Antibiotic Commonsense “An Investment in Knowledge Always Pays the Best Interest.” Benjamin Franklin

Total Page:16

File Type:pdf, Size:1020Kb

Antibiotic Commonsense “An Investment in Knowledge Always Pays the Best Interest.” Benjamin Franklin Volume 2, Issue 2 May 2008 Antibiotic Commonsense “An investment in knowledge always pays the best interest.” Benjamin Franklin Diagnosis and Treatment of Mycoplasma Pneumonia* Mycoplasma pneumoniae is one of the most common While microbiological studies can pathogens identified in mild ambulatory community-acquired support a diagnosis of M pneumoniae, pneumonia (CAP). The other common pathogens are routine tests are often nonspecific or Streptococcus pneumoniae, Chlamydiophile pneumoniae, falsely negative.5 and Haemophilus influenza. In recent studies, Mycoplasma 3,4,5 infection was most common among people under 50 years of Laboratory Testing age who did not have significant comorbid conditions or M. pneumoniae is a small, obligate, intracellular bacteria that abnormal vital signs. It is primarily found among school-aged has several shapes and sizes. The lack of a cell wall prevents children and young adults. Serious complications are rare. staining with traditional gram stain. Prevalence/Incidence Culture Mycoplasma pneumonia, a low level endemic disease, Advantage: Differentiation of M. pneumoniae from other reaches epidemic levels at three to seven year intervals. organisms that cause atypical CAP. These epidemics often begin in the fall and sometimes last Disadvantages: Requires cholesterol to stimulate growth. for several months. M. pneumoniae causes approximately 20 Divides by binary fission and isolation of the organism may percent of acute pneumonia infections in middle and high require 21 days or more. Does not survive well in transport school students and 50 percent among college students and media making culture insensitive for detection of this military recruits. The incidence of community-acquired M. organism. pneumonia in the adult population is approximately Complement Fixation Test 1 15/100,000. Advantage: Good sensitivity and specificity. Transmission Disadvantages: Because antibodies may persist in an infected person for a year or more, high titers may not Transmission is person-to-person by respiratory droplet. indicate current infection. Respiratory tract shedding of M. pneumoniae from both symptomatic and non-symptomatic people occurs for weeks Cold Agglutinins (even months) and likely contributes to community outbreaks. (non-specific erythrocyte agglutinating antibodies) Antibiotic therapy is more successful in relieving symptoms Advantage: If cold agglutinins present in combination with than eradicating the organism as shedding often continues clinical signs of M. pneumoniae, a presumptive diagnosis for one to two weeks after antibiotics are started.2 may be possible. Disadvantages: Cold agglutinins are not specific for M. Clinical Presentation pneumoniae and not even produced in half of the people Patients present with fever, cough, headache, and malaise. infected with these bacteria. Not recommended for definitive One half of patients have all four symptoms. Rhinorrhea, diagnosis. myalgias, chest pain, sore throat and hoarseness appear in one fourth to one half of patients. The incubation period is EIA (enzyme immunoassay) from one to four weeks.1 Advantage: Several kits available on the market for detection of M. pneumoniae IgG and IgM antibodies. Diagnosis Disadvantages: Most kits require acute and convalescent Diagnosis is based on clinical presentation (above) and is sera collected 2-4 weeks apart. Tests may be simpler and supported by chest radiography. Detection of rales or somewhat quicker to perform, but they lack sensitivity. bronchial breath sounds while important are less sensitive and specific than chest radiographs that demonstrate an PCR (polymerase chain reaction) 5 Advantage: PCR technology more available through infiltrate. In the elderly patient both clinical signs and reference laboratories physical exam findings may be altered or lacking. Disadvantages: PCR technology very expensive. A positive PCR--in the absence of seroconversion, positive culture or *Claudia Willis, Microbiology Supervisor, and Laura Ching, clinical disease--suggests inadequate specificity of the PCR PharmD., Franciscan Health System, were major contributors. assay, persistence of the organism after the infection has resolved, or an asymptomatic carrier state. “An investment in knowledge always pays the best interest.” Benjamin Franklin Antibiotic Commonsense Diagnosis and Treatment of Mycoplasma Pneumonia (cont.) Susceptibility Testing Resources Disadvantages: Traditional susceptibility methods not 1. Mufson MA. Mycoplasma Pneumonia in Gorbach SL, Bartlett practical due to the unusual growth requirements of M. JG, Blacklaw NR. Infectious Diseases, 3rd Edition. Lippincott, pneumoniae. No accepted standard for susceptibility Williams & Wilkins. 2004. testing of Mycoplasma. No MIC breakpoints are endorsed 2. Weiner LB, McMillan JA. Mycoplasa Pneumonia in Long SS by any regulatory agency. Lack of guidelines and (ed). Principles and Practice of Pediatric Infectious Diseases, interpretation of results can lead to inconsistent 2nd ed. Elsevier Health Sciences (UK). 2002. 1005-1010. susceptibility profiles. 3. Murray P R, Baron EJ, Jorgenson JH et al (ed). Manual of Clinical Microbiology 8th edition. ASM Press. 2003: 972-984. Treatment 4. Baseman JB, Tully J.G. Mycoplasmas: Sophisticated, Patients who present with community-acquired pneumonia Reemerging and Burdened by Their Notoriety, Emerging (CAP) are typically treated empirically with antibiotics that Infectious Disease (www.cdc.gov/ncidod/eid/vol3no1/ cover Streptococcus pneumoniae, Haemophilus baseman.htm, posted 2/15/97) influenzae, and atypical organisms, including Mycoplasma 5. Cimolai N. Mycoplasma pneumoniae Respiratory Infection. pneumoniae, Chlamydophile pneumoniae, and Legionella Pediatrics in Review 1998;19:327-332. pneumophila. 6. Mandell LA, Wunderink RG et al. Infectious Disease Society of America/American Thoracic Society Consensus Common therapies for M. pneumoniae respiratory Guidelines on the Management of Community-Acquired infections include macrolides, tetracyclines, and Pneumonia in Adults. CID. 2007 Mar 1;44 Suppl 2:S27-72. fluoroquinolones. According to the IDSA/ATS 2007 CAP 7. Mandell G, Bennett J, Dolin R. Principles and Practice of consensus guidelines, a macrolide antibiotic is the first-line Infectious Diseases, 6th Edition. Philadelphia: Elsevier, therapy when treating an otherwise healthy patient in an 2005. 6 outpatient setting. ß-lactam antibiotics, such as penicillins and cephalosporins, are not effective because M. Common Treatment of Mycoplasma Pneumonia pneumoniae lacks a cell wall: ß-lactam bactericidal activity relies on cell wall inhibition. Class Drug Adult Dose Pediatric Dose Comments Of the macrolide antibiotics, azithromycin is Macrolide Azithromycin 500 mg in one 10 mg/kg in one dose Most commonly dose, then 250 on day 1, then 5 mg/kg used; longer most commonly used due to efficacy, mg orally for 4 daily for 4 days half-life & post- convenience of dosing/duration, and tolerability. days antibiotic effect Erythromycin which is known for allows for shorter duration gastrointestinal side effects, including diarrhea, may reduce drug adherence. Clarithro- 250-500mg 15 mg/kg/day in two mycin every 12 hours divided doses for 10 In vitro studies have shown that macrolides are for 7 days days 100 times more active against M. pneumoniae than fluoroquinolones, followed by Erythromycin 500mg every 6 30-40 mg/kg/day in High rate of 7 hours for 7 four divided doses for gastrointestinal tetracyclines. The duration of treatment for an days 10 days side effects uncomplicated infection usually ranges from five to seven days, depending on antibiotic Fluoro- Levofloxacin 500mg daily for Do not use in selection and the clinical stability of the patient.6 quinolone 7 days pediatrics Moxifloxacin 400mg daily for Do not use in 7 days pediatrics Tetra- Doxycycline 100mg every 2-4 mg/kg/day in 1-2 Do not use in cycline 12 hours for 7 divided doses for 10 children less days days, (max 100-200 than 8 years of mg/day) age. Contact: Lois Lux Phone: 253 798-6416 Fax: 253 798-7666 Email: [email protected] .
Recommended publications
  • Drug-Resistant Streptococcus Pneumoniae and Methicillin
    NEWS & NOTES Conference Summary pneumoniae can vary among popula- conference sessions was that statically tions and is influenced by local pre- sound methods of data collection that Drug-resistant scribing practices and the prevalence capture valid, meaningful, and useful of resistant clones. Conference pre- data and meet the financial restric- Streptococcus senters discussed the role of surveil- tions of state budgets are indicated. pneumoniae and lance in raising awareness of the Active, population-based surveil- Methicillin- resistance problem and in monitoring lance for collecting relevant isolates is the effectiveness of prevention and considered the standard criterion. resistant control programs. National- and state- Unfortunately, this type of surveil- Staphylococcus level epidemiologists discussed the lance is labor-intensive and costly, aureus benefits of including state-level sur- making it an impractical choice for 1 veillance data with appropriate antibi- many states. The challenges of isolate Surveillance otic use programs designed to address collection, packaging and transport, The Centers for Disease Control the antibiotic prescribing practices of data collection, and analysis may and Prevention (CDC) convened a clinicians. The potential for local sur- place an unacceptable workload on conference on March 12–13, 2003, in veillance to provide information on laboratory and epidemiology person- Atlanta, Georgia, to discuss improv- the impact of a new pneumococcal nel. ing state-based surveillance of drug- vaccine for children was also exam- Epidemiologists from several state resistant Streptococcus pneumoniae ined; the vaccine has been shown to health departments that have elected (DRSP) and methicillin-resistant reduce infections caused by resistance to implement enhanced antimicrobial Staphylococcus aureus (MRSA).
    [Show full text]
  • Association Between Carriage of Streptococcus Pneumoniae and Staphylococcus Aureus in Children
    BRIEF REPORT Association Between Carriage of Streptococcus pneumoniae and Staphylococcus aureus in Children Gili Regev-Yochay, MD Context Widespread pneumococcal conjugate vaccination may bring about epidemio- Ron Dagan, MD logic changes in upper respiratory tract flora of children. Of particular significance may Meir Raz, MD be an interaction between Streptococcus pneumoniae and Staphylococcus aureus, in view of the recent emergence of community-acquired methicillin-resistant S aureus. Yehuda Carmeli, MD, MPH Objective To examine the prevalence and risk factors of carriage of S pneumoniae Bracha Shainberg, PhD and S aureus in the prevaccination era in young children. Estela Derazne, MSc Design, Setting, and Patients Cross-sectional surveillance study of nasopharyn- geal carriage of S pneumoniae and nasal carriage of S aureus by 790 children aged 40 Galia Rahav, MD months or younger seen at primary care clinics in central Israel during February 2002. Ethan Rubinstein, MD Main Outcome Measures Carriage rates of S pneumoniae (by serotype) and S aureus; risk factors associated with carriage of each pathogen. TREPTOCOCCUS PNEUMONIAE AND Results Among 790 children screened, 43% carried S pneumoniae and 10% car- Staphylococcus aureus are com- ried S aureus. Staphylococcus aureus carriage among S pneumoniae carriers was 6.5% mon inhabitants of the upper vs 12.9% in S pneumoniae noncarriers. Streptococcus pneumoniae carriage among respiratory tract in children and S aureus carriers was 27.5% vs 44.8% in S aureus noncarriers. Only 2.8% carried both Sare responsible for common infec- pathogens concomitantly vs 4.3% expected dual carriage (P=.03). Risk factors for tions. Carriage of S aureus and S pneu- S pneumoniae carriage (attending day care, having young siblings, and age older than moniae can result in bacterial spread and 3 months) were negatively associated with S aureus carriage.
    [Show full text]
  • Universidade Do Algarve Investigation of Listeria Monocytogenes And
    Universidade do Algarve Investigation of Listeria monocytogenes and Streptococcus pneumoniae mutants in in vivo models of infection Ana Raquel Chaves Mendes de Alves Porfírio Dissertação para a obtenção do Grau de Mestrado em Engenharia Biológica Tese orientada pelo Prof. Dr. Peter W. Andrew e coorientada pela Prof. Dr. Maria Leonor Faleiro 2015 I Investigation of Streptococcus pneumoniae and Listeria monocytogenes mutants in in vivo models of infection Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam na listagem de referências incluída. Copyright © 2015, por Ana Raquel Chaves Mendes de Alves Porfírio A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua copia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. II “I was taight that the way of progress was neither swift nor easy” – Marie Curie III Acknowledgements First of all I would like to thank the University of Algarve and the University of Leicester for providing me with the amazing opportunity of doing my dissertation project abroad. I wish to particularly express my deepest gratitude to my supervisors Prof. Peter Andrew and Prof. Maria Leonor Faleiro for their continuous guidance and support throughout this project. Their useful insight and feedback was thoroughly appreciated.
    [Show full text]
  • Streptococcus Pneumoniae Technical Sheet
    technical sheet Streptococcus pneumoniae Classification On necropsy, a serosanguineous to purulent exudate Alpha-hemolytic, Gram-positive, encapsulated, aerobic is often found in the nasal cavities and the tympanic diplococcus bullae. The lungs can have areas of firm, dark red consolidation. Fibrinopurulent pleuritis, pericarditis, Family and peritonitis are other changes seen on necropsy of animals affected by S. pneumoniae. Histologic Streptococcaceae lesions are consistent with necropsy findings, Affected species and bronchopneumonia of varying severity and fibrinopurulent serositis are often seen. Primarily described as a pathogen of rats and guinea pigs. Mice are susceptible to infection. Agent of human Diagnosis disease and human carriers are a likely source of An S. pneumoniae infection should be suspected if animal infections. Zoonotic infection is possible. encapsulated Gram-positive diplococci are seen on a smear from a lesion. Confirmation of the diagnosis is Frequency via culture of lesions or affected tissues. S. pneumoniae Rare in modern laboratory animal colonies. Prevalence grows best on 5% blood agar and is alpha-hemolytic. in pet and wild populations unknown. The organism is then presumptively identified with an optochin test. PCR assays are also available for Transmission diagnosis. PCR-based screening for S. pneumoniae Transmission is primarily via aerosol or contact with may be conducted on respiratory samples or feces. nasal or lacrimal secretions of an infected animal. S. PCR may also be useful for confirmation of presumptive pneumoniae may be cultured from the nasopharynx and microbiologic identification or confirming the identity of tympanic bullae. bacteria observed in histologic lesions. Clinical Signs and Lesions Interference with Research Inapparent infections and carrier states are common, Animals carrying S.
    [Show full text]
  • Comparative Radiographic Features of Community Acquired Legionnaires' Disease, Pneumococcal Pneumonia, Mycoplasma Pneumonia, and Psittacosis
    Thorax: first published as 10.1136/thx.39.1.28 on 1 January 1984. Downloaded from Thorax 1984;39:28-33 Comparative radiographic features of community acquired legionnaires' disease, pneumococcal pneumonia, mycoplasma pneumonia, and psittacosis JT MACFARLANE, AC MILLER, WH RODERICK SMITH, AH MORRIS, DH ROSE From the Departments of Thoracic Medicine and Radiology, City Hospital, Nottingham ABSTRACT The features of the chest radiographs of 49 adults with legionnaires' disease were compared with those of 91 adults with pneumococcal pneumonia (31 of whom had bacteraemia or antigenaemia), 46 with mycoplasma pneumonia, and 10 with psittacosis pneumonia. No distinctive pattern was seen for any group. Homogeneous shadowing was more frequent in legionnaires' disease (40/49 cases) (p < 0.005), bacteraemic pneumococcal pneumonia (25/31) (p < 0.01) and non-bacteraemic pneumococcal pneumonia (42/60) (p < 0.05) than in myco- plasma pneumonia (23/46). Multilobe disease at presentation was commoner in bacteraemic pneumococcal pneumonia (20/31) than in non-bacteraemic pneumococcal pneumonia (15/60) (p < 0.001) or legionnaires' disease (19/49) (p < 0.025). In bacteraemic pneumococcal pneumonia multilobe disease at presentation was associated with increased mortality. Pleural effusions and some degree of lung collapse were seen in all groups, although effusions were commoner in bacteraemic pneumococcal pneumonia. Cavitation was unusual. Lymphadenopathy occurred only in mycoplasma pneumonia (10/46). Radiographic deterioration was particularly a feature of legionnaires' disease (30/46) and bacteraemic pneumococcal pneumonia (14/27), and these groups also showed slow radiographic resolution in survivors. Radiographic resolution was fastest with mycoplasma pneumonia; psittacosis and non-bacteraemic pneumococcal pneumonia http://thorax.bmj.com/ cleared at an intermediate rate.
    [Show full text]
  • Streptococci
    STREPTOCOCCI Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Older cultures may lose their Gram-positive character. Most streptococci are facultative anaerobes, and some are obligate (strict) anaerobes. Most require enriched media (blood agar). Streptococci are subdivided into groups by antibodies that recognize surface antigens (Fig. 11). These groups may include one or more species. Serologic grouping is based on antigenic differences in cell wall carbohydrates (groups A to V), in cell wall pili-associated protein, and in the polysaccharide capsule in group B streptococci. Rebecca Lancefield developed the serologic classification scheme in 1933. β-hemolytic strains possess group-specific cell wall antigens, most of which are carbohydrates. These antigens can be detected by immunologic assays and have been useful for the rapid identification of some important streptococcal pathogens. The most important groupable streptococci are A, B and D. Among the groupable streptococci, infectious disease (particularly pharyngitis) is caused by group A. Group A streptococci have a hyaluronic acid capsule. Streptococcus pneumoniae (a major cause of human pneumonia) and Streptococcus mutans and other so-called viridans streptococci (among the causes of dental caries) do not possess group antigen. Streptococcus pneumoniae has a polysaccharide capsule that acts as a virulence factor for the organism; more than 90 different serotypes are known, and these types differ in virulence. Fig. 1 Streptococci - clasiffication. Group A streptococci causes: Strep throat - a sore, red throat, sometimes with white spots on the tonsils Scarlet fever - an illness that follows strep throat. It causes a red rash on the body.
    [Show full text]
  • Pneumococcal Disease (Sickness Caused by Streptococcus Pneumoniae)
    Pneumococcal Disease (Sickness Caused by Streptococcus pneumoniae) What is pneumococcal disease? Pneumococcal disease is an infection caused by the bacteria Streptococcus pneumoniae. It's also called pneumococcus and can cause ear infections, pneumonia, infections in the blood and meningitis. When does it happen? Children can get pneumococcal disease any time of the year. What are the symptoms? Fever and increased fussiness or irritability are common Meningitis symptoms include fever, trouble bending or moving the neck, increased fussiness or irritability, and headache in anyone over age 2. In babies, the only symptoms may be that the baby is less active, fussy or crying more than usual, throwing up, or not eating normally. Pneumonia symptoms in children include fever, cough, working hard to breathe, breathing faster than usual or grunting. Ear infection symptoms are ears that hurt, crying or pulling on ears, sore throat or pain when swallowing. Children may also be sleepy, have a fever, and be fussy. Is it contagious? How is it spread? Pneumococcus is spread by contact with people who either have a pneumococcal illness or who carry the bacteria in their throats without being sick. It can be spread by droplets in the air from coughing or sneezing. It can also be spread if you touch something that has the droplets on it, and then touch your own nose, mouth or eyes. How bad is pneumococcal disease? Pneumococcal disease can be very bad for young children and is the most common cause of meningitis and bacterial pneumonia in children. How can pneumococcal disease be avoided in children? There is a vaccine that can help stop serious pneumococcal disease, such as meningitis and blood infections.
    [Show full text]
  • Clostridioides Difficile As a Dynamic Vehicle for The
    microorganisms Review Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis Philip Kartalidis 1, Anargyros Skoulakis 1, Katerina Tsilipounidaki 1 , Zoi Florou 1, Efthymia Petinaki 1 and George C. Fthenakis 2,* 1 Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; [email protected] (P.K.); [email protected] (A.S.); [email protected] (K.T.); zoi_fl@hotmail.com (Z.F.); [email protected] (E.P.) 2 Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece * Correspondence: [email protected] Abstract: The present paper is divided into two parts. The first part focuses on the role of Clostrid- ioides difficile in the accumulation of genes associated with antimicrobial resistance and then the transmission of them to other pathogenic bacteria occupying the same human intestinal niche. The second part describes an in silico analysis of the genomes of C. difficile available in GenBank, with regard to the presence of mobile genetic elements and antimicrobial resistance genes. The diversity of the C. difficile genome is discussed, and the current status of resistance of the organisms to various antimicrobial agents is reviewed. The role of transposons associated with antimicrobial resistance is Citation: Kartalidis, P.; Skoulakis, A.; appraised; the importance of plasmids associated with antimicrobial resistance is discussed, and the Tsilipounidaki, K.; Florou, Z.; significance of bacteriophages as a potential shuttle for antimicrobial resistance genes is presented. Petinaki, E.; Fthenakis, G.C. In the in silico study, 1101 C. difficile genomes were found to harbor mobile genetic elements; Tn6009, Clostridioides difficile as a Dynamic Tn6105, CTn7 and Tn6192, Tn6194 and IS256 were the ones more frequently identified.
    [Show full text]
  • Transformation
    BNL-71843-2003-BC The Ptieumococcus Editor : E. Tuomanen Associate Editors : B. Spratt, T. Mitchell, D. Morrison To be published by ASM Press, Washington. DC Chapter 9 Transformation Sanford A. Lacks* Biology Department Brookhaven National Laboratory Upton, NY 11973 Phone: 631-344-3369 Fax: 631-344-3407 E-mail: [email protected] Introduction Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S.
    [Show full text]
  • Identification of Clinically Relevant Streptococcus and Enterococcus
    pathogens Article Identification of Clinically Relevant Streptococcus and Enterococcus Species Based on Biochemical Methods and 16S rRNA, sodA, tuf, rpoB, and recA Gene Sequencing Maja Kosecka-Strojek 1,* , Mariola Wolska 1, Dorota Zabicka˙ 2 , Ewa Sadowy 3 and Jacek Mi˛edzobrodzki 1 1 Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; [email protected] (M.W.); [email protected] (J.M.) 2 Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland; [email protected] 3 Department of Epidemiology and Clinical Microbiology, National Medicines Institute, 00-725 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-12-664-6365 Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: Streptococci and enterococci are significant opportunistic pathogens in epidemiology and infectious medicine. High genetic and taxonomic similarities and several reclassifications within genera are the most challenging in species identification. The aim of this study was to identify Streptococcus and Enterococcus species using genetic and phenotypic methods and to determine the most discriminatory identification method. Thirty strains recovered from clinical samples representing 15 streptococcal species, five enterococcal species, and four nonstreptococcal species were subjected to bacterial identification by the Vitek® 2 system and Sanger-based sequencing methods targeting the 16S rRNA, sodA, tuf, rpoB, and recA genes. Phenotypic methods allowed the identification of 10 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains (Leuconostoc, Granulicatella, and Globicatella genera). The combination of sequencing methods allowed the identification of 21 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains.
    [Show full text]
  • Cryptogenic Organizing Pneumonia
    462 Cryptogenic Organizing Pneumonia Vincent Cottin, M.D., Ph.D. 1 Jean-François Cordier, M.D. 1 1 Hospices Civils de Lyon, Louis Pradel Hospital, National Reference Address for correspondence and reprint requests Vincent Cottin, Centre for Rare Pulmonary Diseases, Competence Centre for M.D., Ph.D., Hôpital Louis Pradel, 28 avenue Doyen Lépine, F-69677 Pulmonary Hypertension, Department of Respiratory Medicine, Lyon Cedex, France (e-mail: [email protected]). University Claude Bernard Lyon I, University of Lyon, Lyon, France Semin Respir Crit Care Med 2012;33:462–475. Abstract Organizing pneumonia (OP) is a pathological pattern defined by the characteristic presence of buds of granulation tissue within the lumen of distal pulmonary airspaces consisting of fibroblasts and myofibroblasts intermixed with loose connective matrix. This pattern is the hallmark of a clinical pathological entity, namely cryptogenic organizing pneumonia (COP) when no cause or etiologic context is found. The process of intraalveolar organization results from a sequence of alveolar injury, alveolar deposition of fibrin, and colonization of fibrin with proliferating fibroblasts. A tremen- dous challenge for research is represented by the analysis of features that differentiate the reversible process of OP from that of fibroblastic foci driving irreversible fibrosis in usual interstitial pneumonia because they may determine the different outcomes of COP and idiopathic pulmonary fibrosis (IPF), respectively. Three main imaging patterns of COP have been described: (1) multiple patchy alveolar opacities (typical pattern), (2) solitary focal nodule or mass (focal pattern), and (3) diffuse infiltrative opacities, although several other uncommon patterns have been reported, especially the reversed halo sign (atoll sign).
    [Show full text]
  • Antibiotic Resistance Threats in the United States, 2019
    ANTIBIOTIC RESISTANCE THREATS IN THE UNITED STATES 2019 Revised Dec. 2019 This report is dedicated to the 48,700 families who lose a loved one each year to antibiotic resistance or Clostridioides difficile, and the countless healthcare providers, public health experts, innovators, and others who are fighting back with everything they have. Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report) is a publication of the Antibiotic Resistance Coordination and Strategy Unit within the Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention. Suggested citation: CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. Available online: The full 2019 AR Threats Report, including methods and appendices, is available online at www.cdc.gov/DrugResistance/Biggest-Threats.html. DOI: http://dx.doi.org/10.15620/cdc:82532. ii U.S. Centers for Disease Control and Prevention Contents FOREWORD .............................................................................................................................................V EXECUTIVE SUMMARY ........................................................................................................................ VII SECTION 1: THE THREAT OF ANTIBIOTIC RESISTANCE ....................................................................1 Introduction .................................................................................................................................................................3
    [Show full text]