protected] http://www.vrrjournal.org.br Organizing Committee Dr.
    [Show full text]
  • Ep 2023954 B1
    (19) TZZ Z ¥_T (11) EP 2 023 954 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: (2006.01) of the grant of the patent: A61K 39/21 17.07.2013 Bulletin 2013/29 (86) International application number: PCT/US2007/011924 (21) Application number: 07809100.6 (87) International publication number: (22) Date of filing: 18.05.2007 WO 2007/136763 (29.11.2007 Gazette 2007/48) (54) IMMUNOLOGICAL COMPOSITION IMMUNOLOGISCHE ZUSAMMENSETZUNG COMPOSITION IMMUNOLOGIQUE (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • DATABASE BIOSIS [Online] BIOSCIENCES HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE INFORMATION SERVICE, PHILADELPHIA, PA, SI SK TR US; 1 June 2004 (2004-06-01), CHIKHLIKAR PRIYA ET AL: "Inverted terminal repeat (30) Priority: 19.05.2006 US 801853 P sequences of adeno-associated virus enhance the antibody and CD8+ responses to a HIV-1 (43) Date of publication of application: p55Gag/LAMP DNA vaccine chimera" 18.02.2009 Bulletin 2009/08 XP002498298 Database accession no. PREV200400325965 & VIROLOGY, vol. 323, no. 2, (73) Proprietor: Sanofi Pasteur, Inc. 1 June 2004 (2004-06-01), pages 220-232, ISSN: Swiftwater, PA 18370 (US) 0042-6822 • KUMAR SANJEEV ET AL: "Development of a (72) Inventors: candidate DNA/MVA HIV-1 subtype C vaccine for • TARTAGLIA, James India" VACCINE, vol. 24, no. 14, March 2006 Aurora, ON (CA) (2006-03), pages 2585-2593, XP002498295 ISSN: • PANTALEO, Guiseppe 0264-410X 1011 Lausanne (CH) • DATABASE BIOSIS [Online] BIOSCIENCES • HARARI,
    [Show full text]
  • The Role of Cellular Autophagy and Type Iv Secretion System in Anaplasma Phagocytophilum Infection
    THE ROLE OF CELLULAR AUTOPHAGY AND TYPE IV SECRETION SYSTEM IN ANAPLASMA PHAGOCYTOPHILUM INFECTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hua Niu, M.S. * * * * * The Ohio State University 2008 Dissertation Committee: Dr. Yasuko Rikihisa, Adviser Approved by Dr. William P. Lafuse Dr. Mamoru Yamaguchi __________________________ Dr. Michael J. Oglesbee Adviser Graduate Program in Veterinary Biosciences ABSTRACT Human granulocytic anaplasmosis (HGA), an emerging tick-borne zoonosis is caused by a gram-negative, obligatory intracellular bacterium, Anaplasma phagocytophilum. A. phagocytophilum has the remarkable ability to inhibit the spontaneous apoptosis of neutrophils, block the production of reactive oxygen intermediates, and replicate in membrane-bound inclusions in the cytoplasm of neutrophils. However, the A. phagocytophilum inclusions have not been fully characterized, and bacterial factors contributing to these phenomena remain unknown. In this study, we studied several molecular aspects of A. phagocytophilum pathogenesis. (1) Characterization of A. phagocytophilum replicative inclusions. We demonstrated that A. phagocytophilum replicative inclusions had the characteristic of early autophagosomes, as shown by the presence of autophagosome markers, LC3 and double lipid bilayer membrane in the A. phagocytophilum inclusions. Furthermore our data suggested that autophagy enhanced A. phagocytophilum replication instead of inhibiting its growth. (2) Investigation of the expression of genes encoding type IV secretion system apparatus in A. phagocytophilum. We found the expression of virB6 and virB9 was up- regulated during the bacterial growth in human neutrophils. Furthermore, differential ii VirB9 expression was shown to associate with the binding of A. phagocytophilum to neutrophils, and prevention of internalized bacteria from being delivered to lysosomes.
    [Show full text]
  • Ep 1608732 B1
    (19) & (11) EP 1 608 732 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/55 (2006.01) 12.05.2010 Bulletin 2010/19 (86) International application number: (21) Application number: 04749602.1 PCT/US2004/009955 (22) Date of filing: 31.03.2004 (87) International publication number: WO 2004/090114 (21.10.2004 Gazette 2004/43) (54) COMPOSITIONS AND METHODS OF USING A SYNTHETIC DNASE I ZUSAMMENSETZUNGEN UND VERFAHREN ZUR VERWENDUNG EINER SYNTHETISCHEN DNASE I COMPOSITIONS ET PROCEDES POUR UTILISER UNE DNASE I DE SYNTHESE (84) Designated Contracting States: (74) Representative: Muir, Benjamin M. J. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Beck Greener HU IE IT LI LU MC NL PL PT RO SE SI SK TR Fulwood House 12 Fulwood Place (30) Priority: 31.03.2003 US 404023 London WC1V 6HR (GB) 22.04.2003 US 420345 (56) References cited: (43) Date of publication of application: WO-A-94/15644 28.12.2005 Bulletin 2005/52 • OEFNER C ET AL: "CRYSTALLOGRAPHIC (60) Divisional application: REFINEMENT AND STRUCTURE OF DNASE I AT 10153371.9 2 ANGSTROM RESOLUTION" JOURNAL OF MOLECULAR BIOLOGY, vol. 192, no. 3, 1986, (73) Proprietor: Ambion, Inc. pages 605-632, XP008078567 ISSN: 0022-2836 Austin, TX 78744-1832 (US) • DATABASE EMBL [Online] 2 November 2000 (2000-11-02), "Bos taurus epithelial lens (72) Inventors: deoxyribonuclease I mRNA, partial cds." • LATHAM, Gary XP002432551 retrieved from EBI accession no. Austin, TX 78748 (US) EMBL:AF311922 Database accession no.
    [Show full text]
  • Review Virus Infection and Death Receptor-Mediated Apoptosis
    Review Virus Infection and Death Receptor-Mediated Apoptosis Xingchen Zhou †, Wenbo Jiang †, Zhongshun Liu, Shuai Liu and Xiaozhen Liang * Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; [email protected] (X.Z.); [email protected] (W.J.); [email protected] (Z.L.); [email protected] (S.L.) * Correspondence: [email protected]; Tel.: +86-021-5492-3096 † These authors contributed equally to this work. Received: 21 September 2017; Accepted: 25 October 2017; Published: 27 October 2017 Abstract: Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis. Keywords: virus infection; death receptor; extrinsic apoptosis; host immune response 1. Introduction of Virus-Mediated Apoptosis Apoptosis, necroptosis, and pyroptosis are the three major ways of programed cell death (PCD) following virus infection [1,2]. Among them, apoptosis is the most extensively investigated PCD during viral infection. Apoptosis elicited by virus infection has both negative and positive influence on viral replication.
    [Show full text]
  • The Major Antigenic Protein of Infectious Bursal Disease Virus, VP2, Is an Apoptotic Inducer
    JOURNAL OF VIROLOGY, Oct. 1997, p. 8014–8018 Vol. 71, No. 10 0022-538X/97/$04.0010 Copyright © 1997, American Society for Microbiology The Major Antigenic Protein of Infectious Bursal Disease Virus, VP2, Is an Apoptotic Inducer 1,2 2 1 ARMANDO FERNA´ NDEZ-ARIAS, SIOMARA MARTI´NEZ, AND JOSE F. RODRI´GUEZ * Centro Nacional de Biotecnologı´a, Cantoblanco, 28049 Madrid, Spain,1 and Centro Nacional de Sanidad Agropecuaria, San Jose´ de las Lajas, La Habana, Cuba2 Received 28 April 1997/Accepted 28 May 1997 Infectious bursal disease virus (IBDV) is the causative agent of an economically important poultry disease. Vaccinia virus recombinants expressing the IBDV mature structural capsid proteins VP2 and VP3 were generated by using vectors for inducible gene expression. Characterization of these recombinant viruses demonstrated that expression of VP2 leads to induction of apoptosis in a variety of mammalian cell lines. Transfection of cell cultures with a expression vector containing the VP2 coding region under the control of the immediate-early promoter-enhancer region of human cytomegalovirus also triggers programmed cell death. The apoptotic effect of VP2 is efficiently counteracted by coexpression of the proto-oncogene bcl-2. The results presented demonstrate that VP2 is a bona fide apoptotic inducer. Evaluation of the significance of this finding for the virus life cycle must await further research. Infectious bursal disease virus (IBDV), the prototype mem- of vaccines consisting of either inactivated or attenuated virus. ber of the Avibirnavirus genus of the Birnaviridae family (11, We sought to develop a system for the production of empty 12), is the causative agent of a highly infectious disease affect- IBDV capsids that may eventually be applied as a subunit ing young chickens.
    [Show full text]
  • Regulation of Vaccinia Virus Replication: a Story of Viral Mimicry and a Novel Antagonistic Relationship Between Vaccinia Kinase and Pseudokinase Annabel T
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of 4-2019 Regulation of Vaccinia Virus Replication: a Story of Viral Mimicry and a Novel Antagonistic Relationship Between Vaccinia Kinase and Pseudokinase Annabel T. Olson University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidiss Part of the Biology Commons Olson, Annabel T., "Regulation of Vaccinia Virus Replication: a Story of Viral Mimicry and a Novel Antagonistic Relationship Between Vaccinia Kinase and Pseudokinase" (2019). Dissertations and Theses in Biological Sciences. 106. https://digitalcommons.unl.edu/bioscidiss/106 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. REGULATION OF VACCINIA VIRUS REPLICATION: A STORY OF VIRAL MIMICRY AND A NOVEL ANTAGONISTIC RELATIONSHIP BETWEEN VACCINIA KINASE AND PSEUDOKINASE by Annabel T. Olson A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences (Genetics, Cell, and Molecular Biology) Under the Supervision of Professor Matthew S. Wiebe Lincoln, Nebraska April, 2019 SUPERVISORY COMMITTEE SIGNATURES SUPERVISORY COMMITTEE: Matt Wiebe, Ph.D. (Primary Advisor) Deb Brown, Ph.D. Audrey Atkin, Ph.D. Luwen Zhang, Ph.D. Asit Pattnaik, Ph.D. APPROVED Regulation of vaccinia virus replication: A story of viral mimicry and a novel antagonistic relationship between vaccinia kinase and pseudokinase Annabel T.
    [Show full text]
  • Structure-Function Studies of the Vaccinia Virus Complement Control Protein
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2002 Structure-function studies of the vaccinia virus complement control protein. Scott Alan Smith University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Recommended Citation Smith, Scott Alan, "Structure-function studies of the vaccinia virus complement control protein." (2002). Electronic Theses and Dissertations. Paper 1347. https://doi.org/10.18297/etd/1347 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. STRUCTURE-FUNCTION STUDIES OF THE VACCINIA VIRUS COMPLEMENT CONTROL PROTEIN By Scott Alan Smith A.S. Community College of Allegheny County, 1995 B.S. California University of Pennsylvania, 1997 A Dissertation Submitted to the Faculty of the Graduate School of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Microbiology and Immunology University of Louisville Louisville, Kentucky August 2002 STUCTURE-FUNCTION STUDIES OF THE VACCINIA VIRUS COMPLEMENT CONTROL PROTEIN By Scott Alan Smith
    [Show full text]