Short-Wave Enhances Mesenchymal Stem Cell Recruitment in Fracture Healing by Increasing HIF-1 in Callus

Total Page:16

File Type:pdf, Size:1020Kb

Short-Wave Enhances Mesenchymal Stem Cell Recruitment in Fracture Healing by Increasing HIF-1 in Callus Ye et al. Stem Cell Research & Therapy (2020) 11:382 https://doi.org/10.1186/s13287-020-01888-0 RESEARCH Open Access Short-wave enhances mesenchymal stem cell recruitment in fracture healing by increasing HIF-1 in callus Dongmei Ye1*† , Chen Chen2†, Qiwen Wang1,3, Qi Zhang1, Sha Li1 and Hongwei Liu1 Abstract Background: As a type of high-frequency electrotherapy, a short-wave can promote the fracture healing process; yet, its underlying therapeutic mechanisms remain unclear. Purpose: To observe the effect of Short-Wave therapy on mesenchymal stem cell (MSC) homing and relative mechanisms associated with fracture healing. Materials and methods: For in vivo study, the effect of Short-Wave therapy to fracture healing was examined in a stabilized femur fracture model of 40 SD rats. Radiography was used to analyze the morphology and microarchitecture of the callus. Additionally, fluorescence assays were used to analyze the GFP-labeled MSC homing after treatment in 20 nude mice with a femoral fracture. For in vitro study, osteoblast from newborn rats simulated fracture site was first irradiated by the Short-Wave; siRNA targeting HIF-1 was used to investigate the role of HIF-1. Osteoblast culture medium was then collected as chemotaxis content of MSC, and the migration of MSC from rats was evaluated using wound healing assay and trans-well chamber test. The expression of HIF-1 and its related factors were quantified by q RT-PCR, ELISA, and Western blot. Results: Our in vivo experiment indicated that Short-Wave therapy could promote MSC migration, increase local and serum HIF-1 and SDF-1 levels, induce changes in callus formation, and improve callus microarchitecture and mechanical properties, thus speeding up the healing process of the fracture site. Moreover, the in vitro results further indicated that Short-Wave therapy upregulated HIF-1 and SDF-1 expression in osteoblast and its cultured medium, as well as the expression of CXCR-4, β-catenin, F-actin, and phosphorylation levels of FAK in MSC. On the other hand, the inhibition of HIF-1α was significantly restrained by the inhibition of HIF-1α in osteoblast, and it partially inhibited the migration of MSC. Conclusions: These results suggested that Short-Wave therapy could increase HIF-1 in callus, which is one of the crucial mechanisms of chemotaxis MSC homing in fracture healing. Keywords: Mesenchymal stem cells, Short-Wave therapy, Recruitment, Fracture, HIF-1 * Correspondence: [email protected] †Dongmei Ye and Chen Chen contributed equally to this work. 1Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Ye et al. Stem Cell Research & Therapy (2020) 11:382 Page 2 of 16 Introduction fracture in the animal model and assessed the healing of Fracture healing is a biologically optimized process. fracture using the radiographs. Also, in vivo biolumines- Mesenchymal stem cells (MSCs) are multipotent stromal cent assays and callus histo-immunofluorescence were cells that can differentiate into multiple cell types such applied to evaluate the MSC migration. HIF-1 and re- as chondrocytes and osteocytes and thus have an essen- lated factors were also detected. siRNA targeted HIF-1α tial role in the bone healing process [1]. While fracture was transfected to clarify its effect in Short-Wave ther- healing, circulating MSC can receive signals from the in- apy (Fig. 1). This study aimed to investigate the impact jured tissue and migrate to the damaged sites. Over the of Short-Wave therapy on MSC recruitment and explore last decade, several strategies for fracture healing have the underlying mechanisms of Short-Wave therapy on been investigated, including the stimulation of endogen- fracture healing. ous stem cell populations from the mature body [2, 3]. An alternative strategy is the use of exogenous stem Materials and methods cells, which can be obtained from connective tissues and MSC isolation and identification are controlled by the expression of molecules during MSC was isolated from femurs of 3-week-old male SD MSC expansion, such as CXCR4 and complement 1q rats, as previously described [22]. Before performing any (C1q) [4, 5], or by certain chemicals [6], such as valpro- experiment, cells were passaged for 3 to 6 times. The ate or lithium, which are involved in MSC homing and surface marker expressions of MSC, including CD90, can trigger the expression of certain key factors. Since CD44, CD34, CD45, and CD11b/c, were analyzed by the mobilization is a kind of directional migration, both flow cytometry assay, as described in the previous study endogenous and exogenous MSC recruitment is related [23, 24]. to the condition of the fracture site. Currently, re- searchers are focusing on improving the condition of Animal grouping MSC recruitment by using biological agents. Clinical- A total of 40 male SD rats, 8–12 weeks old, weighing standard platelet products loaded membranes [7] and 350–500 g, were obtained from Laboratory Animal Cen- naringin [8] successfully support MSC colony formation ter of Dalian Medical University, China. Rats were and promote MSC migration in vitro. Furthermore, housed in an environment with a temperature of 22 ± MSC migration can be improved under hypoxic condi- 1 °C, a relative humidity of 50 ± 1%, and a light/dark tions. Previous studies have suggested that hypoxic con- cycle of 12/12 h. ditions decrease the MMP secretion and increase After 1 week of adaptation, 40 SD rats were accurately CXCR4 expression [9, 10]. However, the effect of phys- weighed and randomly divided into two groups (n = 20/ ical agency therapy on MSC migration has not received group): Short-Wave treatment group (SW) and control adequate attention. group (Con). All rats underwent surgery to establish the Short-Wave therapy is a type of high-frequency elec- femoral shaft fracture and intramedullary fixation model. trotherapy, which can promote the fracture healing For in vivo bioluminescent assays to the MSC homing, process [11, 12]. At high frequencies, the electromag- 20 nude mice of femoral shaft fracture were injected MSC netic energy is converted to thermal energy, which can labeled by the GFP (MG) and then randomly divided into induce heat (temperature over 40 °C) to the treated area two groups, including a Short-Wave treatment group of the body [13], where the heating process affects blood (MG+SW) and a control group (MG) (n = 10/group). flow [14] and decreases pain [15]. Accumulating evi- dence has indicated that both hypoxia and hypoxia- Stabilized fracture model driven angiogenesis can be regulated by thermal therapy Stabilized right femur fractures were established by [16]. The hypoxia-inducible factor (HIF) involved signal- intramedullary fixation in 8–12-week-old male SD rats. ing pathway is activated under hypoxia. HIF protein, es- A 0.25-mm titanium alloy pin was inserted inside the pecially HIF-1α, has been associated with MSC medullar canal of the femur. A three-point bending de- migration and differentiation [17]. As a critical transcrip- vice was then used to produce closed fractures of the tional regulator, HIF-1 can regulate the expression of femoral shaft with a standardized force [25]. In 20 male multiple cytokines, such as stromal cell-derived factor 1 nude mice, transverse osteotomy with a 1-mm bone (SDF-1) [10, 18] and focal adhesion kinase (FAK) [19], fracture was created in the middle of the right femur in which has a central role in the adaptation of MSC to the same way. Buprenorphine was subcutaneously ad- hypoxia [20, 21]. ministered (0.5 mg/kg) for pain control. The present study explored the effects of Short-Wave therapy on HIF-1 expression in fracture and MSC re- Cell injection cruitment from peripheral blood during fracture healing. All the 20 nude mice received injections with 5 × 106/ Accordingly, we applied Short-Wave treatment on the 50 μl GFP-labeled MSC (MG) (C57BL/6 mouse strain) Ye et al. Stem Cell Research & Therapy (2020) 11:382 Page 3 of 16 Fig. 1 Flowchart of the study design. Stabilized femur fractures were established in 40 SD rats. Radiographs and micro-CT analysis examined the effect of Short-Wave on fracture healing. The expression of HIF-1 and other factors in callus was tested by q RT-PCR. SDF-1 in plasma was evaluated by ELISA. To analyze the MSC migration in healing, in vivo fluorescence assays and immunofluorescence were used after treatment in 20 nude mice with a femoral fracture. For in vitro study, osteoblast simulated fracture site was first irradiated by the Short-Wave; CoCl2 in medium stimulated hypoxia condition; siRNA targeting HIF-1 was used to investigate the role of HIF-1.
Recommended publications
  • Callus Induction, Direct and Indirect Organogenesis of Ginger (Zingiber Officinale Rosc)
    Vol. 15(38), pp. 2106-2114, 21 September, 2016 DOI: 10.5897/AJB2016.15540 Article Number: B7FF38560550 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Callus induction, direct and indirect organogenesis of ginger (Zingiber officinale Rosc) Ammar Mohammed Ahmed Ali1*, Mawahib ElAmin Mohamed El-Nour2 and Sakina Mohamed Yagi3 1Department of Biology, Faculty of Education, Hajjah University, Yemen. 2Department of Biology and Biotechnology, Faculty of Science and Technology, AL Neelain University, Sudan. 3Botany Department, Faculty of Science, University of Khartoum, Sudan. Received 25 June, 2016; Accepted 7 September, 2016 The present study aimed to induce callus, direct and indirect organogenesis of ginger (Zingiber officinale Rosc) by using Murashige and Skoog (MS) medium fortified with different concentrations and combinations of growth regulators. Shoot tip, in vitro leaf and root segments were used as explants to induce callus by MS medium containing (0.00 as control, 0.5, 1.00, 2.00 and 3.00 mg/L) of 2,4-dichloro- phenoxyacetic acid (2,4-D). Callus induced was subcultured on MS+2,4-D at different concentrations (0.5, 1.00, 2.00 and 3.00 mg/L) and one concentration 0.5 mg/L of 6-benzyl amino purine (BAP) was used. The sprouting buds (about 1 to 1.5 cm) were used as explants for direct shoots and roots induction by MS medium + 2.00, 3.00 and 4.5 mg/L of BAP. Callus induced by 1.00 mg/L 2,4-D was regenerated on MS + 0.5 mg/L 2,4-D to obtain a green callus, this callus was transferred to MS medium with combinations of 0.5 mg/L 1-naphthaleneacetic acid (NAA) with different concentrations of BAP (1.00, 2.00,3.00 and 4.00 mg/L) for indirect organogenesis.
    [Show full text]
  • Auxins Cytokinins and Gibberellins TD-I Date: 3/4/2019 Cell Enlargement in Young Leaves, Tissue Differentiation, Flowering, Fruiting, and Delay of Aging in Leaves
    Informational TD-I Revision 2.0 Creation Date: 7/3/2014 Revision Date: 3/4/2019 Auxins, Cytokinins and Gibberellins Isolation of the first Cytokinin Growing cells in a tissue culture medium composed in part of coconut milk led to the realization that some substance in coconut milk promotes cell division. The “milk’ of the coconut is actually a liquid endosperm containing large numbers of nuclei. It was from kernels of corn, however, that the substance was first isolated in 1964, twenty years after its presence in coconut milk was known. The substance obtained from corn is called zeatin, and it is one of many cytokinins. What is a Growth Regulator? Plant Cell Growth regulators (e.g. Auxins, Cytokinins and Gibberellins) - Plant hormones play an important role in growth and differentiation of cultured cells and tissues. There are many classes of plant growth regulators used in culture media involves namely: Auxins, Cytokinins, Gibberellins, Abscisic acid, Ethylene, 6 BAP (6 Benzyladenine), IAA (Indole Acetic Acid), IBA (Indole-3-Butyric Acid), Zeatin and trans Zeatin Riboside. The Auxins facilitate cell division and root differentiation. Auxins induce cell division, cell elongation, and formation of callus in cultures. For example, 2,4-dichlorophenoxy acetic acid is one of the most commonly added auxins in plant cell cultures. The Cytokinins induce cell division and differentiation. Cytokinins promote RNA synthesis and stimulate protein and enzyme activities in tissues. Kinetin and benzyl-aminopurine are the most frequently used cytokinins in plant cell cultures. The Gibberellins is mainly used to induce plantlet formation from adventive embryos formed in culture.
    [Show full text]
  • The Establishment of Cell Suspension Cultures of <Emphasis Type="Italic">
    In Vitro Cell. Dev. Biol. 26:425-430,April 1990 1990Tissue Culture Association 0883-8364/90 $01.50+0.00 THE ESTABLISHMENT OF CELL SUSPENSION CULTURES OF GLADIOLUS THAT REGENERATE PLANTS KATHRYN KAMO, JANET CHEN, ANDROGER LAWSON United States Department of Agriculture, Florist and Nursery Crops Laboratory, Beltsville Agricultural Research Center, Beltsville, .Maryland 20705 (Received 27 September 1989; accepted 27 January. 1990~ SUMMARY Inflorescence stalks from greenhouse-grown Gladiolus plants of the cuhivars 'Blue Isle' and 'Hunting Song' cultured on a nurashige and Skoog basal salts medium supplemented with 53.6 /~M l-napthaleneacetic acid formed a compact, not friable type of callus that regenerated plantlets. Cormel slices and intact plantlets of three cultivars {'Peter Pears,' 'Rosa Supreme,' 'Jenny Lee') propagated through tissue culture formed a friable type of callus when cultured on Murashige and Skoog basal salts medium supplemented with 2,4-dichlorophenoxyacetic acid. This friable callus readily formed a cell suspension when the callus was placed in a liquid medium. Plants were regenerated from two-month-old suspension cell cultures of the commercial cultivar 'Peter Pears' after the suspension cells had been cultured on solid medium. Key words: flower bulb crops; monocot cell suspensions. INTRODUCTION Regeneration of Gladiolus has been reported from The ability to regenerate plants from cell suspensions floral explants ~33). The explants formed either a thin and protoplasts is important for future experiments in layer of callus or no callus prior to plant regeneration. In genetic engineering. Monocots have been relatively addition, Wilfret ~31) reported that shoot tips grown in difficult to manipulate in culture, although there has liquid medium developed callus more readily than on been much progress recently, particularly with crops of solid medium, but plant regeneration from the callus was agronomic significance.
    [Show full text]
  • Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing
    TISSUE-SPECIFIC STEM CELLS Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing a a b c a FROILA´ N GRANERO-MOLTO´ , JARED A. WEIS, MICHAEL I. MIGA, BENJAMIN LANDIS, TIMOTHY J. MYERS, c a b d a,e LYNDA O’REAR, LARA LONGOBARDI, E. DUCO JANSEN, DOUGLAS P. MORTLOCK, ANNA SPAGNOLI Departments of aPediatrics and eBiomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of bBiomedical Engineering, cPediatrics, and dMolecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA Key Words. Mesenchymal stem cells • Fracture healing • CXCR4 • Bone morphogenic protein 2 • Stem cell niche ABSTRACT Mesenchymal stem cells (MSC) have a therapeutic poten- migration at the fracture site is time- and dose-dependent tial in patients with fractures to reduce the time of healing and, it is exclusively CXCR4-dependent. MSC improved the and treat nonunions. The use of MSC to treat fractures is fracture healing affecting the callus biomechanical proper- attractive for several reasons. First, MSCs would be imple- ties and such improvement correlated with an increase in menting conventional reparative process that seems to be cartilage and bone content, and changes in callus morphol- defective or protracted. Secondly, the effects of MSCs treat- ogy as determined by micro-computed tomography and ment would be needed only for relatively brief duration of histological studies. Transplanting CMV-Cre-R26R-Lac reparation. However, an integrated approach to define the Z-MSC, we found that MSCs engrafted within the callus multiple regenerative contributions of MSC to the fracture endosteal niche. Using MSCs from BMP-2-Lac Z mice genet- repair process is necessary before clinical trials are initiated.
    [Show full text]
  • " Shoot Organogenesis in Callus Induced from Pedicel Explants of Common Bean (Phaseolus Vulgaris L.)"
    J. AMER. SOC. HORT. SCI. 118(1):158-162. 1993. Shoot Organogenesis in Callus Induced from Pedicel Explants of Common Bean (Phaseolus vulgaris L.) Mohamed F. Mohamed1, Dermot P. Coyne2, and Paul E. Read3 Department of Horticulture, University of Nebraska, Lincoln, NE 68583-0724 Additional index words. benzyladenine, indoleacetic acid, pedicel, plant regeneration, somaclonal variation, thidiazuron, tissue culture Abstract. Plant regeneration has been achieved in two common bean lines from pedicel-derived callus that was separated from the explant and maintained through successive subcultures. Callus was induced either on B 5 or MS medium containing 2% sucrose and enriched with 0.5 or 1.0 mg thidiaznron/liter alone or plus various concentrations of indoleacetic acid. The presence of 0.07 or 0.14 g ascorbic acid/liter in the maintenance media prolonged the maintenance time. Up to 40 shoot primordia were observed in 4-week-old cultures obtained from 40 to 50 mg callus tissues on shoot-induction medium containing 1-mg benzyladenine/liter. These shoot primordia developed two to five excisable shoots (>0.5 cm) on medium with 0.1-mg BA/liter. A histological study confirmed the organogenic nature of regeneration from the callus tissues. The R2 line from a selected variant plant showed stable expression of increased plant height and earlier maturity. Chemical names used: ascorbic acid, N- (phenylmethyl)-1H-pnrin-6-amine [benzyl- adenine, BA], 1H-indole-3-acetic acid (IAA), N- phenyl-N’-1,2,3-thiadiazol-5-ylurea [thidiazuron, TDZ]. Large-seeded legumes are difficult to regenerate from callus The objective of this study was to explore and develop meth- cultures.
    [Show full text]
  • Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology?
    fpls-10-00536 April 25, 2019 Time: 16:16 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library REVIEW published: 26 April 2019 doi: 10.3389/fpls.2019.00536 Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Attila Fehér1,2* 1 Department of Plant Biology, University of Szeged, Szeged, Hungary, 2 Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Recent findings call for the critical overview of some incorrectly used plant cell and tissue culture terminology such as dedifferentiation, callus, totipotency, and somatic embryogenesis. Plant cell and tissue culture methods are efficient means to preserve and propagate genotypes with superior germplasm as well as to increase genetic variability for breading. Besides, they are useful research tools and objects of plant Edited by: developmental biology. The history of plant cell and tissue culture dates back to more Jian Xu, than a century. Its basic methodology and terminology were formulated preceding National University of Singapore, Singapore modern plant biology. Recent progress in molecular and cell biology techniques Reviewed by: allowed unprecedented insights into the underlying processes of plant cell/tissue Ying Hua Su, culture and regeneration. The main aim of this review is to provide a theoretical Shandong Agricultural University, China framework supported by recent experimental findings to reconsider certain historical, Kalika Prasad, even dogmatic, statements widely used by plant scientists and teachers such as “plant Indian Institute of Science Education cells are totipotent” or “callus is a mass of dedifferentiated cells,” or “somatic embryos and Research Thiruvananthapuram, India have a single cell origin.” These statements are based on a confused terminology.
    [Show full text]
  • Transcriptome Comparison Between Pluripotent and Non-Pluripotent Calli Derived from Mature Rice Seeds
    www.nature.com/scientificreports OPEN Transcriptome comparison between pluripotent and non‑pluripotent calli derived from mature rice seeds Sangrea Shim1,2, Hee Kyoung Kim3, Soon Hyung Bae1, Hoonyoung Lee1, Hyo Ju Lee3, Yu Jin Jung3* & Pil Joon Seo1,2* In vitro plant regeneration involves a two‑step practice of callus formation and de novo organogenesis. During callus formation, cellular competence for tissue regeneration is acquired, but it is elusive what molecular processes and genetic factors are involved in establishing cellular pluripotency. To explore the mechanisms underlying pluripotency acquisition during callus formation in monocot plants, we performed a transcriptomic analysis on the pluripotent and non‑pluripotent rice calli using RNA‑ seq. We obtained a dataset of diferentially expressed genes (DEGs), which accounts for molecular processes underpinning pluripotency acquisition and maintenance. Core regulators establishing root stem cell niche were implicated in pluripotency acquisition in rice callus, as observed in Arabidopsis. In addition, KEGG analysis showed that photosynthetic process and sugar and amino acid metabolism were substantially suppressed in pluripotent calli, whereas lipid and antioxidant metabolism were overrepresented in up‑regulated DEGs. We also constructed a putative coexpression network related to cellular pluripotency in rice and proposed potential candidates conferring pluripotency in rice callus. Overall, our transcriptome‑based analysis can be a powerful resource for the elucidation of the molecular mechanisms establishing cellular pluripotency in rice callus. Callus is a pluripotent cell mass, which can be produced from a single diferentiated somatic cell 1,2. Pluripotent callus can undergo de novo organ formation or embryogenesis, giving rise to a new organ or even an entire plant 2.
    [Show full text]
  • Cellular Differentiation and Totipotency the Potential of a Cell to Grow and Develop Into a Multicellular Or Multiorganed Organism Is Termed As Cellular Totipotency
    Prepared for M.Sc. Sem III Botany by Prof. (Dr.) Manorma Kumari Cellular differentiation and Totipotency The potential of a cell to grow and develop into a multicellular or multiorganed organism is termed as cellular totipotency. Since the potential lies mainly in cellular differentiation this indicates that all genes responsible for differentiation are present within individual cells and many of them that remain inactive in differentiated tissues or organs are able to express only under adequate culture conditions. The development of an adult organism from a single cell (zygote) is the result of the integration of cell division and cell differentiation. Isolated cells from differentiated tissues are generally non-dividing and quiescent. To express totipotency the differentiated cells first undergo dedifferentiation and then redifferentiation. The phenomenon of mature cells of explant reverting to a meristematic state and forming undifferentiated callus tissue is termed as dedifferentiation, whereas the ability of dedifferentiated cells to form a whole plant or plant-organ is termed redifferentiation. These two phenomena of dedifferentiation and redifferentiation are inherent in the capacity of a plant cell, and thus giving rise to a whole plant. During the process of redifferentiation cells of callus undergo cellular differentiation or cytodifferentiation. Cytodifferentiation can be studied under different headings – (A) Vascular differentiation (xylogenesis & phloem differentiation) Xylogenesis is the differentiation of parenchyma into
    [Show full text]
  • Callus Induction, Proliferation, and Plantlets Regeneration of Two Bread Wheat (Triticum Aestivum L.) Genotypes Under Saline and Heat Stress Conditions
    International Scholarly Research Network ISRN Agronomy Volume 2012, Article ID 367851, 8 pages doi:10.5402/2012/367851 Research Article Callus Induction, Proliferation, and Plantlets Regeneration of Two Bread Wheat (Triticum aestivum L.) Genotypes under Saline and Heat Stress Conditions Laid Benderradji,1 Faic¸alBrini,2 Kamel Kellou,1 Nadia Ykhlef,1 Abdelhamid Djekoun,1 Khaled Masmoudi,2 and Hamenna Bouzerzour3 1 Genetic, Biochemistry & Plant Biotechnology Laboratory, Constantine University, Constantine 25000, Algeria 2 Plant Protection & Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, 3018 Sfax, Tunisia 3 Biology Department, Faculty of Sciences, S´etif University, S´etif 19000, Algeria Correspondence should be addressed to Faic¸al Brini, [email protected] Received 22 August 2011; Accepted 21 September 2011 Academic Editors: W. J. Rogers and Z. Yanqun Copyright © 2012 Laid Benderradji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Response of two genotypes of bread wheat (Triticum aestivum), Mahon-Demias (MD) and Hidhab (HD1220), to mature embryo culture, callus production, and in vitro salt and heat tolerance was evaluated. For assessment of genotypes to salt and heat tolerance, growing morphogenic calli were exposed to different concentrations of NaCl (0, 5, 10, and 15 g·L−1) and under different thermal stress intensities (25, 30, 35, and 40◦C). Comparison of the two genotypes was reported for callus induction efficiency from mature embryo. While, for salt and heat tolerance, the proliferation efficiency, embryonic efficiency, and regeneration efficiency were used.
    [Show full text]
  • Effects of Different Plant Hormones on Callus Induction and Plant Regeneration of Miniature Roses (Rosa Hybrida L.)
    Horticulture International Journal Research Article Open Access Effects of different plant hormones on callus induction and plant regeneration of miniature roses (Rosa hybrida L.) Abstract Volume 2 Issue 4 - 2018 Miniature roses (Rosa hybrida L.) are increasingly popular flowering potted plants. In this Jiayu Liu, Huan Feng, Yanqin Ma, Li Zhang, study, we used leaves of new cultivars of Rosa hybrida as explants and MS medium as basal medium, to explore optimal combinations and concentrations of growth regulators Haitao Han, Xuan Huang on callus, adventitious buds and root induction. Our results demonstrated that MS medium Department of Life Science, Northwest University, China supplemented with 3.0mgL-1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0mgL-1 6-Benzylaminopurine (6-BA) could result to 100% callus induction ratio. Furthermore, we Correspondence: Xuan Huang, Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology showed that 6-BA was of essential importance during the induction of adventitious buds in -1 -1 and Biotechnology in Western China, Ministry of Education, R.hybrida. On MS medium containing 1.0mgL 6-BA, (0.05-0.5) mgL naphthaleneacetic College of Life Science, Northwest University, Xi’an 710069, -1 acid (NAA) and (0.02-0.2) mgL Thidizuron (TDZ), adventitious buds could be regenerated China, Tell: +86-29-8830-3484, Fax: +86-29-8830-3572, from calli and the redifferentiation ratio reached 92.6%. Of note, our data supported the Email [email protected] indispensable role of auxin during rooting induction, because 1/4MS medium enabled 100% rooting frequency when 0.1mgL-1 NAA was supplemented.
    [Show full text]
  • Induction, Multiplication, and Evaluation of Antioxidant Activity of Polyalthia Bullata Callus, a Woody Medicinal Plant
    plants Article Induction, Multiplication, and Evaluation of Antioxidant Activity of Polyalthia bullata Callus, a Woody Medicinal Plant Munirah Adibah Kamarul Zaman 1, Azzreena Mohamad Azzeme 1,* , Illy Kamaliah Ramle 1, Nurfazlinyana Normanshah 1, Siti Nurhafizah Ramli 1, Noor Azmi Shaharuddin 1,2, Syahida Ahmad 1 and Siti Nor Akmar Abdullah 2,3 1 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Seri Kembangan 43400, Malaysia; [email protected] (M.A.K.Z.); [email protected] (I.K.R.); [email protected] (N.N.); [email protected] (S.N.R.); [email protected] (N.A.S.); [email protected] (S.A.) 2 Institute of Plantation Studies, Universiti Putra Malaysia, Selangor, Seri Kembangan 43400, Malaysia; [email protected] 3 Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Seri Kembangan 43400, Malaysia * Correspondence: [email protected]; Tel.: +60-3-9769-8265 Received: 31 October 2020; Accepted: 9 December 2020; Published: 14 December 2020 Abstract: Polyalthia bullata is an endangered medicinal plant species. Hence, establishment of P. bullata callus culture is hoped to assist in mass production of secondary metabolites. Leaf and midrib were explants for callus induction. Both of them were cultured on Murashige and Skoog (MS) and Woody Plant Medium (WPM) containing different types and concentrations of auxins (2,4-dichlorophenoxyacetic acid (2,4-D), α-naphthaleneacetic acid (NAA), picloram, and dicamba). The callus produced was further multiplied on MS and WPM supplemented with different concentrations of 2,4-D, NAA, picloram, dicamba, indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA) media.
    [Show full text]
  • Use of Plant Cell Cultures for a Sustainable Production of Innovative Ingredients COSMETICS PLANT CELL CULTURE
    9-2012 English Edition International Journal for Applied Science • Personal Care • Detergents • Specialties D. Schmid, F. Zülli Use of Plant Cell Cultures for a Sustainable Production of Innovative Ingredients COSMETICS PLANT CELL CULTURE D. Schmid, F. Zülli* Use of Plant Cell Cultures for a Sustainable Production of Innovative Ingredients ■ Plant Cell Cultures Instead of entiated plant cells (e.g. leaf cells, fruit in order to adapt to environmental con- Wild Plant Harvesting cells) to undergo de-differentiation and, ditions. In this way, plants can survive under the right stimuli, to regenerate a dormancy periods and regenerate when Plants that survive in high altitude habi- whole plant. Because of their sessile na- the conditions are again optimal. Totipo- tats of the Alps, medicinal herbs from Ti- ture, plants had to adopt this plasticity tency can be used for in vitro propaga- bet or orchids from the Amazonian area tion of plants or for the cultivation of are examples of attractive raw materials undifferentiated plant cells. Plant cell for cosmetic ingredients. These are all cultures can be initiated from nearly all rare plants or plant species that are pro- plant tissues. The tissue material which tected by CITES, the Convention on In- is obtained from the plant to culture is ternational Trade in Endangered Species called an explant. As a kind of wound re- of Wild Fauna and Flora. Harvesting of action, new cells are formed on the cut wild plants is forbidden or not done be- Abstract surfaces of the explant. The cells slowly cause of sustainability reasons. Cultiva- divide to form a colorless cell mass which tion of these plants in fields is in many here is an ongoing trend to is called callus (Fig.
    [Show full text]