Fault-Related Deformation Over

Total Page:16

File Type:pdf, Size:1020Kb

Fault-Related Deformation Over FAULT-RELATED DEFORMATION OVER GEOLOGIC TIME: INTEGRATING FIELD OBSERVATIONS, HIGH RESOLUTION GEOSPATIAL DATA AND NUMERICAL MODELING TO INVESTIGATE 3D GEOMETRY AND NON-LINEAR MATERIAL BEHAVIOR A DISSERTATION SUBMITTED TO THE DEPARTMENT OF GEOLOGICAL AND ENVIRONMENTAL SCIENCES AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Peter James Lovely January 2011 © 2011 by Peter James Lovely. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/yb440sg1391 Includes supplemental files: 1. High resolution copy of Figure 1.4a: ALSM hillshade image and outcrop map of Sheep Mountain anticline, WY (Figure_1.4_HiRes.pdf) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. David Pollard, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. George Hilley I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Mark Zoback Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii iv Abstract A thorough understanding of the kinematic and mechanical evolution of fault- related structures is of great value, both academic (e.g. How do mountains form?) and practical (e.g. How are valuable hydrocarbons trapped in fault-related folds?). Precise knowledge of the present-day geometry is necessary to know where to drill for hydrocarbons. Understanding the evolution of a structure, including displacement fields, strain and stress history, may offer powerful insights to how and if hydrocarbons might have migrated, and the most efficient way to extract them. Small structures, including faults, fractures, pressure solution seams, and localized compaction, which may strongly influence subsurface fluid flow, may be predictable with a detailed mechanical understanding of a structure's evolution. The primary focus of this thesis is the integration of field observations, geospatial data including airborne LiDAR, and numerical modeling to investigate three dimensional deformational patterns associated with fault slip accumulated over geologic time scales. The work investigates contractional tectonics at Sheep Mountain anticline, Greybull, WY, and extensional tectonics at the Volcanic Tableland, Bishop, CA. A detailed geometric model is a necessary prerequisite for complete kinematic or mechanical analysis of any structure. High quality 3D seismic imaging data provides the means to characterize fold geometry for many subsurface industrial applications; however, such data is expensive, availability is limited, and data quality is often poor in regions of high topography where outcrop exposures are best. A new method for using high resolution topographic data, geologic field mapping and numerical interpolation is applied to model the 3D geometry of a reservoir-scale fold at Sheep Mountain anticline. The Volcanic Tableland is a classic field site for studies of fault slip scaling relationships and conceptual models for evolution of normal faults. Three dimensional elastic models are used to constrain subsurface fault geometry from detailed maps of fault scarps and topography, and to reconcile two potentially competing conceptual models for fault growth: by coalescence and by subsidiary faulting. The Tableland fault array likely initiated as a broad array of small faults, and v as some have grown and coalesced, their strain shadows have inhibited the growth and initiation of nearby faults. The Volcanic Tableland also is used as a geologic example in a study of the capabilities and limitations of mechanics-based restoration, a relatively new approach to modeling in structural geology that provides distinct advantages over traditional kinematic methods, but that is significantly hampered by unphysical boundary conditions. The models do not accurately represent geological strain and stress distributions, as many have hoped. A new mechanics-based retrodeformational technique that is not subject to the same unphysical boundary conditions is suggested. However, the method, which is based on reversal of tectonic loads that may be optimized by paleostress analysis, restores only that topography which may be explained by an idealized elastic model. Elastic models are appealing for mechanical analysis of fault-related deformation because the linear nature of such models lends itself to retrodeformation and provides computationally efficient and stable numerical implementation for simulating slip distributions and associated deformation in complicated 3D fault systems. However, cumulative rock deformation is not elastic. Synthetic models are applied to investigate the implications of assuming elastic deformation and frictionless fault slip, as opposed to a more realistic elasto-plastic deformation with frictional fault slip. Results confirm that elastic models are limited in their ability to simulate geologic stress distributions, but that they may provide a reasonable, first-order approximation of strain tensor orientation and the distribution of relative strain perturbations, particularly distal from fault tips. The kinematics of elastic and elasto- plastic models diverge in the vicinity of fault tips. Results emphasize the importance of accurately and completely representing subsurface fault geometry in linear or nonlinear models. vi Preface Faults and folds are inherently three dimensional structures that form according to the laws of physics in response to mechanical forces within the earth. However, structural analysis is often based upon two dimensional models and ad hoc kinematic methods. Recent advances in computing power and numerical methods provide the means to consider structural evolution in three dimensions with sophisticated mechanical models. Great strides have been made; however, routine structural analysis remains primarily a two dimensional and kinematic science. This thesis aims to advance our ability to model geologic structures in three dimensions and using mechanical approaches. In Chapter 1 of this thesis, I present a new method for creating a three dimensional geometric model of a folded geologic surface at Sheep Mountain anticline, WY, using airborne LiDAR data, outcrop mapping, and numerical interpolation. Accurate geometric characterization of the present day structure is a necessary first step for any 3D analysis of fault-related folding. Chapter 2 focuses on faulting processes in the Volcanic Tableland, Bishop, CA. Mechanical models are used to infer three dimensional subsurface fault geometry from maps of fault scarps and deformed topography, represented by airborne LiDAR data. Strain perturbations resulting from slip on the largest faults are then applied to investigate the relative importance of several different conceptual models for fault evolution. Chapter 3 considers mechanics-based restoration, a relatively new modeling approach that realizes the retrodeformational benefits of kinematic restoration in a fully mechanical framework. However, the new method is not without flaws. I demonstrate detrimental kinematic implications that stem from unphysical boundary conditions used in published restoration studies, and consider alternative methods that produce more physically appropriate results. In Chapter 4, I consider the limitations of simulating geological processes using elastic models without friction. Cumulative fault-related rock deformation is not elastic in nature, but elastic models are appealing for their numerical stability and computational efficiency. Mechanics-based restoration methods assume elastic deformation because it is reversible. In the vii Appendix, I use mechanical models to study fault slip, but the models are applied to earthquake processes rather than cumulative deformation. Models indicate that regions of reduced static stress drop in the vicinity of fault tips in large earthquakes rupturing multiple fault segments may help explain slip distributions inferred from geophysical inversion. While these research goals may appear diverse at first glance, all focus on characterization of the geometry and mechanics of faults and fault-related folds, which are common elements of hydrocarbon traps. In the first chapter of this thesis, I present a new three dimensional model of fold geometry at Sheep Mountain anticline, WY. David Pollard suggested using airborne LiDAR data and outcrop mapping to model fold geometry at Sheep Mountain anticline before I arrived at Stanford, and this project evolved under my direction over the following four years. I spearheaded the field mapping, data processing, and interpolation efforts, and wrote the initial manuscript. Co-author Christopher Zahasky, an undergraduate intern from the University of Minnesota in the summer of 2009, did much
Recommended publications
  • 326-97 Lab Final S.D
    Geol 326-97 Name: KEY 5/6/97 Class Ave = 101 / 150 Geol 326-97 Lab Final s.d. = 24 This lab final exam is worth 150 points of your total grade. Each lettered question is worth 15 points. Read through it all first to find out what you need to do. List all of your answers on these pages and attach any constructions, tracing paper overlays, etc. Put your name on all pages. 1. One way to analyze brittle faults is to calculate and plot the infinitesimal shortening and extension directions on a lower hemisphere, stereographic projection. These principal axes lie in the “movement plane”, which contains the pole to the fault plane and the slickensides, and are at 45° to the pole. The following questions apply to a single fault described in part (a), below: (a) A fault has a strike and dip of 250, 57 N and the slickensides have a rake of 63°, measured from the given strike azimuth. Plot the orientations of the fault plane and the slickensides on an equal area projection. (b) Bedding in the vicinity of the fault is oriented 37, 42 E. Assuming that the fault formed when the bedding was horizontal, determine and plot the original geometry of the fault and the slickensides. (c) Determine the original (pre-rotation)orientation of the infinitesimal shortening and extension axes for fault. 2. All of the following questions apply to the map shown on the next page. In all of the rocks with cleavage, you may assume that both cleavage and bedding strike 024°.
    [Show full text]
  • Pacific Petroleum Eology
    Pacific Petroleum Geology NEWSLETTER Pacific Section • American Association of Petroleum Geologists September & October• 2010 School of Rock Ridge Basin CONTENTS 2010-2011 OFF I C E RS EV E RY ISSU E President Cynthia Huggins 661.665.5074 [email protected] 4 Message from the President • C. Huggins President-Elect John Minch 805.898.9200 6 Editor’s Corner • E. Washburn [email protected] Vice President Jeff Gartland 7 PS-AAPG News 661.869.8204 [email protected] 13 Publications Secretary Tony Reid 661.412.5467 17 Member Society News [email protected] Treasurer 2009-2011 Cheryl Blume TH I S ISSU E 661.864.4722 [email protected] 8 Sharktooth Hill Fossil Fund • K. Hancharick Treasurer 2010-2012 Jana McIntyre 661.869.8231 [email protected] 10 AAPG Young Professionals • J. Allen Past President Scott Hector 11 Serpentine: The Rest of the Story • Mel 707.974.6402 [email protected] Erskine Editor-in-Chief Ed Washburn 661.654.7182 [email protected] ST AFF Web Master Bob Countryman 661.589.8580 [email protected] Membership Chair Brian Church 661.654.7863 [email protected] Publications Chair Larry Knauer 661.392.2471 [email protected] [email protected] Advisory Council Representative Kurt Neher 661.412.5203 [email protected] Cover photo of Ridge Basin outcrop courtesy Jonathan Allen Page 3 Pacific Petroleum Geologist Newsletter September & October • 2010 MESSAGE FRO M THE PRESIDENT CYNTHIA HUGGINS Do you know what Marilyn Bachman, Mike Fillipow, Peggy Lubchenco, and Jane Justus Frazier have in common? They were all recipients of the Teacher of the Year Award from AAPG, and they all came from the Pacific Section! Of the 13 recipients of this award, four have been from PSAAPG.
    [Show full text]
  • Chapter 01.Pdf
    Mathematical Background in Aircraft Structural Mechanics CHAPTER 1. Linear Elasticity SangJoon Shin School of Mechanical and Aerospace Engineering Seoul National University Active Aeroelasticityand Rotorcraft Lab. Basic equation of Linear Elasticity Structural analysis … evaluation of deformations and stresses arising within a solid object under the action of applied loads - if time is not explicitly considered as an independent variable → the analysis is said to be static → otherwise, structural dynamic analysis or structural dynamics Small deformation Under the assumption of { Linearly elastic material behavior - Three dimensional formulation → a set of 15 linear 1st order PDE involving displacement field (3 components) { stress field (6 components) strain field (6 components) plane stress problem → simpler, 2-D formulations { plane strain problem For most situations, not possible to develop analytical solutions → analysis of structural components … bars, beams, plates, shells 1-2 Active Aeroelasticity and Rotorcraft Lab., Seoul National University 1.1 The concept of Stress 1.1.1 The state of stress at a point State of stress in a solid body… measure of intensity of forces acting within the solid - distribution of forces and moments appearing on the surface of the cut … equipollent force F , and couple M - Newton’s 3rd law → a force and couple of equal magnitudes and opposite directions acting on the two forces created by the cut Fig. 1.1 A solid body cut by a plane to isolate a free body 1-3 Active Aeroelasticity and Rotorcraft
    [Show full text]
  • Folds and Folding
    Chapter ................................ 11 Folds and folding Folds are eye-catching and visually attractive structures that can form in practically any rock type, tectonic setting and depth. For these reasons they have been recognized, admired and explored since long before geology became a science (Leonardo da Vinci discussed them some 500 years ago, and Nicholas Steno in 1669). Our understanding of folds and folding has changed over time, and the fundament of what is today called modern fold theory was more or less consolidated in the 1950s and 1960s. Folds, whether observed on the micro-, meso- or macroscale, are clearly some of our most important windows into local and regional deformation histories of the past. Their geometry and expression carry important information about the type of deformation, kinematics and tectonics of an area. Besides, they can be of great economic importance, both as oil traps and in the search for and exploitation of ores and other mineral resources. In this chapter we will first look at the geometric aspects of folds and then pay attention to the processes and mechanisms at work during folding of rock layers. 220 Folds and folding 11.1 Geometric description (a) Kink band a a It is fascinating to watch folds form and develop in the laboratory, and we can learn much about folds and folding by performing controlled physical experiments and numerical simulations. However, modeling must always be rooted in observations of naturally folded Trace of Axial trace rocks, so geometric analysis of folds formed in different bisecting surface settings and rock types is fundamental. Geometric analy- (b) Chevron folds sis is important not only in order to understand how various types of folds form, but also when considering such things as hydrocarbon traps and folded ores in the subsurface.
    [Show full text]
  • The Role of Flexural Slip in the Development of Chevron Folds
    Scholars' Mine Masters Theses Student Theses and Dissertations Spring 2018 The role of flexural slip in the development of chevron folds Yuxing Wu Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Petroleum Engineering Commons Department: Recommended Citation Wu, Yuxing, "The role of flexural slip in the development of chevron folds" (2018). Masters Theses. 7788. https://scholarsmine.mst.edu/masters_theses/7788 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. i THE ROLE OF FLEXURAL SLIP IN THE DEVELOPMENT OF CHEVRON FOLDS by YUXING WU A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN PETROLEUM ENGINEERING 2018 Approved by Andreas Eckert, Advisor John Patrick Hogan Jonathan Obrist Farner ii 2018 Yuxing Wu All Rights Reserved iii ABSTRACT Chevron folds are characterized by straight limbs and narrow hinge zones. One of the conceptual models to initiate and develop chevron folds involves flexural slip during folding. While some kinematical models show the necessity for slip to initiate during chevron folding, recent numerical modeling studies of visco-elastic effective single layer buckle folding have shown that flexural slip does not result in chevron folds. In this study, several 2D finite element analysis models are run, distinguished by 1) geometry of the initial perturbation (sinusoidal and white noise), 2) varying thewavelength of the initial perturbation (10%, 50%, and 100% of the dominant wavelength) and 3) variation of the friction coefficient (high and low friction coefficient between interlayers).
    [Show full text]
  • Paleostress Analysis of the Cretaceous Rocks in Northern Jordan
    Volume 3, Number 1, June, 2010 ISSN 1995-6681 JJEES Pages 25- 36 Jordan Journal of Earth and Environmental Sciences Paleostress Analysis of the Cretaceous Rocks in Northern Jordan Nuha Al Khatib a, Mohammad atallah a, Abdullah Diabat b,* aDepartment of Earth and Environmental Sciences, Yarmouk University Irbid-Jordan b Institute of Earth and Environmental Sciences, Al al-Bayt University, Mafraq- Jordan Abstract Stress inversion of 747 fault- slip data was performed using an improved Right-Dihedral method, followed by rotational optimization (WINTENSOR Program, Delvaux, 2006). Fault-slip data including fault planes, striations and sense of movements, are obtained from the quarries of Turonian Wadi As Sir Formation , and distributed over 14 stations in the study area of Northern Jordan. The orientation of the principal stress axes (σ1, σ2, and σ3 ) and the ratio of the principal stress differences (R) show that σ1 (SHmax) and σ3 (SHmin) are generally sub-horizontal and σ2 is sub-vertical in 9 of 15 paleostress tensors, which are belonging to a major strike-slip system with σ1 swinging around NNW direction. Four stress tensors show σ2 (SHmax), σ1 vertical and σ3 are NE oriented. This situation is explained as permutation of stress axes σ1 and σ2 that occur during tectonic events. The new paleostress results show three paleostress regimes that belong to two main stress fields. The first is characterized by E-W to WNW-ESE compression and N-S to NNE –SSW extension. This stress field is associated with the formation of the Syrian Arc fold belt started in the Turonian. The second paleostress field is characterized by NW-SE to NNW-SSE compression and NE-SW to ENE-WSW extension.
    [Show full text]
  • Anja SCHORN & Franz NEUBAUER
    Austrian Journal of Earth Sciences Volume 104/2 22 - 46 Vienna 2011 Emplacement of an evaporitic mélange nappe in central Northern Calcareous Alps: evidence from the Moosegg klippe (Austria)_______________________________________________ Anja SCHORN*) & Franz NEUBAUER KEYWORDS thin-skinned tectonics deformation analysis Dept. Geography and Geology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria; sulphate mélange fold-thrust belt *) Corresponding author, [email protected] mylonite Abstract For the reconstruction of Alpine tectonics, the Permian to Lower Triassic Haselgebirge Formation of the Northern Calcareous Alps (NCA) (Austria) plays a key role in: (1) understanding the origin of Haselgebirge bearing nappes, (2) revealing tectonic processes not preserved in other units, and (3) in deciphering the mode of emplacement, namely gravity-driven or tectonic. With these aims in mind, we studied the sulphatic Haselgebirge exposed to the east of Golling, particularly the gypsum quarry Moosegg and its surroun- dings located in the central NCA. There, overlying the Lower Cretaceous Rossfeld Formation, the Haselgebirge Formation forms a tectonic klippe (Grubach klippe) preserved in a synform, which is cut along its northern edge by the ENE-trending high-angle normal Grubach fault juxtaposing Haselgebirge to the Upper Jurassic Oberalm Formation. According to our new data, the Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Formation, which includes many clasts derived from the Hasel- gebirge Fm. and its exotic blocks deposited in front of the incoming nappe. The main Haselgebirge body contains foliated, massive and brecciated anhydrite and gypsum. A high variety of sulphatic fabrics is preserved within the Moosegg quarry and dominant gyp- sum/anhydrite bodies are tectonically mixed with subordinate decimetre- to meter-sized tectonic lenses of dark dolomite, dark-grey, green and red shales, pelagic limestones and marls, and abundant plutonic and volcanic rocks as well as rare metamorphic rocks.
    [Show full text]
  • Joints, Folds, and Faults
    Structural Geology Rocks in the Crust Are Bent, Stretched, and Broken … …by directed stresses that cause Deformation. Types of Differential Stress Tensional, Compressive, and Shear Strain is the change in shape and or volume of a rock caused by Stress. Joints, Folds, and Faults Strain occurs in 3 stages: elastic deformation, ductile deformation, brittle deformation 1 Type of Strain Dependent on … • Temperature • Confining Pressure • Rate of Strain • Presence of Water • Composition of the Rock Dip-Slip and Strike-Slip Faults Are the Most Common Types of Faults. Major Fault Types 2 Fault Block Horst and Graben BASIN AND Crustal Extension Formed the RANGE PROVINCE Basin and Range Province. • Decompression melting and high heat developed above a subducted rift zone. • Former margin of Farallon and Pacific plates. • Thickening, uplift ,and tensional stress caused normal faults. • Horst and Graben structures developed. Fold Terminology 3 Open Anticline – convex upward arch with older rocks in the center of the fold (symmetrical) Isoclinal Asymmetrical Overturned Recumbent Evolution Simple Folds of a fold into a reverse fault An eroded anticline will have older beds in the middle An eroded syncline will have younger beds in middle Outcrop patterns 4 • The Strike of a body of rock is a line representing the intersection of A layer of tilted that feature with the plane of the horizon (always measured perpendicular to the Dip). rock can be • Dip is the angle below the horizontal of a geologic feature. represented with a plane. o 30 The orientation of that plane in space is defined with Strike-and- Dip notation. Maps are two- Geologic Map Showing Topography, Lithology, and dimensional Age of Rock Units in “Map View”.
    [Show full text]
  • Deformation in the Hinge Region of a Chevron Fold, Valley and Ridge Province, Central Pennsylvania
    JournalofStructuraIGeolog3`ko{ ~,.No 2, pp 157tolt, h, 1986 (~IUI-~',I41/gc~$03(10~0(Ki Printed in Oreal Britain ~{: ]t~s¢~Pcrgam-n Press lJd Deformation in the hinge region of a chevron fold, Valley and Ridge Province, central Pennsylvania DAVID K. NARAHARA* and DAVID V. WILTSCHKO% Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 481(19, U.S A (Received 27 November 1984: accepted in revised form 18 July 1985) Abstract--The hinge region of an asymmetrical chevron fold in sandstone, taken from the Tuscarora Formation of central Pennsylvania. U.S.A., was studied in detail in an attempt to account for the strain that produced the fold shape. The'fold hinge consists of a medium-grained quartz arenite and was deformed predominantly by brittle fracturing and minor amounts of pressure solution and intracrystalline strain. These fractures include: (1) faults, either minor offsets or major limb thrusts, (2) solitary well-healed quartz veins and (3) fibrous quartz veins which are the result of repeated fracturing and healing of grains. The fractures formed during folding as they are observed to cross-cut the authigenic cement. Deformation lamellae and in a few cases, pressure solution, occurred contemporaneously with folding. The fibrous veins appear to have formed as a result of stretching of one limb: the', cross-cut all other structures. Based upon the spatial relationships between the deformation features, we believe that a neutral surface was present during folding, separating zones of compression and extension along the inner and outer arcs, respectively. Using the strain data from the major faults, the fold can be restored back to an interlimb angle of 157°; however, the extension required for such an angle along the outer arc is much more than was actually measured.
    [Show full text]
  • Brittle Deformation in Phyllosilicate-Rich Mylonites: Implication for Failure Modes, Mechanical Anisotropy, and Fault Weakness
    UNIVERSITY OF MILANO-BICOCCA Department of Earth and Environmental Sciences PhD Course in Earth Sciences (XXVII cycle) Academic Year 2014 Brittle deformation in phyllosilicate-rich mylonites: implication for failure modes, mechanical anisotropy, and fault weakness Francesca Bolognesi Supervisor: Dott. Andrea Bistacchi Co-supervisor: Dott. Sergio Vinciguerra 0 Brittle deformation in phyllosilicate-rich mylonites: implication for failure modes, mechanical anisotropy, and fault weakness Francesca Bolognesi Supervisor: Dott. Andrea Bistacchi Co-supervisor: Dott. Sergio Vinciguerra 1 2 1 Table of contents 1. Introduction .......................................................................................................................................... 5 2. Weakening mechanisms and mechanical anisotropy evolution in phyllosilicate-rich cataclasites developed after mylonites in a low-angle normal fault (Simplon Line, Western Alps) ................................ 6 1.1 Abstract ......................................................................................................................................... 7 1.2 Introduction .................................................................................................................................. 8 1.3 Structure and tectonic evolution of the SFZ ............................................................................... 10 1.4 Structural analysis ....................................................................................................................... 14
    [Show full text]
  • Pleistocene-Holocene Tectonic Reconstruction of the Ballık Travertine
    Van Noten et al. – Pleistocene-Holocene tectonic reconstruction of the Ballık Travertine 1 Pleistocene-Holocene tectonic reconstruction of the Ballık 2 travertine (Denizli Graben, SW Turkey): (de)formation of 3 large travertine geobodies at intersecting grabens 4 5 Non-peer reviewed preprint submitted to EarthArXiv 6 Paper in revision at Journal of Structural Geology 7 1,2,4,* 3 3 3 8 Koen VAN NOTEN , Savaş TOPAL , M. Oruç BAYKARA , Mehmet ÖZKUL , 4,♦ 3,4 4,* 9 Hannes CLAES , Cihan ARATMAN & Rudy SWENNEN 10 11 1 Geological Survey of Belgium, Royal Belgian Institute of Natural Sciences, Jennerstraat 13, 1000 12 Brussels, Belgium 13 2 Seismology-Gravimetry, Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium 14 3 Department of Geological Engineering, Pamukkale University, 20070 Kınıklı Campus, Denizli, 15 Turkey 16 4 Geodynamics and Geofluids Research Group, Department of Earth and Environmental Sciences, 17 Katholieke Universiteit Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium 18 ♦ now at Clay and Interface Mineralogy, Energy & Mineral Resources, RWTH Aachen University, 19 Bunsenstrasse 8, 52072 Aachen, Germany 20 21 *Corresponding authors 22 [email protected] (K. Van Noten) 23 [email protected] (R. Swennen) 24 25 Highlights: 26 - A new fault map of the entire eastern margin of the Denizli Basin is presented 27 - Pleistocene travertine deposition occurred along an already present graben morphology 28 - Dominant WNW-ESE normal faults reflect dominant NNE-SSW extension 29 - Ballik area acted as a transfer zone during transient NW-SE extension 30 - Complex fault networks at intersecting basins are ideal for creating fluid conduits 31 32 Graphical Abstract: See Figure 14 33 1 Van Noten et al.
    [Show full text]
  • Memorial to William Kelso Gealey 1918-1993 PETER VERRALL 185 Graystone Terrace, Apartment 1, San Francisco, California 94114
    Memorial to William Kelso Gealey 1918-1993 PETER VERRALL 185 Graystone Terrace, Apartment 1, San Francisco, California 94114 Sitting in the lobby of a Venezuelan hotel recently, I looked up and thought I saw Bill Gealey coming through the door. This prospect of meeting him again filled me with enormous pleasure, until I remembered, sadly, that he had died some time before. The pleasure that I had felt, though, was typical of the effect that Bill, always intelligent and affable, had upon those fortunate enough to know him. Bill was bom on September 8, 1918, two months before the end of World War I, in New Castle, Pennsylva­ nia. As a very young man, however, he followed Horace Greeley’s advice and went West to Stockton, California. From the age of five to sixteen, he proceeded through grade school and high school and, in 1929, briefly became a member of the First Presbyterian Church in Stockton. He once remarked that he was broke through most of this period, a familiar experience to those who grew up during those Depression years. He saved enough money from his paper route, however, to be able to enter the University of California at Berkeley in 1935, immediately after high school. After four years there, supported by scholar­ ships and various jobs, he graduated at the age of nineteen with an A.B. in paleontology and geology. Thus armed, he began his professional career as a geology teaching assistant at Anti­ och College, Yellow Springs, Ohio. This experience was invaluable because it instilled in him the ability to communicate complex ideas that was so characteristic of his later career.
    [Show full text]