THE PARAGENETIC RELATIONSHIP of EPIDOTE-QUARTZ HYDROTHERMAL ALTERATION WITHIN the NORANDA VOLCANIC COMPLEX, QUEBEC R' the PARAGENETIC RELATIONSHIPS of EPIDOTE-QUARTZ

Total Page:16

File Type:pdf, Size:1020Kb

THE PARAGENETIC RELATIONSHIP of EPIDOTE-QUARTZ HYDROTHERMAL ALTERATION WITHIN the NORANDA VOLCANIC COMPLEX, QUEBEC R' the PARAGENETIC RELATIONSHIPS of EPIDOTE-QUARTZ TH 1848 THE PARAGENETIC RELATIONSHIP OF EPIDOTE-QUARTZ HYDROTHERMAL ALTERATION WITHIN THE NORANDA VOLCANIC COMPLEX, QUEBEC r' THE PARAGENETIC RELATIONSHIPS OF EPIDOTE-QUARTZ HYDROTHERMAL ALTERATION WITHIN THE NORANDA VOLCANIC COMPLEX, QUEBEC Frank Santaguida (B.Sc., M.Sc.) Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Earth Sciences Carleton University Ottawa, Ontario, Canada May, 1999 Copyright © 1999, Frank Santaguida i The undersigned hereby recommend to the Faculty of Graduate Studies and Research acceptance of the thesis, THE PARAGENETIC RELATIONSHIPS OF EPIDOTE-QUARTZ HYDROTHERMAL ALTERATION WITHIN THE NORANDA VOLCANIC COMPLEX, QUEBEC submitted by Frank Santaguida (B.Sc., M.Sc.) in partial fulfillment of the requirements for the degree of Doctor of Philosophy ,n. cGJI, Chairman, Department of Earth Sciences \ NW Thesis Supervisor /4, ad,/ External Examiner ii ABSTRACT Epidote-quartz alteration is conspicuous throughout the central Noranda Volcanic Complex, but its relationship to the Volcanic-Hosted Massive Sulphide (VHMS) deposits is relatively unknown. A continuum of alteration textures exist that reflect epidote abundance as well as alteration intensity. The strongest epidote-quartz alteration phase is represented by small discrete "patches" of complete groundmass replacement that are concentrated in discrete zones. The largest and most intense zones are spatially contained in mafic volcanic eruptive centres, the Old Waite Paleofissure and the McDougall- Despina Eruptive Centre. Therefore, epidote-quartz alteration is regionally semi- conformable and is not restricted to the hangingwall or footwall of the VHMS deposits. Epidote-quartz alteration is absent from the alteration pipes associated with sulphide mineralization. Early formed epidote-quartz alteration was confined to the eruptive centres, but became more widespread as mafic volcanism progressed and the hydrothermal system matured. Pervasive silicification was also produced as the system matured, but is overprinted by epidote developed during the latter stages of volcanism. Widespread epidote-quartz alteration also flourished during these latter stages along permeable conformable zones, such as the Rusty Ridge formation, deep in the volcanic sequence. Large mass addition of Si, Al, Fei+, Ca, Mn, V, Cr, and Sr accompany depletion of Fee+, Mg, Na, K, Rb, Ba, and Zn in the epidote-quartz patches. Copper depletion is iii erratic. Large enrichments in Mn, V, and Cr are related to the modal abundance of epidote versus quartz in the alteration patches and highlight the areas of strong alteration. Background alteration prior to epidotization sufficiently enriched hydrothermal fluids in whole-rock components that produced the alteration patches. Fluid:rock ratios of 75-100 correspond to the enrichment that produced the epidote-quartz alteration. End-member epidote-clinozoisite compositions are prominent throughout the Noranda Cauldron, even at the micron-scale. At the patch-scale, iron-rich domains in epidote correspond to siliceous zones near the wallrock contact that reflect multiple episodes of hydrothermal alteration. At the cauldron-scale, Al-rich epidote is restricted to the eruptive centres where fluid circulation and temperatures are enhanced. The metasomatic changes due to epidote-quartz alteration are related to high fluid fluxes and cannot be explained by metamorphic processes. Epidote in the Noranda Cauldron is similar to the patchy alteration described in ophiolites and may have formed at moderate fluid temperatures (220-300 °C). Epidote-quartz alteration zones in Noranda do not represent the extensive, high temperature (300-400 °C), metal depletion zones that characterize epidosites deep in ophiolite sections. The Noranda Cauldron model closely corresponds to descriptions of epidote-quartz alteration in other VHMS districts. iv ACKNOWLEDGMENTS Funding for this thesis was provided by a Canadian Mining Research Organization project grant (CAMIRO project #94E07) and an NSERC grant to Dr. David Watkinson, Dr. Mark Hannington and Dr. Harold Gibson. In-kind support was also obtained from the Geological Survey of Canada and Carleton University. The participating mineral exploration companies are thanked for their continued interest in research projects oriented towards the understanding of VHMS deposits. I have benefited greatly through discussions with company geologists who helped focus the scope of this study. Inmet Exploration Ltd. is particularly noted for their field support and open use of files and maps of the Rouyn-Noranda area. I also wish to thank Dr. Alan Galley and Dr. Ian Jonasson of the GSC for several exchanges of ideas on the Noranda area geology. Mr. Richard Lancaster of the GSC provided boundless support for sample management, photography, and constant cynical dialogue. The micro-analytical expertise and cutting viewpoint of Mr. Peter Jones at Carleton University was also critical to the progression of this thesis. Thanks also go to the excellent technical assistance of Mr. Chris Rogers (Newf.') and Mr. Shawn Donaldson (`Big Boy'). I am forever personally indebted to my thesis supervisors. I maintained focus during this study by their collective insight into the scope of this thesis. Dr. Harold Gibson's wealth of knowledge in the field and on the Noranda geology set high standards of accomplishment which I hoped to have achieved. Dr. Mark Hannington's tenacity to v avoid the traps of details has made this study relevant to the grander schemes of VHMS deposit models. Dr. David Watkinson's even temperament was useful as motivation during times of reckless thought. I am grateful to my family and close friends who have supported me emotionally without question. My Mom and Dad have been particularly helpful in unconsciously reminding me that life is meant to be eaten and not just experienced. Finally, I wish to thank my wife, Suzi, who gets me through all the difficult "alterations" in life. vi TABLE OF CONTENTS CHAPTER 1: INTRODUCTION 1 Purpose 1 Scope 1 CHAPTER 2: GEOLOGIC SETTING 5 Volcanic Stratigraphy 5 VHMS Mineralization 7 Regional Hydrothermal Alteration and Metamorphism 10 CHAPTER 3: METHODS 17 Regional Mapping 17 Detailed Mapping 18 Whole Rock Geochemistry 18 Mineral Chemistry 19 CHAPTER 4: HYDROTHERMAL ALTERATION MINERAL 21 ASSEMBLAGES IN THE NORANDA VOLCANIC COMPLEX Background Alteration 22 Carbonate 25 Sericite-quartz 26 Chlorite-sericite 27 Silicification 28 Epidote-quartz 30 Stratigraphic Distribution 36 Summary 40 CHAPTER 5: RELATIONSHIPS OF EPIDOTE-QUARTZ ALTERATION 52 IN THE NORANDA MINE SEQUENCE Lac Duprat South 52 Old Waite-Norbec Mines Area 58 Ansil Hill 62 Amulet F Shaft Area. 65 Amulet Upper A Area. 68 VHMS Deposits 74 Summary 79 vii TABLE OF CONTENTS CHAPTER 6: WHOLE-ROCK METASOMATIC CHANGES 98 ASSOCIATED WITH EPIDOTE-QUARTZ Mass Balance Calculation Method 100 Conserved Elements 101 Least Altered Volcanic Rock Compositions 102 Mass Balance Results 104 Background Alteration 104 Epidote-Quartz Alteration 106 Spatial Distribution of Gains/Losses (Cauldron Scale) 109 Patch-scale Mass Gains/Losses 110 Lithologic Trends 113 Absolute Mass Changes 116 Mass Additions by Hydrothermal Fluids 118 Preliminary Whole-Rock Oxygen Isotope Data 121 for Epidote-Quartz Patches Summary 124 CHAPTER 7: ZONING OF ALTERATION MINERALS 143 Fe/Al Zoning in Epidote 143 Epidote Composition in Different Textures 147 Epidote Compositions in Different Lithologies 149 The Distribution of Epidote Compositions 150 Trace Elements in Epidote 151 The Distribution of Background Chlorite Compositions 152 Summary 153 CHAPTER 8: DISCUSSION 169 Alteration versus Metamorphic Origin of Epidote 169 Development of Epidote-Quartz Alteration in the Noranda Cauldron 171 Chemical Reactions Associated with Epidote-Quartz Alteration 178 Epidote-Quartz Alteration and Regional Oxygen Isotope Patterns 182 Epidote-Quartz Alteration and the VHMS Model 186 The Noranda Cauldron Model 186 The Ophiolite-Hosted VHMS Model 192 Comaprisons Between the Models 197 CHAPTER 9: CONCLUSIONS 206 REFERENCES 210 viii LIST OF TABLES page Table 4.1. Alteration Mineral Assemblages and Textures 43 within the CNVC. Table 5.1. Summary of Detailed Map Areas 81 Table 6.1. Least Altered Compositions of Andesitic Rocks 126 in the CNVC. Table 6.2. Summary of Mass Balance Results 129 Table 6.3. Absolute Mass Changes in the Rusty Ridge Formation 130 Table 6.4. Data for Water:Rock Ratio Calculations 131 Table 6.5. Preliminary Whole Rock Oxygen Isotope Data for 132 Epidote-Quartz Alteration Patches. Table 8.1. Chemical Reactions Representative of Alteration 199 Mineral Paragenesis in the CNVC. ix LIST OF MAPS page The Geology of the Central Noranda Volcanic Complex in pocket LIST OF FIGURES ls' Figure 2.1. Regional geology of the Rouyn-Noranda area 12 Figure 2.2. Geology of the Noranda Volcanic Complex 13 Figure 2.3. Eruptive centres within the Noranda Cauldron 14 Figure 2.4. Structural cross-section of the Noranda Cauldron 15 and location of massive sulphide deposits. Figure 2.5. Regional hydrothermal alteration and metamorphic 16 mineral assemblages in the Blake River Group. Figure 4.1. The distribution of hydrothermal alteration, central NVC 44 Figure 4.2. Alteration mineral assemblages within the 45 Noranda Mine Sequence. Figure 5.1. Lac Duprat South area alteration map 82 Figure 5.2. Epidote-quartz alteration within
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • AM56 447.Pdf
    THE AMERTCAN MINERAIOGIST, VOL. 56, MARCTI-APRIL, 1971 REFINEMENT OF THE CRYSTAL STRUCTURES OF EPIDOTE, ALLANITE AND HANCOCKITE W. A. Dorr,a.sr.,Department of Geology Universi.tyof California,Los Angeles90024. Assrnlcr Complete, three-dimensional crystal structure studies, including site-occupancy refine- ment, of a high-iron epidote, allanite, and hancockite have yielded cation distributions Car.ooCaroo(Alo gaFeo.os)Alr.oo(Alo zFeo.zo)SiaOrsH for epidote, Car oo(REo.zrCao:e)(AIs6t Feo ar)AL.oo(Alo.rzFeo$)SLOr3H for allanite, and Car.oo(PbosSro zrCao.zs) (Alo.eoFeo u)Alr.oo- (Al0 16Fe0.84)SLO13Hfor hancockite. These results when combined with those obtained in previous epidote-group refinements establish group-wide distribution trends in both the octahedral sites and the large-cation sites. Polyhedral expansion or contraction occurs at those sites involved in composition change but a simple mechanism, involving mainly rigid rotation of polyhedra, allows all other polyhedra to retain their same geometries in aII the structures examined. fNrnolucrtoN As part of a study of the structure and crystal chemistry of the epidote- group minerals, the first half of this paper reports the results of refine- ment of the crystal structures of three members of this group: allanite, hancockite, and (high-iron) epidote. Also, as an aid in assigning the ps2+, ps3+ occupancy of the sites in allanite, a preliminary Md,ssbauer spectral analysis of this mineral is presented. In the second half these structures are compared with three other members of the epidote group that were recently refined, clinozoisite (Dollase, 1968), piemontite (Dollase, 1969), and low-iron epidote (P.
    [Show full text]
  • EPIDOTE 3+ Ca2(Fe ,Al)3(Sio4)3(OH) (See Also Clinozoisite) an Abundant and Common Mineral Either of Hydrothermal Or Metamorphic Origin
    EPIDOTE 3+ Ca2(Fe ,Al)3(SiO4)3(OH) (see also clinozoisite) An abundant and common mineral either of hydrothermal or metamorphic origin. In various greenschists with chlorite and actinolite; in silicate marbles; in veins cutting granites and metamorphic rocks such as amphibolite; and in vesicles in basaltic rocks. In the native copper deposits it is abundant in both veins and basaltic lodes and locally also in the Calumet and Hecla Conglomerate. It is especially abundant in the Evergreen and succeeding lodes of that series and Figure 75: A 1.5 mm epidote crystal from the Osceola in the Isle Royale lode (Butler and Burbank, 1929). mine, Calumet, Houghton County. Dan Behnke Epidote forms a solid solution series with specimen and photograph. clinozoisite, and chemical analyses of Copper Country epidotes, though iron dominant, show a the Number 10 shaft (Falster, 1978). 9. Found in considerable compositional range between these the Jacobsville Sandstone as a heavy detrital species two species (Stoiber and Davidson, 1959; Livnat, (Denning, 1949). 10. Champion mine, 1983). “Pistacite” is an obsolete name for green Painesdale. 11. Laurium mine, Osceola. 12. epidote-clinozoisite series minerals. Northern and Tamarack mine, Calumet. Southern Peninsulas. Keweenaw County: 1. Mohawk mine. 2. Gratiot County: Near Ithaca, T10N, R2W in Seneca mines, Numbers 1 and 2: In fissure veins Michigan Basin Deep Drill Hole in both altered (Stoiber and Davidson, 1959). 3. Ojibway mine. basalt-gabbro units (McCallister et al., 1978). 4. Along shore near Epidote Lake on Isle Royale: Massive, pale green band (Dustin, 1931). 5. Houghton County: 1. Calumet and Hecla mines, Jacobsville Sandstone: An accessory detrital species Osceola lode: With copper in fractures and (Denning, 1949).
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]
  • Epidote Group
    Epidote Group Chemically complex (A 2M3Si 3O12 OH) A sites contain large, high-coordination cations Ca, Sr, lanthanides M sites are octohedrally-coordinated, trvalent (occasionally divalent) cations Al, Fe 3+ , Mn3+, Fe2+, Mg2+ Space group: P21/m Crystal class: monoclinic 2/m a=8.98 b=5.64 c=10.22 (angstroms) a=1.670-1.715 b=1.674-1.725 g=1.690-1.734 Z=2 Solid solution extends form clinozoisite to epidote Chemical formula Epidote Ca2(Al,Fe)Al2O(SiO4)(Si2O7)(OH) Clinozoisite Ca2Al3O(SiO4)(Si2O7)(OH) Zoisite is an orthorhombic polymorph (Pnmc) of clinozoisite 1 Epidote structure type Two types of edge-sharing octahedra - single chain of M(2) - zig-zag chain of central M(1) and peripheral M(3) These chains are crosslinked by SiO4 and SiO7 groups Between the chains and crosslinks are relatively large cavities which house the A(1) and A(2) cations. Silica tetrahedra - Si (1) and Si(2) share O(9), forming an Si 2O 7 group - Si (3) forms an isolated SiO 4 group Each tetrahedron retains essentially its same shape and size in all structures In a given bonding situation a particular Si-O bond type has nearly the same value in each mineral, however, the different Si-O bond types vary in length due to local charge imbalance. MO 6 Octahedra - Unequal occupancy of the 3 different octahedral positions, M(1), M(2), M(3). M(2) octahedral chain contains only Al atoms M(1) and M(3) substitute entirely with non-Al atoms - the M(3) octahedra contain a larger fraction 2 A(1) and A(2) Polyhedra Clinozoisite and epidote have A sties occupied entirely by calcium atoms.
    [Show full text]
  • Epidote in Calc-Alkaline Magmas: an Experimental Study of Stability, Phase Relationships, and the Role of Epidote in Magmatic Evolution
    American Mineralogist, Volume 81, pages 462-474, 1996 Epidote in calc-alkaline magmas: An experimental study of stability, phase relationships, and the role of epidote in magmatic evolution MAX W. SCHMIDT1,2 ANDALAN B. THOMPSON3 'Departement Geologie, Universite Blaise Pascal, CNRS-URAIO, 5 rue Kessler, 63038 Clermont-Ferrand, France 2Bayerisches Geoinstitut, Universitat Bayreuth, D-95440 Bayreuth, Germany 3lnstitut flir Mineralogie and Petrographie, Sonneggstrasse 5, Eidgenossische Technische Hochschule, CH-8092 Zurich, Switzerland ABSTRACT Experiments on tonalite and granodiorite were performed at conditions ranging from 2.1 to 18 kbar and 550 to 850°C to establish the magmatic stability field of epidote as a function of P, T, and f02. At water-saturated conditions and f02 buffered by NNO, epidote has a wide magmatic stability field in tonalite. At 13 kbar, this field extends from the wet solidus at 630 to 790 0c. The low-pressure intersection of the magmatic epidote crystallization reaction and the H20-saturated tonalite solidus, and hence the minimum pressure for magmatic epidote, occurs at about 5 kbar. The Clapeyron slopes of epidote melting reactions are moderately positive in P-T space at pressures below the intersection of the epidote melting and the gamet-in reactions at 13 kbar, 790°C. At this intersection, epidote reaches its maximal thermal stability (790°C) in tonalite-H20. In the presence of garnet, that is above 14 kbar, epidote melting reactions have steep negative Clapeyron slopes in P-T space. At P-T conditions near the low-pressure intersection of the epidote melting reaction with the water-saturated solidus, experiments were also performed with f02 buffered by HM.
    [Show full text]
  • Replacement of Primary Monazite by Apatite-Allanite-Epidote Coronas in an Amphibolite Facies Granite Gneiss from the Eastern Alps
    American Mineralogist, Volume 83, pages 248±258, 1998 Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps FRITZ FINGER,IGOR BROSKA,* MALCOLM P. ROBERTS, AND ANDREAS SCHERMAIER Institut fuÈr Mineralogie der UniversitaÈt Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria ABSTRACT Accessory monazite crystals in granites are commonly unstable during amphibolite fa- cies regional metamorphism and typically become mantled by newly formed apatite-allan- ite-epidote coronas. This distinct textural feature of altered monazite and its growth mech- anism were studied in detail using backscattered electron imaging in a sample of metagranite from the Tauern Window in the eastern Alps. It appears that the outer rims of the former monazites were replaced directly by an apatite ring with tiny thorite inter- growths in connection with Ca supply through metamorphic ¯uid. Around the apatite zone, a proximal allanite ring and a distal epidote ring developed. This concentric corona struc- ture, with the monazite core regularly preserved in the center, shows that the reaction kinetics were diffusion controlled and relatively slow. Quantitative electron microprobe analyses suggest that the elements released from mon- azite breakdown (P, REE, Y, Th, U), were diluted and redistributed in the newly formed apatite, allanite, and epidote overgrowth rings and were unable to leave the corona. This supports the common hypothesis that these trace elements are highly immobile during metamorphism. Furthermore, microprobe data suggest that the preserved monazite cores lost little, possibly none of their radiogenic lead during metamorphism. Thus, metastable monazite grains from orthogneisses appear to be very useful for constraining U-Th-Pb protolith ages.
    [Show full text]
  • Fossil Hystrichospheres Concentrated by Sieving Techniques
    No. 4875 April 6, 1963 NATURE 81 numerous instances of co-existing epidote and clinozoisite Fossil Hystrichospheres concentrated by assemblages. The crystallization periods of epidote and Sieving Techniques clinozoisite overlapped, yet the contacts between these THE hystrichospheres, a group of micro-organisms minerals are boundaries between chemically and physi­ defined by shell constitution and morphology, with a size. cally dist~ct crystals, with no evidence for replacement, or gradat1on of properties. Clinozoisite has nucleated on rang~ of 5-35.0[1. and typically less than 120[1., were first descn bed fossil from translucent flakes of flint and chert in epidote, with the b-axes of the two minerals lying parallel. 1 Optical properties and corresponding compositions of the 1838 . Exactly a century later, it was demonstrated that assemblages could be concentrated from sediments bv co-existing crystals are given in Table I. application of the chemical techniques developed for Table 1 spore and pollen studies•. This has now become standard (j Ps(%) Np Ps(%) procedure, sediment samples being successively treated Clinozoisite 0·012-0·015 11-13* 1·717 10·4t with hydrochloric acid, to dissolve carbonates, and hydro­ Epidote 0·035-0·042 24·4-28·6 1·746 25·8 fluoric acid, to dissolve silicates; when necessary, the • Twelve pairs. tOne pair. concentration of microfossils in the resultant residue may A gap therefore exists in the clinozoisite-epidote solid be further increased by heavy liquid separation or by mild oxidation, usually with Schulze's solution. solution series between Oz 76Ps24 and Oz 87Psw under the P-T-X conditions of epidote formation in the Borrowdale Recently one of us (S.
    [Show full text]
  • Geochemistry of Rare Earth Elements in the Baba Ali Magnetite Skarn Deposit, Western Iran
    Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran... Hassan Zamanian, Kaikosrov Radmard Geologos 22, 1 (2016): 33–47 doi: 10.1515/logos-2016-0003 Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran – a key to determine conditions of mineralisation Hassan Zamanian, Kaikosrov Radmard* Department of Geology, Faculty of Natural Sciences, Lorestan University, Khoram Abad, Iran *corresponding author, e-mail: [email protected] Abstract The Baba Ali skarn deposit, situated 39 km to the northwest of Hamadan (Iran), is the result of a syenitic pluton that intruded and metamorphosed the diorite host rock. Rare earth element (REE) values in the quartz syenite and diorite range between 35.4 and 560 ppm. Although the distribution pattern of REEs is more and less flat and smooth, light REEs (LREEs) in general show higher concentrations than heavy REEs (HREEs) in different lithounits. The skarn zone reveals the highest REE-enriched pattern, while the ore zone shows the maximum depletion pattern. A comparison of the con- centration variations of LREEs (La–Nd), middle REEs (MREEs; Sm–Ho) and HREEs (Er–Lu) of the ore zone samples to the other zones elucidates two important points for the distribution of REEs: 1) the distribution patterns of LREEs and MREEs show a distinct depletion in the ore zone while representing a great enrichment in the skarn facies neighbouring the ore body border and decreasing towards the altered diorite host rock; 2) HREEs show the same pattern, but in the exoskarn do not reveal any distinct increase as observed for LREEs and MREEs.
    [Show full text]
  • Stability and Relations of the AI-Fe Epidotes
    464 Stability and relations of the AI-Fe epidotes By R. G. J. STaE~S Department of Geology and Geophysics, University of California, Berkeley 1 [Read 3 June 1965] Summary. The various (P, T) stability fields of iron-free zoisite have been deduced for systems containing excess silica and water with Ca : A1 ratios ranging from 1 : 2 (anorthite) to 3:2 (grossular). Zoisite is a possible phase in all systems with Ca:A1 lower than 3:2, attaining its maximum stability at the zoisite (Ca :A1 = 2:3) and prehnite (Ca :Al -- 2:2) compositions. The consequences of varying the A1 : Fe ratio are next examined. Zoisite with 4 % pistacite is stable to 525 ~ at 2 kilobars, compared with ~ 585 ~ for clinozoisite and 620 to 630 ~ for epidote (Ps85) at the same pressure. Increasing iron content also stabilizes epidote minerals relative to their low-temperature and high-pressure decomposition products. Examples of natural zoisite-clinozoisite, zoisite-epidote, and clinozoisite-epidote assemblages are described. It is concluded that zoisite-epidote mixtures result from the disproportionation of clinozoisite outside its own stability field, but within those of zoisite and epidote. The assemblage zoisite-clinozoisite is probably not stable, but further evidence is needed on this point. The assemblage clinozoisite- epidote is stable below 550~ C, at which temperature the solvus in the A1-Fe series closes. ELATIONSHIPS between epidote, clinozoisite, and zoisite were R briefly considered by the writer (Strens, 1963) who presented data on coexisting epidote and clinozoisite from the English Lake District, and discussed published data on zoisite-epidote and zoisite-clinozoisite assemblages.
    [Show full text]
  • Rare Earth Element and Yttrium Mineral Occurences in the Adirondack Mountains Marian V
    6 RARE EARTH ELEMENT AND YTTRIUM MINERAL OCCURENCES IN THE ADIRONDACK MOUNTAINS MARIAN V. LUPULESCU,1 JEFFREY R. CHIARENZELLI,2 AND JARED SINGER3 1. Research and Collections, New York State Museum, Albany, NY 12230, [email protected] 2. Department of Geosciences, St. Lawrence University, Canton, NY 13617 3. Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 KEYWORDS: Rare Earth Elements, Yttrium, Lyon Mountain Granite, Iron Deposits, Eastern Adirondack Highlands INTRODUCTION The rare earth elements (REE), formally called lanthanides, are a set of fifteen chemical elements, from lanthanum (La) to lutetium (Lu). Yttrium (Y) is added to this group because it has similar properties and occurs in the same mineral deposits. These elements are divided into low-atomic number, lanthanum to europium (La-Eu), or light rare earth elements (LREE), and heavy-atomic number, gadolinium to lutetium (Gd-Lu), or heavy rare earth elements (HREE). Even though they are called “rare,” they are widely distributed in the Earth’s crust and are present in all types of igneous, metamorphic, and sedimentary rocks. Some of the REE have abundances (relative amount of an element in the Earth’s crust) comparable or higher than gold, mercury, tungsten, tin, arsenic, copper, cobalt, and zinc (Handbook of Chemistry and Physics, 2016). In geology research, REE are used to understand earth processes such as crystal fractionation, partial melting, magma mixing, and absolute age dating of minerals. The REE have high-tech industrial applications and are essential for making hybrid cars, computers, smartphones, color TV, lasers, ceramics, and military devices. For this reason, the United States Geological Survey identified the rare earth element dysprosium as one of the most critical elements in the 2010 Critical Materials Strategy 80 THE ADIRONDACK JOURNAL OF ENVIRONMENTAL STUDIES VOLUME 21 81 6: RARE EARTH ELEMENT AND YTTRIUM MINERAL OCCURENCES IN THE ADIRONDACK MOUNTAINS report.
    [Show full text]
  • 2021 SEG CODES Student Chapter Field Trip Report King Island, Tasmania, Australia
    1 CODES SEG STUDENT CHAPTER, KING ISLAND FIELDTRIP 2021 __________________________________________________________________________________ 2021 SEG CODES Student Chapter Field Trip Report King Island, Tasmania, Australia 2021 SEG-CODES Student Chapter Field Trip Participants at Grassy Mine Written and compiled by Carlos Díaz Castro, Nathaly Guerrero Ramirez, Max Hohl, Rhiannon Jones, Peter Berger, Thomas Schaap, Zebedee Zivkovic, Karla Morales, Xin Ni Seow, Tobias Staal, Alex Farrar and Hannah Moore 2 CODES SEG STUDENT CHAPTER, KING ISLAND FIELDTRIP 2021 __________________________________________________________________________________ Contents Introduction 3 Trip Leaders and organisers 5 Day 1 – Grassy area, Dolphin open pit mine 6 Historical context 6 Skarn mineralization at King Island 7 SEG-CODES student chapter crew activities 9 Naracoopa 12 Day 2 – Stokes Point and Cape Wickham 15 Stokes Point 15 Cape Wickham 16 Day 3 – City of Melbourne Bay 18 City of Melbourne Bay south: volcanics and tillites 18 City of Melbourne Bay north: cap carbonate 20 Acknowledgements 23 References 23 3 CODES SEG STUDENT CHAPTER, KING ISLAND FIELDTRIP 2021 __________________________________________________________________________________ Introduction When the Society of Economic Geologists UTAS student chapter met up at the start of 2021, the student chapter’s committee noted a general eagerness amongst the members to get out into the field. Indeed, many of the society’s postgraduate members had their research fieldwork postponed in 2020 due to travel and fieldwork restrictions established to reduce the spread of COVID-19. Discussions led to fundraising efforts, and the group secured sponsorship from the Geological Society of Australia and a travel grant from the Society of Economic Geologists to lead a field trip to King Island.
    [Show full text]