Chemistry 400 Curriculum Ii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemistry Grade Level 10 Units 1-15
COPPELL ISD SUBJECT YEAR AT A GLANCE GRADE HEMISTRY UNITS C LEVEL 1-15 10 Program Transfer Goals ● Ask questions, recognize and define problems, and propose solutions. ● Safely and ethically collect, analyze, and evaluate appropriate data. ● Utilize, create, and analyze models to understand the world. ● Make valid claims and informed decisions based on scientific evidence. ● Effectively communicate scientific reasoning to a target audience. PACING 1st 9 Weeks 2nd 9 Weeks 3rd 9 Weeks 4th 9 Weeks Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit Unit Unit Unit Unit Unit Unit Unit Unit 7 8 9 10 11 12 13 14 15 1.5 wks 2 wks 1.5 wks 2 wks 3 wks 5.5 wks 1.5 2 2.5 2 wks 2 2 2 wks 1.5 1.5 wks wks wks wks wks wks wks Assurances for a Guaranteed and Viable Curriculum Adherence to this scope and sequence affords every member of the learning community clarity on the knowledge and skills on which each learner should demonstrate proficiency. In order to deliver a guaranteed and viable curriculum, our team commits to and ensures the following understandings: Shared Accountability: Responding -
Chapter 9 Titrimetric Methods 413
Chapter 9 Titrimetric Methods Chapter Overview Section 9A Overview of Titrimetry Section 9B Acid–Base Titrations Section 9C Complexation Titrations Section 9D Redox Titrations Section 9E Precipitation Titrations Section 9F Key Terms Section 9G Chapter Summary Section 9H Problems Section 9I Solutions to Practice Exercises Titrimetry, in which volume serves as the analytical signal, made its first appearance as an analytical method in the early eighteenth century. Titrimetric methods were not well received by the analytical chemists of that era because they could not duplicate the accuracy and precision of a gravimetric analysis. Not surprisingly, few standard texts from the 1700s and 1800s include titrimetric methods of analysis. Precipitation gravimetry developed as an analytical method without a general theory of precipitation. An empirical relationship between a precipitate’s mass and the mass of analyte— what analytical chemists call a gravimetric factor—was determined experimentally by taking a known mass of analyte through the procedure. Today, we recognize this as an early example of an external standardization. Gravimetric factors were not calculated using the stoichiometry of a precipitation reaction because chemical formulas and atomic weights were not yet available! Unlike gravimetry, the development and acceptance of titrimetry required a deeper understanding of stoichiometry, of thermodynamics, and of chemical equilibria. By the 1900s, the accuracy and precision of titrimetric methods were comparable to that of gravimetric methods, establishing titrimetry as an accepted analytical technique. 411 412 Analytical Chemistry 2.0 9A Overview of Titrimetry We are deliberately avoiding the term In titrimetry we add a reagent, called the titrant, to a solution contain- analyte at this point in our introduction ing another reagent, called the titrand, and allow them to react. -
The Practice of Chemistry Education (Paper)
CHEMISTRY EDUCATION: THE PRACTICE OF CHEMISTRY EDUCATION RESEARCH AND PRACTICE (PAPER) 2004, Vol. 5, No. 1, pp. 69-87 Concept teaching and learning/ History and philosophy of science (HPS) Juan QUÍLEZ IES José Ballester, Departamento de Física y Química, Valencia (Spain) A HISTORICAL APPROACH TO THE DEVELOPMENT OF CHEMICAL EQUILIBRIUM THROUGH THE EVOLUTION OF THE AFFINITY CONCEPT: SOME EDUCATIONAL SUGGESTIONS Received 20 September 2003; revised 11 February 2004; in final form/accepted 20 February 2004 ABSTRACT: Three basic ideas should be considered when teaching and learning chemical equilibrium: incomplete reaction, reversibility and dynamics. In this study, we concentrate on how these three ideas have eventually defined the chemical equilibrium concept. To this end, we analyse the contexts of scientific inquiry that have allowed the growth of chemical equilibrium from the first ideas of chemical affinity. At the beginning of the 18th century, chemists began the construction of different affinity tables, based on the concept of elective affinities. Berthollet reworked this idea, considering that the amount of the substances involved in a reaction was a key factor accounting for the chemical forces. Guldberg and Waage attempted to measure those forces, formulating the first affinity mathematical equations. Finally, the first ideas providing a molecular interpretation of the macroscopic properties of equilibrium reactions were presented. The historical approach of the first key ideas may serve as a basis for an appropriate sequencing of -
Titration Endpoint Challenge
Analytical and Bioanalytical Chemistry (2019) 411:1–2 https://doi.org/10.1007/s00216-018-1430-y ANALYTICAL CHALLENGE Titration endpoint challenge Diego Alejandro Ahumada Forigua1 & Juris Meija2 Published online: 1 January 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 We would like to invite you to participate in the Analytical practical aspects related to the sources of uncertainty of Challenge, a series of puzzles to entertain and challenge our this technique. readers. This special feature of “Analytical and Bioanalytical Origins of titrimetry date back to 1690s, when Wilhelm Chemistry” has established itself as a truly unique quiz series, Homberg (1652–1715) published the first report related to with a new scientific puzzle published every three months. an acidity measurement [1]. Several decades later Claude Readers can access the complete collection of published prob- Geoffroy (1729–1753) used this method to determine the lems with their solutions on the ABC homepage at http://www. strength of vinegar by adding small amounts of potassium springer.com/abc. Test your knowledge and tease your wits in carbonate until the no further effervescence was observed diverse areas of analytical and bioanalytical chemistry by [2]. William Lewis (1708–1781), who is also considered one viewing this collection. of the early pioneers of titration, recognized the difficulty in In the present challenge, titration is the topic. And please determining the endpoint of the titration through the process note that there is a prize to be won (a Springer book of your of cessation of effervescence, so he suggested the use of color choice up to a value of €100). -
Andrea Deoudes, Kinetics: a Clock Reaction
A Kinetics Experiment The Rate of a Chemical Reaction: A Clock Reaction Andrea Deoudes February 2, 2010 Introduction: The rates of chemical reactions and the ability to control those rates are crucial aspects of life. Chemical kinetics is the study of the rates at which chemical reactions occur, the factors that affect the speed of reactions, and the mechanisms by which reactions proceed. The reaction rate depends on the reactants, the concentrations of the reactants, the temperature at which the reaction takes place, and any catalysts or inhibitors that affect the reaction. If a chemical reaction has a fast rate, a large portion of the molecules react to form products in a given time period. If a chemical reaction has a slow rate, a small portion of molecules react to form products in a given time period. This experiment studied the kinetics of a reaction between an iodide ion (I-1) and a -2 -1 -2 -2 peroxydisulfate ion (S2O8 ) in the first reaction: 2I + S2O8 I2 + 2SO4 . This is a relatively slow reaction. The reaction rate is dependent on the concentrations of the reactants, following -1 m -2 n the rate law: Rate = k[I ] [S2O8 ] . In order to study the kinetics of this reaction, or any reaction, there must be an experimental way to measure the concentration of at least one of the reactants or products as a function of time. -2 -2 -1 This was done in this experiment using a second reaction, 2S2O3 + I2 S4O6 + 2I , which occurred simultaneously with the reaction under investigation. Adding starch to the mixture -2 allowed the S2O3 of the second reaction to act as a built in “clock;” the mixture turned blue -2 -2 when all of the S2O3 had been consumed. -
Analytical Chemistry Laboratory Manual 2
ANALYTICAL CHEMISTRY LABORATORY MANUAL 2 Ankara University Faculty of Pharmacy Department of Analytical Chemistry Analytical Chemistry Practices Contents INTRODUCTION TO QUANTITATIVE ANALYSIS ......................................................................... 2 VOLUMETRIC ANALYSIS .............................................................................................................. 2 Volumetric Analysis Calculations ................................................................................................... 3 Dilution Factor ................................................................................................................................ 4 Standard Solutions ........................................................................................................................... 5 Primary standard .............................................................................................................................. 5 Characteristics of Quantitative Reaction ......................................................................................... 5 Preparation of 1 L 0.1 M HCl Solution ........................................................................................... 6 Preparation of 1 L 0.1 M NaOH Solution ....................................................................................... 6 NEUTRALIZATION TITRATIONS ...................................................................................................... 7 STANDARDIZATION OF 0.1 N NaOH SOLUTION ...................................................................... -
Comparison of Vitamin C Content in Citrus Fruits by Titration and High Performance Liquid Chromatography (HPLC) Methods
International Food Research Journal 24(2): 726-733 (April 2017) Journal homepage: http://www.ifrj.upm.edu.my Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods 1Fatin Najwa, R. and 1,2*Azrina, A. 1Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor, Malaysia 2Research Centre of Excellence, Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Article history Abstract Received: 29 June 2015 Vitamin C is one of the essential vitamins for human and animal. Many methods were Received in revised form: developed for the determination of vitamin C such as spectrophotometry, electrophoresis, 23 March 2016 titration, and high performance liquid chromatography (HPLC). This study aims to compare Accepted: 4 April 2016 vitamin C content of citrus fruits (orange, grapefruit, lemon, lime, kaffir lime and musk lime) using indophenol titration and HPLC-PDA methods. In the titration method, orange has the highest vitamin C content (58.30 mg/100g) followed by grapefruit (49.15 mg/100g), lemon Keywords (43.96 mg/100g), kaffir lime (37.24 mg/100g), lime (27.78 mg/100g) and musk lime (18.62 Vitamin C mg/100g). While, in the HPLC method orange also leads with the highest vitamin C content Ascorbic acid (43.61 mg/100g) followed by lemon (31.33 mg/100g), grapefruit (26.40 mg/100g), lime (22.36 Citrus fruits mg/100g), kaffir lime (21.58 mg/100g) and musk lime (16.78 mg/100g). -
Determination and Identification of Fundamental Amino Acids by Thermometric Titration and Nuclear Magnetic Resonance Spectroscopy
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 Determination and Identification of Fundamental Amino Acids by Thermometric Titration and Nuclear Magnetic Resonance Spectroscopy. William Yong-chien Wu Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Wu, William Yong-chien, "Determination and Identification of Fundamental Amino Acids by Thermometric Titration and Nuclear Magnetic Resonance Spectroscopy." (1967). LSU Historical Dissertations and Theses. 1274. https://digitalcommons.lsu.edu/gradschool_disstheses/1274 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67-8805 WU, William Yong-Chien, 1939- DETERMINATION AND IDENTIFICATION OF FUNDAMENTAL AMINO ACIDS BY THERMOMETRIC TITRATION AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY. Louisiana State University and Agricultural and Mechanical College, Ph.D., 1967 Chemistry, analytical University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DETERMINATION AND IDENTIFICATION OF FUNDAMENTAL AMINO ACIDS BY THERMOMETRIC TITRATION AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by William Yong-Chien Wu B.A., Hardin Simmons University, I96I January, I967 Reproduced with permission of the copyright owner. -
Chapter 10 – Chemical Reactions Notes
Chapter 8 – Chemical Reactions Notes Chemical Reactions: Chemical reactions are processes in which the atoms of one or more substances are rearranged to form different chemical compounds. How to tell if a chemical reaction has occurred (recap): Temperature changes that can’t be accounted for. o Exothermic reactions give off energy (as in fire). o Endothermic reactions absorb energy (as in a cold pack). Spontaneous color change. o This happens when things rust, when they rot, and when they burn. Appearance of a solid when two liquids are mixed. o This solid is called a precipitate. Formation of a gas / bubbling, as when vinegar and baking soda are mixed. Overall, the most important thing to remember is that a chemical reaction produces a whole new chemical compound. Just changing the way that something looks (breaking, melting, dissolving, etc) isn’t enough to qualify something as a chemical reaction! Balancing Equations Notes: Things to keep in mind when looking at the recipes for chemical reactions: 1) The stuff before the arrow is referred to as the “reactants” or “reagents”, and the stuff after the arrow is called the “products.” 2) The number of atoms of each element is the same on both sides of the arrow. Even though there may be different numbers of molecules, the number of atoms of each element needs to remain the same to obey the law of conservation of mass. 3) The numbers in front of the formulas tell you how many molecules or moles of each chemical are involved in the reaction. 4) Equations are nothing more than chemical recipes. -
Determination of the Chemical Concentrations
American Journal of Analytical Chemistry, 2014, 5, 205-210 Published Online February 2014 (http://www.scirp.org/journal/ajac) http://dx.doi.org/10.4236/ajac.2014.53025 Online Process Control of Alkaline Texturing Baths: Determination of the Chemical Concentrations Martin Zimmer, Katrin Krieg, Jochen Rentsch Department PV Production Technology and Quality Assurance, Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Email: [email protected] Received December 16, 2013; revised January 20, 2014; accepted January 28, 2014 Copyright © 2014 Martin Zimmer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor- dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property Martin Zimmer et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. ABSTRACT Almost every monocrystalline silicon solar cell design includes a wet chemical process step for the alkaline tex- turing of the wafer surface in order to reduce the reflection of the front side. The alkaline texturing solution contains hydroxide, an organic additive usually 2-propanol and as a reaction product silicate. The hydroxide is consumed due to the reaction whereas 2-propanol evaporates during the process. Therefore, the correct reple- nishment for both components is required in order to achieve constant processing conditions. This may be sim- plified by using analytical methods for controlling the main components of the alkaline bath. This study gives an overview for a successful analytical method of the main components of an alkaline texturing bath by titration, HPLC, surface tension and NIR spectrometry. -
The Birth of Titrimetry: William Lewis and the Analysis of American Potashes
66 Bull. Hist. Chem., VOLUME 26, Number 1 (2001) THE BIRTH OF TITRIMETRY: WILLIAM LEWIS AND THE ANALYSIS OF AMERICAN POTASHES Frederick G. Page, University of Leicester. William Lewis (1708- In order to place 1781), was a physician, author, Lewis’s work in the context and an experimental chemist. of the early beginnings of Sometime after 1730 he gave the industrial revolution in public lectures in London on Britain, Sivin (4) has used a chemistry and the improve- chronological argument; he ment of pharmacy and manu- cites Ashton’s suggestion facturing arts (1). With a grow- (5) that 1782 was the begin- ing reputation as a chemical ning of the industrial revo- experimentalist he was elected lution because in that year F.R.S., on October 31,1745, most statistics indicated a and was then living in Dover sharp increase in industrial Street, London. In 1747 he production. But, as Sivin moved to Kingston-upon- argues, it seems reasonable Thames, where he set up a to assume that by the time well-equipped laboratory and such early statistics became presumably continued in medi- available, those industries cal practice. From about 1750 that had created salable until his death in 1781 Lewis products had already be- employed Alexander Chisholm come established and were as his assistant in chemical and no longer in their early literary works (2). These im- years of founding. On this proved the knowledge and basis the industrial revolu- practice of pharmacy, but as a tion must have begun ear- practical consulting chemist lier. By the middle of the Lewis has received little bio- eighteenth century the so- graphical recognition. -
High Performance Liquid Chromatographic Assay of Chlorpropamide, Stability Study and Its Application to Pharmaceuticals and Urine Analysis
Open Access Austin Journal of Analytical and Pharmaceutical Chemistry Research Article High Performance Liquid Chromatographic Assay of Chlorpropamide, Stability Study and its Application to Pharmaceuticals and Urine Analysis Basavaiah K1* and Rajendraprasad N2 1Department of Chemistry, University of Mysore, Mysuru, Abstract Karnataka, India Chlorproamide (CLP) is a sulphonyl-urea derivative used in the treatment 2PG Department of Chemistry, JSS College of Arts, of type 2 diabetes mellitus. A rapid, sensitive and specific HPLC method with Commerce & Science, B N Road, Mysuru, Karnataka, uv detection is described for the determination of CLP in bulk and tablet forms. India The assay was performed on an Inertsil ODS 3V (150mm × 4.6mm; 5µm *Corresponding author: Basavaiah K, Department particle size) column using a mixture of phosphate buffer (pH 4.5), methanol of Chemistry, University of Mysore, Manasagangothri, and acetonitrile (30:63:7v/v/v) as mobile phase at a flow rate of 1mLmin-1 and Mysuru, Karnataka, India with uv detection at 254nm. The column temperature was 30ᴼC and injection volume was 20µL. The retention behaviour of CLP as a function of mobile phase Received: February 27, 2017; Accepted: March 16, pH, composition and flow rate was carefully studied, and chromatographic 2017; Published: March 22, 2017 conditions, yielding a symmetric peak with highest number of theoretical plates, were optimized. The calibration curve was linear (r = 0.9999) over the concentration range 0.5 – 300 µgmL-1. The limits of detection (LOD) and quantification (LOQ) were found to be 0.1 and 0.3 µgmL-1, respectively. Both intra-day and inter-day precisions determined at three concentration levels were below 1.0% and the respective accuracies expressed as %RE were ≤1.10%.